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Context

m A computer experiment is an evaluation of a determinist expensive
black-box function describing a physical system:

f:xe ECR?—R.
Ref. : Fang et al. (2006), Koehler et Owen (1996), Santner et al. (2003) .
m Expensive & N possible calls to f.

m Uncertainties on inputs = modelled by a random variable X (known
distribution).

m Vizualisation,

m Optimization,

m Output distribution: mean, median, quantile, probability of rare events...
m Inverse problem.
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Metamodelling: prior distribution on f

Sacks et al. (1989).
f realization of a Gaussian process F:

Vx € E,
Q
F) = Behi(X) + ¢(x) = HX) B +¢(x)
k=1
where
m hy, ..., hg regression functions and 3 parameters vector,

m ( centred Gaussians process with covariance function:
Cov(¢(x), (X)) = oK (x,X'),

where K is a correlation kernel.

Hypotheses

m parameters 3, o2 and those of K assumed fixed;
m process F independent of X.
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Metamodelling: posterior

| y1 = f(X1),...,¥n = f(Xn) evaluations of f on a design D, (n < N).

m Conditioning F to {F(X1) = y1,..., F(Xn) = yn} = F(Dn).
Gaussian Process with mean mp,(x) and covariance Cp, (X, X’) ¥x, X’.

Forall x € E,

m mp,(x) approximates f(x),
m Cp, (X, x) uncertainty on this approximation.

For all x; € Dp,
| | mDn(x,-) = f(X,'),
m Cp,(xj,X;) = 0.
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Principle

Construct a first exploratory design: Dy s. t. n < N,
Fori=n-+1..Ndo D; = Di_y U {x;} where

X; € argmax Crit(D;_1,f) .

Crit(Di_1, f) can be adapted to the applied goal (optimization, estimation of
probability of rare event).
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Expected Improvement criterion

m Goal: Find the global extremum (here minimum e.g.) of f,

m Expected improvement criterion proposed by Jones et al. (1998):

El(x) = E((min, — F(x))"|F(Dn)),

where min, is the current minimum value:

m Closed-form computation:

Eln(X) = (mina—mp, (x))® <”7”7‘”’D(")> +/Co (X X6 (mm—mo(x)>
Cp, (X, X) Cp, (X, X)

where ® and ¢ are respectively the cdf and the pdf of A/(0, 1).
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GP-UCB

Gaussian Process - Upper Confidence Bound (Srinivas et al., 2010):

m Add point x; s. t.
X; € argmax mp,_,(x) + 8,/ - /Co,_, (%,X)

m Bounds on cumulative regret

RT_Zf ) — f(x;)

for a well chosen sequence (3;); and depending on the covariance
kernel of the GP.

m in the pratical cases studied in the paper, similar performance of El and
GP — UCB.
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Principle

m Uncertainties on x = random variable X,

m Goal: estimate the probability o = P(f(X) > ¢) under the constraint of a
limited number N of calls to f.

m For a design D, estimation of «a:

mp,(X) — ¢

an = E[P(F(X) > ¢)|F(Ds)] = /q’ ( Co, (%,X)

) dPx(x)

m Sequential design criterion:
X; € argmax [E((&,- — a?|F(Di—) N x; = x)|F(D,-_1)] ,

proposed in Chevalier et al. (2012).
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Example

Fonction de Branin
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m X~ U([0,1]?),
m estimate P(f(X) > 80).
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SUR criterion

SUR criterion updated SUR criterion
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point-wise probability of exceeding the threshold

probability of excursion updated probability of excursion
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