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| - 1 Motivations: biological applications
Problem: We are interested in a situation where some data share a common feature
shape.
Normal and Arythmic records of an ECG dataset.
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Source: J. Bigot 2013, Fréchet means of curves for signal averaging and application to
ECG data analysis, An. App. Stat.



| - 1 Motivations: biological applications

Zoom on the ECG Dataset ”
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Left: Standard cycles / Right: Arythmic cyles
In each cluster, the signals share a common shape..



| - 1 Motivations: Signal processing
Mean shape estimation ?

Standard approaches fail for deformed signals: Y™ is not convincing.



| - 2 Statistical deformable model

Principle: Each signal is a random deformation of a common shape through a group
geometrical deformation.

Model: Each observation Y, : Q2 - R, m=1,...,nis given by

Ym(x) =fodn(x)+eWn(x), x¢€Q, where

> f:R? — R is the mean shape
> : random deformations (variation around the common shape f).
> Wy, is an additive centered noise independent on ¢n,.

> Noise level ¢ fixed or going to zero.

In this talk: Can we recover f and ¢ when n — +o00 7



| - 3 Mathematical statistics

Toy model : Observation of randomly shifted periodic curves
Ym:[0,1] = R, m=1,...,nin a white noise model

(SIM) dYm(x) = f(x — 7)dx + dWpn(x), where x € [0, 1] (1)
> f:[0,1] — R is 1-periodic

> are i.i.d. random translations whose law is g

» Wy, are brownian trajectories independent on the shifts

Unconsistency of the empirical mean : let n — +oc0
_ 1
Y(x) == Ym(x) > Ef(x —71) = / f(x — T)g(r)dT = f * g(x)# f(x)
n
m=1

Estimation in the SIM when n — +o0 of f, (Tm)m=1...n and g.
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[I' Alignment or deconvolution (frequentist)

Results of J. Bigot, S. Gadat, and coauthors.



[I-1-a Fréchet empirical mean

(SIM) dYm(x) = f(x — 7m)dx + dWn(x)

» Compute an estimator of 7; and its inverse to obtain —7;.

> Align the signals Yy, and take the average:

n
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> Such an estimation is related to a distance associated with G: if G = [0, 1] acts

onf e Lpe,([O, 1]) : go - f(t) = f(t — 0), we define dg:

1
d2(Y, h) == inf d2(Y, ~h:'f/Y — h(x —7)|%d
c(Y,h) Jnf E(Y.g-h) . 0| (x) = h(x = 7)["dx

Fréchet Mean dg is ¥" € argmincy > de (Y, h).



[1-1-c 1-Dimension example

Données :

Signal f / Sample of 10 among n = 200
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Euclidean mean Alignment mean

BG '10



[1-1-c 2-Dimension example

Euclidean mean Alignment mean

BGL, JMIV, '09



[1-2-a Reliability of the Alignment procedures

Model: dYj(t) = f(t — 7" )dt + edW(t) , white noise and 7" i.i.d. ~ g.
Identifiability of the model if we assume that

> (Hg): g is a centered and compactly supported in T = [_Z’ Z] distribution.
> (Hy): f satisfies c1(f) > 0
Theorem i) The Frechet empirical mean procedure satisfies
1 n
P 72(7’?77-;)2 2 C(f7€7n7 tzg) S 3eXp(7t)7 (2)
n“
Jj=2
BUT limps 400 C(f,€,n,t,8) >0 and limp 4 00,e—0 C(F,€,n,t,8) > 0.
iii) Whatever estimators of true shifts are:
1 2
=3 ) = - 2 > 0.
n 4
= Sz @CrkPlen(A2 + € [y (5 logg(r)) g(r)dr

i)
C1(f)2

1 n
E[|=) f(.— —fl3>CE- >0
I 2" LR T T

Tools: Bernstein's Inequality for i), van Tree's Inequality for ii) and iii).



[1-2-b Reliability of the Alignment procedures

Source: [Allassonniere et al, JRSS B'07]

( ): true pattern, (- - - - - ) : Warping estimator, (— — —) : other estimator)
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Oppositely to the previous Frechet mean experiment, this signal is slightly more
regular... The Fréchet mean fails.



[1-3-a Deconvolution

Hypothesis: We assume that g is known.
Aim : Estimation of f and frequentist minimax risk of the L2 loss

R, (F) = inf supR(%, ), whereR(f,, f) = E||f, — |2
f, fEF

2s
Without any deformation: If F = H*(A), we have R,(F) ~ Can~ 2+T Deconvolution
? The expectation of each curve is

E[f(x — )] = /R Flx — 1)g(r)dr = £ % g(x)

and the empirical averaging is

dY(x) = f x g(x)dx + &(x)dx + %dW(x), x € [0,1].
Non Gaussian N—

Gaussan



[1-3-b Deconvolution estimation
On the Sobolev ball

Hs(A) = { f e L2([0,1]) ;D (14 [€1*)]6¢)> < A, ¢ avec A>0,5>0
LEL

Theorem (BG, A.0O.S. '10)

i) We can build an adaptive (in s) frequentist estimator with Meyer wavelets such that
N 2s
sup R(fn, f) = O(n~ 2572771 log n)
fEHs(A)
ii) Moreover, if s > v +1/2 > 1, one has
2s
lim n2+2v+1R,(Hs(A)) > C(A,s).

n—+00

The L2 minimal loss is optimal. The least favorable case is the " uniform” law for
g.... Tools:

> i) Concentration / Hard Thresholding

» ii) Girsanov's formula & Assouad’s Lemma with very annoying computations (!)



[l - 3 - ¢ Numerical deconvolution
Samples / Empirical mean / Deconvolution

Empirical mean Deconvolution

Empirical Fréchet mean
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"-1-

a Bayesian approach: "last chance"?

Model:
dYi(x) = fO(x — 7;)dx + edW;(x),
where id.d. ~ and f9, ¥ are unknown and belong to non parametric
space.
Bayesian approach: Define a prior law 71 on fO and 7, on g, use the posterior

to build estimators of fO and
mi=(mm)etmy:=x] . |Y{]

Frequentists questions:
Question 1: When n+— 400, 1, — IP’fo ?
Question 2: What is the contraction rate around Pro 07

Question 3: Results related to the functional objects themselves (L% metric)?



[l - 1 - b Bayesian approach: Mixture description
Few notations:
> H’(A) truncated Sobolev ball of maximal frequency £ and radius ||.|2 < A.
> OM: set of probability measures on [0, 1].
> Sieve: P, :={Pr, st. feH/(w), geM}
In the Fourier domain: if 60 = ¢°(f) := (6% _,...6°,,69,6%,...,6° ) and
gQe—i2mt

c = + zg where z; ~; ;4. Nc(0,1), ;

We have the multivariate mixture model
1
Bon o = [ pa-de(0)
0
Yoo, is an infinite complex standards gaussian law whose mean is

VeeZ  (Qet),=0e 2L

Proposition: For any e small enough, and we < /£
5 1
log N(€, Po_ w.,dvr) S 42 |log — + logle | .
€

We loose a term £. (unknown f) £2 Iog% > L Iog% (covering of mixture models dim
le).

Tool: Follow the covering strategy of [GvdV,01] on gaussian mixture models and use
Xi concentration, k — +o0.



[l - 2 - a Building the prior (general mixtures)

Prior built through a tensorial product of a prior on f and a prior on g.
> Pick max such that p(£max = k) e*"2 logk a5 a threshold frequency [RR,12]
» Each active coefficient follows a N¢(0,€2). [RR,12]
> Dirichlet process D(«) as a prior on g.

Theorem:[BGI] If fO € Hs with s > 1, then for ¢, = n~[s/(2s+2A3/8] |og p:
>0 m{Pr. t.q.du(PrPro o) < Men =1+ 0p(1)

Comments:

> Polynomial rate.
> The supplementary ¢2 log % impacts the rate 2s/(2s + 2) instead of 2s/(2s + 1),

we must estimate g°...

> Adaptive prior on s



[Il - 2 - b Building the prior (smooth mixtures)
Same prior on f, Gaussian process for g [vdVvZ,08]:
» M, ([0,1])(B) :={g € M|IVk € Z c|k|™" < |ek(g)| < C|k|7"} with
lell. < B
» For any continuous trajectory f on [0, 1] define J and Jx = Jx_1 0 J as

JF)(E) = /Ot F(s)ds — t/otf(u)du

> B a brownian bridge on [0, 1], build

Start and end at random on {0,1}

——
ky
w= Ji, (B) + >z :
N—— =1

ky, regularization of periodized B
where 1;(t) = cos2mjt 4 sin 2jt and (Zj)1<j<k, ~ Nr(0,1).
> The prior samples the distributions with density gw: gw = €% (fol e"") - .
» Following arguments of [vdVvZ,08] & [LS01] to obtain the small ball property.
Théoreme:[BGII] If O € Hs, g% € M, ([0,1]) and €, = n~[s/Cs+)Ar/(2v+2)A3/8] |og .
T {P,«, t.q. du(Pr,., Pro o) < Men} =1+ o0p(1)

Comments:
> Polynomial rate but depends on v.
» Adaptive with s but now with v.



Il - 3 Bayesian consistency around O and g° (smooth mixtures)

> Identifiability condition: F; = {f € Hss.t. c;(f) > 0}

> Theorem: If (f, g) € Fs(A) x M,([0,1]), the model is identifiable.
Tool: Show dyr (P} ,IP”}r ) > 0= c1(f) = ci(f) and use a Laplace transform

argument.
> Result on elements in F5(A) or 9, ([0, 1])?

Theorem: If (0, 2%) € Fs(A) x M, ([0,1]) , then (similar result for g°)
o2 sy
M, (f || — 2|2 > M (log n)~ ZvT m,...,yn) = 0p(1)

» Theorem: From a Minimax point of view, we can show

liminf (logn)>*2 inf sup 17— fOl2 > ¢,
ntee FEFs(A) (£0,50)€ Fs(A)x M, ([0,1])
and
liminf (logn)®™ inf sup g — 13 > c.
e EETS(A) (70, 20) € Fo(A)xam, ([0,1))

Tool: Fano's Lemma applied on a very very anoying networks of (f;, g;); such that

Vi # fixg ~f xg.



[l - 4 - a - Bayesian end of the story?

> The logarithm loss is very disapointing ...
BUT
» Did we use the right distance to measure the performance of the estimators?

> Recall the Fréchet distance (on orbits defined through the action of translations)

dr(fi, R)? = inf||fT — £3.

» Source: [Allassonniere et al, JRSS B’07]

—): true pattern, (- - - - - ) : Warping estimator, (———) : Posterior realisation)
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IV Conclusion

Important remarks:
> Inverse problem with unknown (or not) operator (depending on the knowledge on
g).
> The smoothness of g is important.
Criticisms:
> Optimality of NP Bayesian rates with respect to the Fréchet distance?
» Efficient algorithms to compute the posterior distribution?
Extensions:

> More realistic model: o unknown, n signals, J points (BG'147).
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