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Context

A computer experiment is an evaluation of a determinist expensive
black-box function describing a physical system:

f : x ∈ E ⊂ Rd 7→ R .

Ref. : Fang et al. (2006), Koehler et Owen (1996), Santner et al. (2003) .

Expensive⇔ N possible calls to f.

Uncertainties on inputs⇒ modelled by a random variable X (known
distribution).

Goal

Vizualisation,

Optimization,

Output distribution: mean, median, quantile, probability of rare events...

Inverse problem.
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Metamodelling: prior distribution on f

Sacks et al. (1989).
f realization of a Gaussian process F :
∀x ∈ E ,

F (x) =
Q∑

k=1

βk hk (x) + ζ(x) = H(x)Tβ + ζ(x) ,

where

h1, . . . , hQ regression functions and β parameters vector,

ζ centred Gaussians process with covariance function:

Cov(ζ(x), ζ(x′)) = σ2K (x, x′) ,

where K is a correlation kernel.

Hypotheses

parameters β, σ2 and those of K assumed fixed;

process F independent of X.
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Metamodelling: posterior

y1 = f (x1), . . . , yn = f (xn) evaluations of f on a design Dn (n ≤ N).

Conditioning F to {F (x1) = y1, . . . ,F (xn) = yn} = F (Dn).
Gaussian Process with mean mDn (x) and covariance CDn (x, x′) ∀x, x′.

For all x ∈ E ,
mDn (x) approximates f (x),
CDn (x, x) uncertainty on this approximation.

For all xi ∈ Dn,
mDn (xi ) = f (xi ),

CDn (xi , xi ) = 0.
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Efficient Global Optimization
Stepwise Uncertainty Reduction for estimating the probability of a rare event

Principle

1 Construct a first exploratory design: Dn s. t. n ≤ N,

2 For i = n + 1...N do Di = Di−1 ∪ {xi} where

xi ∈ arg max Crit(Di−1, f ) .

Crit(Di−1, f ) can be adapted to the applied goal (optimization, estimation of
probability of rare event).
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Expected Improvement criterion

Goal: Find the global extremum (here minimum e.g.) of f ,

Expected improvement criterion proposed by Jones et al. (1998):

EIn(x) = E((minn − F (x))+|F (Dn)) ,

where minn is the current minimum value:

minn = min
1,...,n

f (xi )

Closed-form computation:

EIn(x) = (minn−mDn (x))Φ

(
minn −mDn (x)√

CDn (x, x)

)
+
√

CDn (x, x)φ

(
minn −mDn (x)√

CDn (x, x)

)
.

where Φ and φ are respectively the cdf and the pdf of N (0, 1).
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Example step 1
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Example step 2
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Example step 3
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Example step 4
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Example step 5
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GP-UCB

Gaussian Process - Upper Confidence Bound (Srinivas et al., 2010):

Add point xi s. t.

xi ∈ arg max
x

mDi−1 (x) + β
1/2
i ·

√
CDi−1 (x, x)

Bounds on cumulative regret

RT =
T∑

i=1

f (x∗)− f (xi )

for a well chosen sequence (βi )i and depending on the covariance
kernel of the GP.

in the pratical cases studied in the paper, similar performance of EI and
GP − UCB.
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Principle

Uncertainties on x⇒ random variable X,

Goal: estimate the probability α = P(f (X) > c) under the constraint of a
limited number N of calls to f .

For a design Dn, estimation of α:

α̂n = E [P(F (X) > c)|F (Dn)] =

∫
Φ

(
mDn (x)− c√

CDn (x, x)

)
dPX(x)

Sequential design criterion:

xi ∈ arg max
x

E
[
E((α̂i − α)2|F (Di−1) ∩ xi = x)|F (Di−1)

]
,

proposed in Chevalier et al. (2012).
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Example
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Fonction de Branin

X ∼ U([0, 1]2),
estimate P(f (X) > 80).
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SUR criterion
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point-wise probability of exceeding the threshold
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