Shape Invariant Model: a bayesian point of view

Dominique Bontemps en collaboration avec Sébastien Gadat

> Institut de Mathématiques de Toulouse Université Paul Sabatier

ANR SPADRO, 9 avril 2014

I - Introduction

- I 1 Motivations
- I 2 Statistical deformable model
- I 3 Mathematical statistics

II Alignment or deconvolution (frequentist

- II 1 Alignment and averaging
- II 2 Reliability of the Alignment procedures
- II 3 Deconvolution

III Bayesian NP & SIN

- III 1 Bayesian approach: "last chance"?
- III 2 Building the prior
- III 3 Bayesian functionnal consistency?
- III 4 Bayesian end of the story?

IV Conclusion

I - 1 Motivations: biological applications

Problem: We are interested in a situation where some data share a common feature shape.

Normal and Arythmic records of an ECG dataset.

Source: J. Bigot 2013, Fréchet means of curves for signal averaging and application to ECG data analysis, An. App. Stat.

I - 1 Motivations: biological applications

Zoom on the ECG Dataset "

Left: Standard cycles / Right: Arythmic cyles In each cluster, the signals share a common shape...

I - 1 Motivations: Signal processing Mean shape estimation?

Standard approaches fail for deformed signals: \bar{Y}^n is not convincing.

I - 2 Statistical deformable model

Principle: Each signal is a random deformation of a common shape through a group geometrical deformation.

Model: Each observation $Y_m:\Omega\to\mathbb{R},\ m=1,\ldots,n$ is given by

$$Y_m(x) = \mathbf{f} \circ \phi_m(x) + \epsilon W_m(x), \quad x \in \Omega, \text{ where}$$

- $ightharpoonup f: \mathbb{R}^d
 ightarrow \mathbb{R}$ is the mean shape
- ϕ_m : random deformations (variation around the common shape f).
- W_m is an additive centered noise independent on ϕ_m .
- ▶ Noise level ϵ fixed or going to zero.

In this talk: Can we recover f and ϕ_m when $n \to +\infty$?

I - 3 Mathematical statistics

Toy model: Observation of randomly shifted periodic curves

 $Y_m:[0,1] \to \mathbb{R}, \ m=1,\ldots,n$ in a white noise model

(SIM)
$$dY_m(x) = f(x - \tau_m)dx + dW_m(x), \text{ where } x \in [0, 1]$$
 (1)

- ▶ $f: [0,1] \rightarrow \mathbb{R}$ is 1-periodic
- ightharpoonup are i.i.d. random translations whose law is g
- $lacktriangleright W_m$ are brownian trajectories independent on the shifts au_m

Unconsistency of the empirical mean : let $n \to +\infty$

$$\bar{Y}^n(x) = \frac{1}{n} \sum_{m=1}^n Y_m(x) \to \mathbb{E}f(x - \tau_1) = \int f(x - \tau)g(\tau)d\tau = f \star g(x) \neq f(x)$$

Estimation in the SIM when $n \longrightarrow +\infty$ of $f, (\tau_m)_{m=1...n}$ and g.

I - Introduction

- I 1 Motivations
- I 2 Statistical deformable model
- l 3 Mathematical statistics

II Alignment or deconvolution (frequentist)

- II 1 Alignment and averaging
- II 2 Reliability of the Alignment procedures
- II 3 Deconvolution

III Bayesian NP & SIN

- III 1 Bayesian approach: "last chance"?
- III 2 Building the prior
- III 3 Bayesian functionnal consistency?
- III 4 Bayesian end of the story?

IV Conclusion

Results of J. Bigot, S. Gadat, and coauthors.

II-1-a Fréchet empirical mean

(SIM)
$$dY_m(x) = f(x - \tau_m)dx + dW_m(x)$$

- ▶ Compute an estimator of τ_j and its inverse to obtain $-\hat{\tau}_j$.
- ▶ Align the signals Y_m and take the average:

$$\bar{Y}^n = \frac{1}{n} \sum_{j=1}^n Y_j \cdot \hat{g_j}^{-1} = \frac{1}{n} \sum_{j=1}^n Y_j (x + \hat{\tau}_j).$$

▶ Such an estimation is related to a distance associated with G: if G = [0,1] acts on $f \in L^2_{per}([0,1])$: $g_\theta \cdot f(t) = f(t-\theta)$, we define d_G :

$$d_G^2(Y,h) := \inf_{g \in G} d_E^2(Y,g \cdot h) = \inf_{\tau \in [0,1]} \int_0^1 |Y(x) - h(x - \tau)|^2 dx$$

Fréchet Mean d_G is $\tilde{Y}^n \in \operatorname{argmin}_{h \in \mathcal{H}} \sum_j d_G^2(Y_j, h)$.

II-1-c 1-Dimension example

Données :

Euclidean mean

Alignment mean

II-1-c 2-Dimension example

Euclidean mean Alignment mean

BGL, JMIV, '09

II-2-a Reliability of the Alignment procedures

Model: $dY_j(t) = f(t - \tau_j^*)dt + \epsilon dW_j(t)$, white noise and $\tau_j^*i.i.d. \sim g$. Identifiability of the model if we assume that

- ▶ (H_g) : g is a centered and compactly supported in $\mathbb{T} = [-\frac{1}{4}, \frac{1}{4}]$ distribution.
- ▶ (H_f) : f satisfies $c_1(f) > 0$

Theorem i) The Frechet empirical mean procedure satisfies

$$\mathbb{P}\left(\frac{1}{n}\sum_{j=2}^{n}(\hat{\tau}_{j}-\tau_{j}^{*})^{2} \geq C(f,\epsilon,n,t,g)\right) \leq 3\exp(-t),\tag{2}$$

 $\text{BUT } \lim_{n \mapsto +\infty} C(f,\epsilon,n,t,g) > 0 \text{ and } \lim_{n \mapsto +\infty,\epsilon \mapsto 0} C(f,\epsilon,n,t,g) > 0.$

iii) Whatever $(\hat{ au}_1,\ldots,\hat{ au}_n)$ estimators of true shifts (au_1^*,\ldots, au_n^*) are:

$$\mathbb{E}\left(\frac{1}{n}\sum_{j=1}^{n}(\hat{\tau}_{j}-\tau_{j}^{*})^{2}\right)\geq \frac{\epsilon^{2}}{\sum_{k\in\mathbb{Z}}(2\pi k)^{2}|c_{k}(f)|^{2}+\epsilon^{2}\int_{\mathbb{T}}\left(\frac{\partial}{\partial\theta}\log g(\tau)\right)^{2}g(\tau)d\tau}>0.$$

iii)

$$\mathbb{E}\|\frac{1}{n}\sum_{i=1}^{n}f(.-\hat{\tau}_{j}+\tau_{j}^{*})-f\|_{2}^{2}\geq C\epsilon^{2}\frac{c_{1}(f)^{2}}{\|f'\|_{2}+\epsilon^{2}I(g)}>0.$$

<u>Tools</u>: Bernstein's Inequality for i), van Tree's Inequality for ii) and iii).

II-2-b Reliability of the Alignment procedures

Oppositely to the previous Frechet mean experiment, this signal is slightly more regular... The Fréchet mean fails.

II-3-a Deconvolution

Hypothesis: We assume that g is known.

Aim: Estimation of f and frequentist minimax risk of the L^2 loss

$$\mathbb{R}_n(\mathbb{F}) = \inf_{\hat{f}_n} \sup_{f \in \mathbb{F}} \mathbb{R}(\hat{f}_n, f), \text{where} \mathbb{R}(\hat{f}_n, f) = \mathbb{E} \|\hat{f}_n - f\|^2$$

Without any deformation: If $\mathbb{F}=H^s(A)$, we have $\mathbb{R}_n(\mathbb{F})\sim C_A n^{-\frac{2s}{2s+1}}$ Deconvolution? The expectation of each curve is

$$\mathbb{E}\left[f(x-\tau_j)\right] = \int_{\mathbb{R}} f(x-\tau)g(\tau)d\tau = f \star g(x)$$

and the empirical averaging is

$$dY(x) = f \star g(x)dx + \underbrace{\xi(x)dx}_{\text{Non Gaussian}} + \underbrace{\frac{\epsilon}{\sqrt{n}}dW(x)}_{\text{Gaussan}}, \ x \in [0,1].$$

II-3-b Deconvolution estimation

On the Sobolev ball

$$H_s(A) = \left\{ f \in L^2([0,1]) : \sum_{\ell \in \mathbb{Z}} (1 + |\ell|^{2s}) |\theta_\ell|^2 \le A, \, \right\} \text{ avec } A > 0, s > 0$$

Theorem (BG, A.O.S. '10)

i) We can build an adaptive (in s) frequentist estimator with Meyer wavelets such that

$$\sup_{\mathbf{f}\in H_s(A)} \mathbb{R}(\hat{f}_n, \mathbf{f}) = O(n^{-\frac{2s}{2s+2\nu+1}} \log n)$$

ii) Moreover, if $s > \nu + 1/2 > 1$, one has

$$\lim_{n\to+\infty}n^{\frac{2s}{2s+2\nu+1}}\mathbb{R}_n(H_s(A))\geq C(A,s).$$

The L^2 minimal loss is optimal. The least favorable case is the "uniform" law for $g \dots Tools$:

- i) Concentration / Hard Thresholding
- ▶ ii) Girsanov's formula & Assouad's Lemma with very annoying computations (!)

II - 3 - c Numerical deconvolution

I - Introduction

- I 1 Motivations
- I 2 Statistical deformable model
- I 3 Mathematical statistics

Il Alignment or deconvolution (frequentist

- II 1 Alignment and averaging
- II 2 Reliability of the Alignment procedures
- II 3 Deconvolution

III Bayesian NP & SIM

- III 1 Bayesian approach: "last chance"?
- III 2 Building the prior
- III 3 Bayesian functionnal consistency?
- III 4 Bayesian end of the story?

IV Conclusion

III - 1 - a Bayesian approach: "last chance"?

Model:

$$dY_i(x) = f^0(x - \tau_i)dx + \epsilon dW_i(x),$$

where $(\tau_j)\,i.i.d.\sim g^0$ and f^0,g^0 are unknown and belong to non parametric space.

▶ Bayesian approach: Define a prior law π_1 on f^0 and π_2 on g^0 , use the posterior to build estimators of f^0 and g^0 .

$$\pi:=(\pi_1\otimes\pi_2) \text{ et } \pi_n:=\pi[\quad .\quad |Y_1^n]$$

► Frequentists questions:

Question 1: When $n \longmapsto +\infty$, $\pi_n \longmapsto \mathbb{P}_{f^0,\sigma^0}$?

Question 2: What is the contraction rate around \mathbb{P}_{f^0,g^0} ?

Question 3: Results related to the functional objects themselves (L^2 metric)?

III - 1 - b Bayesian approach: Mixture description

Few notations:

- $\rightarrow \mathcal{H}^{\ell}(A)$ truncated Sobolev ball of maximal frequency ℓ and radius $\|.\|_2 \leq A$.
- $ightharpoonup \mathfrak{M}$: set of probability measures on [0,1].
- ▶ Sieve: $\mathcal{P}_{I,w} := \{\mathbb{P}_{f,g} \text{ s.t. } f \in \mathcal{H}^I(w), g \in \mathfrak{M}\}$

In the Fourier domain: if $\theta^0 = \theta^0(f) := (\theta^0_{-\infty}, \dots, \theta^0_{-1}, \theta^0_0, \theta^0_1, \dots, \theta^0_{-\infty})$ and

$$c_{\ell} = \theta_{\ell}^{0} e^{-i2\pi\ell\tau} + z_{\ell}$$
 where $z_{\ell} \sim_{i,i,d} N_{\mathbb{C}}(0,1)$, $\tau \sim g^{0}$,

We have the multivariate mixture model

$$\mathbb{P}_{\theta^0,g^0} = \int_0^1 \gamma_{\theta^0 \bullet \tau} dg^0(\tau).$$

 $\gamma_{ hetaullet au}$ is an infinite complex standards gaussian law whose mean is

$$\forall \ell \in \mathbb{Z}$$
 $(\theta \bullet \tau)_{\ell} = \theta e^{-i2\pi\tau\ell}$.

Proposition: For any ϵ small enough, and $w_{\epsilon} \leq \sqrt{\ell_{\epsilon}}$

$$\log \textit{N}(\epsilon, \mathcal{P}_{\ell_\epsilon, w_\epsilon}, \textit{d}_{\textit{VT}}) \lesssim \ell_\epsilon^2 \left\lceil \log \frac{1}{\epsilon} + \log \ell_\epsilon \right\rceil.$$

We loose a term ℓ_{ϵ} (unknown f) $\ell_{\epsilon}^2 \log \frac{1}{\epsilon} \ge \ell_{\epsilon} \log \frac{1}{\epsilon}$ (covering of mixture models dim ℓ_{ϵ}).

<u>Tool:</u> Follow the covering strategy of [GvdV,01] on gaussian mixture models and use χ_{ν}^2 concentration, $k \mapsto +\infty$.

III - 2 - a Building the prior (general mixtures)

Prior built through a tensorial product of a prior on f and a prior on g.

- ▶ Pick ℓ_{max} such that $p(\ell_{max} = k) \propto e^{-k^2 \log k}$ as a threshold frequency [RR,12]
- ▶ Each active coefficient follows a $\mathcal{N}_{\mathbb{C}}(0,\xi_n^2)$. [RR,12]
- ▶ Dirichlet process $D(\alpha)$ as a prior on g.

Theorem: [BGI] If $f^0 \in \mathcal{H}_s$ with $s \ge 1$, then for $\epsilon_n = n^{-[s/(2s+2) \land 3/8]} \log n$:

$$\exists M > 0 \qquad \pi_n \left\{ \mathbb{P}_{f,g} \quad t.q. \, d_H(\mathbb{P}_{f,g}, \mathbb{P}_{f^0,g^0}) \leq M \epsilon_n \right\} = 1 + o_p(1)$$

Comments:

- Polynomial rate.
- ▶ The supplementary $\ell_{\epsilon}^2 \log \frac{1}{\epsilon}$ impacts the rate 2s/(2s+2) instead of 2s/(2s+1), we must estimate g^0 ...
- ► Adaptive prior on s

III - 2 - b Building the prior (smooth mixtures)

Same prior on f, Gaussian process for g [vdVvZ,08]:

- $\mathfrak{M}_{\nu}([0,1])(B):=\left\{g\in\mathfrak{M}\,|\,\exists\forall k\in\mathbb{Z}\quad c|k|^{-\nu}<|c_k(g)|< C|k|^{-\nu}\right\} \text{ with } \|g\|_{\nu}< B$
- For any continuous trajectory f on [0,1] define J and $J_k=J_{k-1}\circ J$ as

$$J(f)(t) := \int_0^t f(s)ds - t \int_0^t f(u)du$$

▶ B a brownian bridge on [0,1], build

$$w = \underbrace{J_{k_{\nu}}(B)}_{k_{\nu} \text{ regularization of } periodized } + \sum_{j=1}^{k_{\nu}} Z_{j} \psi_{j}$$

where $\psi_i(t) = \cos 2\pi j t + \sin 2\pi j t$ and $(Z_i)_{1 \le i \le k_{\nu}} \sim \mathcal{N}_{\mathbb{R}}(0,1)$.

- ▶ The prior samples the distributions with density g_w : $g_w = e^w \left(\int_0^1 e^w \right)^{-1}$.
- Following arguments of [vdVvZ,08] & [LS01] to obtain the small ball property.

Théorème: [BGII] If $f^0 \in \mathcal{H}_s$, $g^0 \in \mathfrak{M}_{\nu}([0,1])$ and $\epsilon_n = n^{-[s/(2s+2) \wedge \nu/(2\nu+2) \wedge 3/8]} \log n$:

$$\pi_n\left\{\mathbb{P}_{f,g} \quad t.q. d_H(\mathbb{P}_{f,g}, \mathbb{P}_{f^0,g^0}) \leq M\epsilon_n\right\} = 1 + o_p(1)$$

Comments:

- ▶ Polynomial rate but depends on ν .
- Adaptive with s but now with ν .

III - 3 Bayesian consistency around f^0 and g^0 (smooth mixtures)

- ▶ Identifiability condition: $\mathcal{F}_s = \{f \in \mathcal{H}_s \text{ s.t. } c_1(f) > 0\}$
- ▶ Theorem: If $(f,g) \in \mathcal{F}_s(A) \times \mathfrak{M}_{\nu}([0,1])$, the model is identifiable. Tool: Show $d_{VT}(\mathbb{P}^1_{f,g},\mathbb{P}^1_{\tilde{f},\tilde{g}}) > 0 \Rightarrow c_1(f) = c_1(\tilde{f})$ and use a Laplace transform argument.
- ▶ Result on elements in $\mathcal{F}_s(A)$ or $\mathfrak{M}_{\nu}([0,1])$? <u>Theorem:</u> If $(f^0, g^0) \in \mathcal{F}_s(A) \times \mathfrak{M}_{\nu}([0,1])$, then (similar result for g^0)

$$\Pi_n\left(f: \|f-f^0\|_2^2 > M(\log n)^{-\frac{4s\nu}{2s+2\nu+1}} | Y_1, \dots, Y_n\right) = o_p(1)$$

▶ <u>Theorem:</u> From a Minimax point of view, we can show

$$\liminf_{n \to +\infty} (\log n)^{2s+2} \inf_{\hat{f} \in \mathcal{F}_s(A)} \sup_{(f^0, g^0) \in \mathcal{F}_s(A) \times \mathfrak{M}_{\mathcal{U}}([0,1])} \|\hat{f} - f^0\|_2^2 \ge c,$$

and

$$\liminf_{n \to +\infty} (\log n)^{2\nu+1} \inf_{\hat{g} \in \mathcal{F}_s(A)} \sup_{(f^0, g^0) \in \mathcal{F}_s(A) \times \mathfrak{M}_{**}([0,1])} \|\hat{g} - g^0\|_2^2 \ge c.$$

<u>Tool:</u> Fano's Lemma applied on a very very anoying networks of $(f_i, g_i)_i$ such that

$$\forall j \neq j'$$
 $f_j \star g_j \simeq f_j' \star g_j'$.

III - 4 - a - Bayesian end of the story?

► The logarithm loss is very disapointing . . .

BUT

- Did we use the right distance to measure the performance of the estimators?
- ► Recall the Fréchet distance (on orbits defined through the action of translations)

$$d_F(f_1, f_2)^2 = \inf_{\tau} \|f_1^{-\tau} - f_2\|_2^2.$$

▶ Source: [Allassonniere et al, JRSS B'07]

—): true pattern, (----): Warping estimator, (---): Posterior realisation) 2.5 1.5 1.5 0.5 0.5 0 -0.5 -0.5 -1 15 10 15

I - Introduction

- I 1 Motivations
- I 2 Statistical deformable mode
- I 3 Mathematical statistics

II Alignment or deconvolution (frequentist)

- II 1 Alignment and averaging
- II 2 Reliability of the Alignment procedures
- II 3 Deconvolution

III Bayesian NP & SIN

- III 1 Bayesian approach: "last chance"?
- III 2 Building the prior
- III 3 Bayesian functionnal consistency?
- III 4 Bayesian end of the story?

IV Conclusion

IV Conclusion

Important remarks:

- Inverse problem with unknown (or not) operator (depending on the knowledge on g).
- ▶ The smoothness of *g* is important.

Criticisms:

- ▶ Optimality of NP Bayesian rates with respect to the Fréchet distance?
- ▶ Efficient algorithms to compute the posterior distribution?

Extensions:

▶ More realistic model: σ unknown, n signals, J points (BG'14?).

Bibliography

- [1] Allassonnière, S. & Kuhn, E. & Trouvé, A. (2010) Construction of Bayesian deformable models via stochastic approximation algorithm: A convergence study. Bernoulli Journal, 16 (3), p.641-678.
- [2] Bhattacharya, R. & Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds (i). Annals of Statistics, 31(1):1-29.
- [3] Bigot, J., Gadat, S., Klein, T. & Marteau, C. (2013) Intensity estimation of non-homogeneous Poisson processes from shifted trajectories, Electronic Journal of Statistics.
- [4] Bigot, J. & Gadat, S. (2010) A deconvolution approach to estimation of a common shape in a shifted curves model, Annals of Statistics, 38(4), 2422-2464.
- [5] Bigot, J. & Charlier B. (2011) On the consistency of Fréhet means in deformable models for curve and image analysis, Electronic Journal of Statistics, 5, 1054-1089.
- [6] Bigot, J., Christophe C. & Gadat, S. (2012) Random action of compact Lie groups and minimax estimation of a mean pattern, IEEE Transactions on Information Theory, 58(5).
- [7] Bigot, J. & Gendre, X. (2013) Minimax properties of Fréchet means of discretely sampled curves, Annals of Statistics.
- [8] Bontemps, D. & Gadat, S. (2012) Bayesian consistency in the non parametric randomly shifted curves model (I), (II), preprint.
- [9] Bontemps, D. & Gadat, S. (2013) Bayesian consistency in the non parametric randomly shifted curves model (III), in preparation.
- [10] Ghosal, S. & Ghosh, J. & van der Vaart, A. Convergence rates of posterior distributions. Ann. Statist. 28 (2000), no. 2, 500-531.
- [11] Ghosal, S. & van der Vaart, A. Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Statist. 35 (2007), no. 2, 697-723.
- [12] van der Vaart, A. & van Zanten, H. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 (2008), no. 3, 1435-1463.