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Context

A computer experiment is an evaluation of a determinist expensive
black-box function describing a physical system:

f : x ∈ E ⊂ Rd 7→ R .

Ref. : Fang et al. (2006), Koehler et Owen (1996), Santner et al. (2003).

Expensive⇔ N possible calls to f.

Uncertainties on inputs⇒ modelled by a random variable X (known
distribution).

Goal

Vizualisation,

Optimization,

Output distribution: mean, median, quantile, probability of rare events...

Inverse problem.
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Meta-modeling: prior distribution on f

[Sacks et al., 1989a].
f realization of a Gaussian process F / prior distribution F on f :
∀x ∈ E ,

F (x) =
Q∑

k=1

βk hk (x) + ζ(x) = H(x)Tβ + ζ(x) ,

where

h1, . . . , hQ regression functions and β parameters vector,

ζ centred Gaussians process with covariance function:

Cov(ζ(x), ζ(x′)) = σ2K (x, x′) ,

where K is a correlation kernel depending on parameters ψ.
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Meta-modeling: posterior

y1 = f (x1), . . . , yn = f (xn) evaluations of f on a design Dn (n ≤ N).

Conditioning F to {F (x1) = y1, . . . ,F (xn) = yn} = F (Dn) and assuming
parameters β, σ2 and ψ fixed;
Gaussian Process with mean mDn (x) and covariance CDn (x, x′) ∀x, x′.

For all x ∈ E ,
mDn (x) approximates f (x),
CDn (x, x) uncertainty on this approximation.

For all xi ∈ Dn,
mDn (xi ) = f (xi ),

CDn (xi , xi ) = 0.
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Conditioned GP distribution

For x 6∈ DN ,

mDN (x) = H(x)Tβ + ΣT
xDN Σ−1

DN DN
(zDN − HDNβ)

KDN (x, x) = σ2(1− ΣT
xDN Σ−1

DN DN
ΣxDN ) ,

where

HDN = (H(x1), . . .H(xN))T ,

(ΣDN DN )1≤i,j≤N = corr(F (xi ),F (xj )) = K (xi , xj ),

ΣxDN = (corr(F (x1),F (x)), . . . corr(F (xN),F (x)))T .
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Hyperparameters

[Santner et al., 2003]

1 Plug-in ML estimates for β, σ2 and ψ,

2 Prior distribution on β (Laplace distribution or Gaussian distribution),
conditioned process still Gaussian with a closed-form for mean and
covariance,

3 Prior distribution on σ, Student process and closed-form for mean and
covariance,

4 Prior distribution on ψ, no closed-form expression, posterior sampling....
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Interpolation in RKHS

[Schaback, 1995]

K positive definite kernel⇒HK Reproducing Kernel Hilbert Space,

If f ∈ HK , mDn interpolates f on Dn with minimal ||mDn ||HK ,

∀x0,
|f (x0)−mDn (x0)| ≤ ||f ||HK CDn (x0, x0) .

For large class of kernels K ,

sup
x∈E

CDn (x, x) ≤ GK (u(Dn)) ,

with

GK : h 7→ GK (h) non-decreasing, with limit 0 when h→ 0,

u(Dn) = supz∈E min1≤j≤n ‖z− xj‖ with Dn = {x1, . . . , xn}.

BUT

Driscoll’s theorem: P(ω : F (ω) ∈ HK ) = 0
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Space-Filling design

Exploratory design,

space-filling since the precision of the approximation depends on the
distance between a new point and a design point,

low discrepancy designs, quasi-uniform sampling,
maximin and minimax designs,
optimal designs.
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Minimax and Maximin criterion

[Johnson et al., 1990]
Definition

Dn = {x1, . . . xn} is a minimax design if it minimizes over En :

u(Dn) = sup
z∈E

min
1≤j≤n

‖z− xj‖ .

sup
x∈E

CDn (x, x) ≤ GK (u(Dn)) .

Definition

Dn = {x1, . . . xn} is a maximin design if it maximizes over En :

v(Dn) = min
1≤i,j≤n

‖xi − xj‖ .

If Dn is maximin, we have:

sup
x∈E

CDn (x, x) ≤ GK (u(Dn)) ≤ GK (v(Dn)) .
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maximin Latin Hypercube Sampling

[Morris and Mitchell, 1995]
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Overview

Based on a first exploratory design, procedure to augment the design
sequentially:

one step ahead,

batch of experiments (parallelization),

to achieve:

optimization of the code,

better estimates of the probability of a rare event,

better estimates of the quantiles,

calibration of the computer code,

...

2 frameworks:

deterministic code,

stochastic code.
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Principle

Algorithm

1 Construct a first exploratory design: Dn s. t. n ≤ N and estimate
hyperparameters,

2 For i = n + 1...N do
1 find xi which maximizes Crit(·|f (Di−1))
2 Di = Di−1 ∪ {xi} and update conditional process F |f (Di ).

Crit(·|f (Di−1)) is adapted to a given goal (optimization, estimation of a
given probability, quantile, ...).

It can be computed as an expectation with respect to the prior on f and
the i − 1 first evaluations of f .

Step updating the conditional process may be with fixed or re-estimated
hyperparameters.
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Different approaches

Expected Improvement
for efficient global optimization EGO [Jones et al., 1998]

Stepwise Uncertainty Reduction for estimating probability of a rare event.
[Chevalier et al., 2014, Picheny, 2014]

Gaussian Process Upper Confidence Bound for optimization, quantile.
[Srinivas et al., 2009, Contal et al., 2014, Contal et al., 2013,
Grunewalder et al., 2010, Jala et al., 2014]
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Expected Improvement criterion

Goal: Find the global extremum (here minimum e.g.) of f ,

Expected improvement criterion proposed by [Jones et al., 1998]:

EIi−1(x) = E((mini−1 − F (x))+|F (Di−1)) ,

where minn is the current minimum value:

mini−1 = min
1,...,i−1

f (xi )

Closed-form computation:

EIi−1(x) = (mini−1 −mDi−1 (x))Φ

mini−1 −mDi−1 (x)√
CDi−1 (x, x)


+
√

CDi−1 (x, x)φ

mini−1 −mDi−1 (x)√
CDi−1 (x, x)

 .

where Φ and φ are respectively the cdf and the pdf of N (0, 1).
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Example step 1
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Example step 2
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Example step 3
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Example step 4

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

10
15

20

x

Y
(x

)

●

●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

x

E
I(

x)

● ● ● ● ●● ● ● ●

●

P. Barbillon Sequential numerical designs for computer experiments



Computer experiments
Sequential designs

Expected Improvement
Stepwise Uncertainty Reduction
Bandit optimization

Example step 5
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Theoretical results: dense in E

[Vazquez and Bect, 2010]
Theorem

If covariance function K satisfies to
No-Empty-Ball property (K (z, xn)→ 0⇒ xn → z),

1 for all xinit ∈ E and for all h ∈ HK , (xn)n generated from a sequential
algorithm based on maximization of the EI criterion is dense in E ,

2 for all xinit ∈ E , (Xn)n generated from a sequential algorithm based on
maximization of the EI criterion is PF almost-surely dense in E .

Any fixed sequence (independent from the first evaluations to f ) which fills E
has the same theoretical guarantees.
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Theoretical results: convergence rate

[Bull, 2011]
Theorem: Minimax convergence

For ψ ∈ R+ (length-scale), R > 0,

inf
u

sup
‖f‖HKψ

≤R
Eu
(

f (x∗n )−min
x∈E

f (x)

)
= Θ(n−ν/d ) ,

where x∗n is the estimated minimum location given n evaluations and ν < ∞
(assumption K̂ = Θ∞(‖x‖−2ν−d , K̂ is the Fourier transform of K ) and u stands
for a sequential strategy (may be stochastic) for evaluating f .

The upper bound is provided by a naive strategy: quasi-uniform sequence
(xn)n fixed in advance and x∗n taken as the minimizer of an interpolant of the
data f (x1), . . . , f (xn).

P. Barbillon Sequential numerical designs for computer experiments



Computer experiments
Sequential designs

Expected Improvement
Stepwise Uncertainty Reduction
Bandit optimization

Theoretical results: convergence rate (2)

Theorem

For F GP prior on f with ψ as length-scales. For any R > 0,

sup
‖f‖HKψ

≤R
EEI(F )

(
Mn −min

x∈E
f (x)

)
= Θ(n−ν/d log(n)α) if ν ≤ 1 ,

= Θ(n−1/d ) if ν > 1 ,

where Mn = min(f (x1, . . . , xn)).

Adaptation of the algorithm with a mixed strategy greedy and EI:

with proba 1− ε choose the next point with EI strategy,

with proba ε choose uniformly at random from E .
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Theoretical results: estimated parameters (3)

If the parameters are re-estimated at each step, counter-example to
convergence of the EI algorithm.
[Bull, 2011] proposed other estimated than MLE to ensure convergence of EI
with re-estimation.
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Principle for estimating the probability of a rare event

Uncertainties on x⇒ random variable X,

Goal: estimate the probability α = P(f (X) > c) under the constraint of a
limited number N of calls to f .

For a design Dn, estimation of α:

α̂n = E [P(F (X) > c)|F (Dn)] =

∫
Φ

(
mDn (x)− c√

CDn (x, x)

)
dPX(x)

Sequential design criterion:

xi ∈ arg max
x

E
[
E((α̂i − α)2|F (Di−1) ∩ xi = x)|F (Di−1)

]
,

proposed in [Chevalier et al., 2014].
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SUR criterion
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point-wise probability of exceeding the threshold
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Theoretical results and implementation

sub-optimal procedure of dynamic programming (one-look ahead),

interesting when closed-form computation of the SUR criterion,
otherwise can require GP trajectories simulations...
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GP-UCB

Gaussian Process - Upper Confidence Bound [Srinivas et al., 2009]:

Add point xi s. t.

xi ∈ arg max
x

mDi−1 (x) + β
1/2
i ·

√
CDi−1 (x, x)

Bounds on cumulative regret

RT =
T∑

i=1

f (x∗)− f (xi )

for a well chosen sequence (βi )i and depending on the covariance
kernel of the GP.

With high probability:
RT = O(

√
dTγT ) ,

where d is the dimension of E and γT is the maximal information gain in
T rounds.
in the practical cases studied in the paper, similar performance of EI and
GP − UCB.

P. Barbillon Sequential numerical designs for computer experiments



Computer experiments
Sequential designs

Expected Improvement
Stepwise Uncertainty Reduction
Bandit optimization

GP-MI

Gaussian Process - Mutual Information [Contal et al., 2014]:

Add point xi s. t.
xi ∈ arg max

x
mDi−1 (x) + φi (x) ,

where

φi (x) =
√
α

(√
σ2

i (x) + γ̂i−1 −
√
γ̂i−1

)
.

γ̂i forms a lower bound on the information acquired on f on the query
points Di . Updating formula:

γ̂i = γ̂i−1 + CDi (xi , xi ) ,

with γ̂0 = 0.

Bound on the cumulative regret

RT = O((log T )(d+1)/2) ,

for a RBF kernel.
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