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Abstract

We present a new covariate-adjusted response-adaptive randomized controlled trial design and in-
ferential procedure built on top of it. The procedure is targeted in the sense that (i) the sequence
of randomization schemes is group-sequentially determined by targeting a user-specified optimal ran-
domization design based on accruing data and, (ii) our estimator of the user-specified parameter of
interest, seen as the value of a functional evaluated at the true, unknown distribution of the data, is tar-
geted toward it by following the paradigm of targeted minimum loss estimation. We focus for clarity on
the case that the parameter of interest is the marginal effect of a binary treatment and that the targeted
optimal design is the Neyman allocation, in an effort to produce an estimator with smaller asymptotic
variance. For clarity too, we consider the case that the estimator of the conditional outcome given
treatment and baseline covariates, a key element of the procedure, is obtained by LASSO regression.
Under mild assumptions, the resulting sequence of randomization schemes converges to a limiting de-
sign, and the TMLE estimator is consistent and asymptotically Gaussian. Its asymptotic variance can
be estimated too. Thus we can build valid confidence intervals of given asymptotic levels. A simulation
study confirms our theoretical results.

Keywords: covariate-adjusted response-adaptive (CARA) design, randomized controlled trial (RCT),
least absolute shrinkage and selection operator (LASSO), targeted minimum loss estimation (TMLE)

1 Introduction

1.1 Overview
This technical report is devoted to the study of a so-called group-sequential CARA randomized controlled
trial (RCT), with a particular focus on incorporating more flexible (i.e., data-adaptive) techniques to model
the response. A CARA RCT is Covariate-Adjusted: the treatment randomization schemes are allowed to
be a function of the patients’ pre-treatment covariates. In addition, a CARA RCT is Response-Adaptive:
the investigators have the opportunity to adjust these schemes during the course of the trial based on
accruing information, including previous responses, in order to meet some pre-specified objectives. In a
group-sequential CARA RCT, the latter adjustments are made at interim time points given by sequential
inclusion of blocks of c patients, where c≥ 1 is a pre-specified integer. We consider the case of c = 1 for
simplicity of exposition, though the discussions generalize to any c > 1.

The trial protocol pre-specifies the observed data structure, scientific parameters of interest, analysis
methods, and a criterion characterizing an optimal randomization scheme. Here, some baseline covari-
ates and a primary outcome of interest are measured on each patient. We choose the marginal treatment
effect of a binary treatment as our parameter of interest, ψ0. It is analyzed using targeted minimum
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loss estimation (TMLE) on top of the so-called LASSO (least absolute shrinkage and selection operator)
methodology (Tibshirani, 1996) that we choose to illustrate the application of data-adaptive techniques to
model the response. The TMLE methodology was first introduced by (van der Laan and Rubin, 2006) in
the independent identically distributed setting. Its extension to adaptive RCTs was considered in (van der
Laan, 2008) and (Chambaz and van der Laan, 2013), upon which this technical report relies. The ex-
tension based on LASSO that we present here encompasses the parametric approach of (Chambaz and
van der Laan, 2013) as a special case. For concreteness, we choose the so-called Neyman design as
our optimal randomization scheme. The Neyman design minimizes the Cramér-Rao lower bound on the
asymptotic variances of a large class of estimators of ψ0. The resulting Neyman allocation probabili-
ties are evaluated conditionally on the baseline covariates. By targeting the Neyman design, we aim at
improving the efficiency of the study, i.e., at reaching a valid result using as few blocks of patients as
possible. We emphasize that the results and procedures presented here are generally applicable to other
parameters and optimal randomization schemes.

We show that, under mild conditions, the resulting TMLE estimator of ψ0 is consistent and asymp-
totically normal regardless of the consistency of the LASSO estimator of the conditional expectation of
the response given treatment and baseline covariates. Furthermore, the resulting targeted CARA design
converges to a fixed limiting design, which equals the Neyman design if the LASSO estimator is con-
sistent and if the Neyman design belongs to a user-supplied set of randomization schemes. The general
framework that combines CARA RCTs with machine-learning techniques is presented in a separate arti-
cle. Before we delve into the main contents, let us motivate our discussion with a bird’s eye view of the
landscape of CARA designs.

1.2 Literature Review
Adaptive randomization has a long history that can be traced back to the 1930s. We refer to (Rosenberger,
1996, Rosenberger, Sverdlov, and Hu, 2012), (Hu and Rosenberger, 2006, Section 1.2) and (Jennison and
Turnbull, 2000, Section 17.4) for a comprehensive historical perspective. Many articles are devoted to
the study of response-adaptive randomizations, which select current treatment probabilities based on re-
sponses of previous patients, but not on the covariates of the current patients. We refer to (Hu and Rosen-
berger, 2006, Chambaz and van der Laan, 2011, Rosenberger et al., 2012) for a bibliography on that topic.
In a heterogeneous population, however, it is often desirable to take into account the patients’ character-
istics for treatment assignment. CARA randomization tackles the issue of heterogeneity by dynamically
calculating the allocation probabilities based on previous responses and current and past values of cer-
tain covariates. Compared to the broader literature on response-adaptive randomization, the advances in
CARA procedures are relatively recent, but growing steadily. Among the first approaches, (Rosenberger,
Vidyashankar, and Agarwal, 2001, Bandyopadhyay and Biswas, 2001) considered randomization proce-
dures defined as explicit functions of the conditional responses, which are modeled by generalized linear
models. Though these procedures are not defined based on formal optimality criteria, their general goal
is to allocate more patients to their corresponding “better” treatment arm. Atkinson and Biswas (2005)
presented a biased-coin design with skewed allocation, which is determined by sequentially maximizing
a function that combines the variance of the parameter estimate, based on a Gaussian linear model for
the conditional response, and the conditional treatment effect given covariates. Up till here, very little
work had been devoted to asymptotic properties of CARA designs. Subsequently, Zhang, Hu, Cheung,
and Chan (2007), Zhang and Hu (2009) established the efficiency theory for CARA designs converg-
ing to any given target design, when the responses follow a generalized linear model, and proposed a
covariate-adjusted doubly-adaptive biased coin design whose asymptotic variance achieves the efficiency
bound. Chang and Park (2013) proposed a sequential estimation of CARA designs under generalized
linear models for the response. This procedure allocates treatment based on the patients’ baseline co-
variates, accruing information and sequential estimates of the treatment effect and uses a stopping rule

2



that depends on the observed Fisher information. With regard to hypothesis testing, Shao, Yu, and Zhong
(2010), Shao and Yu (2013) provided asymptotic results for valid tests under generalized linear mod-
els for the responses. Most recently, progress has also been made in CARA designs in the longitudinal
settings, see for example (Biswas, Bhattacharya, and Park, 2014, Huang, Liu, and Hu, 2013, Sverdlov,
Rosenberger, and Ryeznik, 2013).

To tackle the issue of restrictive modeling assumptions, Chambaz and van der Laan (2013) proposed
a TMLE analysis of a CARA design where the treatment allocation is conditional on a summary mea-
sure of the covariates that takes only finitely many values. Under such a framework, the treatment effect
is defined nonparametrically, and the consistency and asymptotic normality of its estimator is robust to
misspecification of the parametric working model for the response. However, assigning treatment based
on such summary measures is perhaps too restrictive in real-life RCTs where response to treatment may
be correlated with a large number of a patient’s baseline characteristics, some of which being continuous.
Moreover, although a misspecified parametric working model for the response does not hinder the con-
sistency of the treatment effect estimator, it may affect its efficiency and the convergence of the CARA
design to the targeted optimal design.

In this technical report, we generalize the results of Chambaz and van der Laan (2013) to address
the two issues mentioned above. We adopt a loss-based approach to the construction of more flexible
CARA randomization schemes while exploiting data-adaptive estimators for the estimation of the re-
sponse model, in search for greater efficiency through better variable adjustments and more accurate
estimation of the variance of the estimator.

1.3 Organization
The remainder of this technical report is organized as follows. In Section 2 we introduce our LASSO-
based group-sequential CARA RCT design and the TMLE procedure built on top of it to infer the
marginal treatment effect of a binary treatment. Section 3 is devoted to the presentation of results pertain-
ing to the convergence of our targeted CARA design and to the asymptotics, consistency and central limit
theorem, of the TMLE estimator. A simulation study is described and its results summarized in Section 4.
The technical report closes on a discussion in Section 5.

2 Targeted CARA RCT using LASSO
In the introduction, we have outlined the motivation to use data-adaptive procedures to estimate the con-
ditional response given treatment and covariates. For concreteness of the formal theoretical development,
we consider here the LASSO estimator, which is a shrinkage and selection method for generalized re-
gression models that optimizes a loss function of the regression coefficients subject to the constraint that
the L1 norm of the coefficient vector be upper-bounded by a given value. The parametric estimators
considered in (Chambaz and van der Laan, 2013) are a special case of a LASSO estimator.

We begin by establishing the key features of the trial, namely, the parameter of interest, analysis
method, and the optimal randomization scheme. Then, we describe the data generating process (including
estimation of the response model using LASSO and adaptation of the randomization scheme) and the
targeted maximum likelihood estimation procedure.

2.1 Observed Data Structure, Parameter of Interest and Optimal Design
Prior to data collection, the trial protocol notably specifies the observed data structure, parameter of
interest, and the optimal randomization design to target, both expressed in terms of features of the true,
unknown data-generating process in the population of interest. In this technical report we consider a
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simple situation, judging by the definition of the data and our choice of parameter of interest. The range
of application of the methods presented here extends beyond this limited yet instructive framework.

Sections 2.1.1, 2.1.2 and 2.1.3 are respectively devoted to the presentation and discussion of the
observed data structure, parameter of interest, and optimal randomization design.

2.1.1 Observed Data Structure

The data structure O writes as O≡ (W,A,Y ), where W ∈W consists of the baseline covariates (some of
which may be continuous), A ∈A ≡ {0,1} is the binary treatment of interest, and Y ∈ Y is the primary
outcome of interest. We assume that the outcome space O ≡ W ×A ×Y is bounded. Without loss of
generality, we may then assume that Y ∈ Y ≡ (0,1) is bounded away from 0 and 1.

Every distribution of O consists of three components. On one hand, the marginal distribution of W and
the conditional distribution of Y given (A,W ) form a couple which is given by nature. On the other hand,
the conditional distribution of A given W , also know as (a.k.a.) randomization scheme, is controlled by
the investigators of the RCT. To reflect this dichotomy, we denote PQ,g the distribution of O whose couple
formed by the marginal distribution of W and the conditional distribution of Y given (A,W ) equals Q and
whose randomization scheme equals g ∈ G , with G the set of all randomization schemes. For a given
Q, we denote QW the related marginal distribution of W and QY the related conditional expectation of Y
given (A,W ). Moreover, we denote Q0 the true couple in our population of interest, which is unknown to
us, and we assume that this Q0 does not vary during the whole duration of the RCT. Thus, for any Q and g,
PQ0,g is the true, partially unknown distribution of O when one relies on g, and EPQ,g(Y |A,W ) =QY (A,W ),
PQ,g(A = 1|W ) = g(1|W ) = 1−g(0|W ) PQ,g-almost surely.

2.1.2 Parameter of Interest

The parameter of interest under consideration in this technical report is the marginal treatment effect on
an additive scale:

ψ0 ≡ EPQ0,g
{QY,0(1,W )−QY,0(0,W )}=

∫
(QY,0(1,w)−QY,0(0,w))dQW,0(w),

which evidently depends on PQ0,g only through Q0. Of particular interest in medical, epidemiological and
social sciences research, this parameter can be interpreted causally under additional assumptions on the
data-generating process (Pearl, 2000). Central to our approach is seeing ψ0 as the value at any PQ0,g of
the mapping Ψ : M → [−1,1] characterized over the set M of all possible distributions of O by

Ψ(PQ,g)≡ EPQ,g {QY (1,W )−QY (0,W )}=
∫
(QY (1,w)−QY (0,w))dQW (w). (1)

The mapping Ψ enjoys a remarkable property: it is pathwise differentiable (think “smooth”) with an
efficient influence curve (think “gradient”) which provides insight into the asymptotic properties of all
regular and asymptotically linear (think “well-behaved”) estimators of Ψ(PQ0,g). The following lemma
makes the latter statement more formal—we refer the reader to (Bickel, Klaassen, Ritov, and Wellner,
1998, van der Vaart, 1998, van der Laan and Robins, 2003) for definitions and proofs.

Lemma 1. The mapping Ψ : M → [−1,1] is pathwise differentiable at every PQ,g ∈M with respect
to (wrt) the maximal tangent space. Its efficient influence curve at PQ,g is D∗(PQ,g) which satisfies
D∗(PQ,g)(O) = D∗W (PQ,g)(W )+D∗Y (Q,g)(O) with

D∗W (PQ,g)(W ) ≡ QY (1,W )−QY (0,W )−Ψ(PQ,g),

D∗Y (Q,g)(O) ≡ 2A−1
g(A|W )

(Y −QY (A,W )) .
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The variance VarPQ,g D∗(P)(O) is a generalized Cramér-Rao lower bound for the asymptotic variance
of any regular and asymptotically linear estimator of Ψ(PQ,g) when sampling independently from PQ,g.
Moreover, if either QY = Q′Y or g = g′ then EPQ,gD∗(PQ′,g′)(O) = 0 implies Ψ(PQ,g) = Ψ(PQ′,g′).

The last statement of Lemma 1, often referred to as a “double-robustness” property, shows that one
can seek help from D∗ to protect oneself against model misspecifications when estimating ψ0. This is
especially relevant in our setting where we know precisely what is the randomization scheme g at play
when one samples an observation from PQ0,g.

2.1.3 Optimal Design

Suppose our goal of adaptation is to reach a randomization scheme of higher efficiency, i.e., to obtain a
valid estimate of ψ0 using as few blocks of patients as possible. By Lemma 1, the asymptotic variance
of a regular, asymptotically linear estimator is lower-bounded by ming∈G VarPQ0 ,g

D∗(PQ0,g). In this light,
the Neyman design (Hu and Rosenberger, 2006)

g0 ≡ argmin
g∈G

VarPQ0 ,g
D∗(PQ0,g) = argmin

g∈G
EPQ0 ,g

(Y −QY,0(A,W ))2

g2(A|W )
(2)

can be considered as an optimal randomization design (“optimal design” for short). Since its definition
involves the unknown Q0, the optimal design g0 is unknown too. It is readily seen that g0 is characterized
by g0(1|W ) = σ0(1,W )/(σ0(1,W )+σ0(0,W )), where σ2

0 (A,W ) is the conditional variance of Y given
(A,W ) under Q0. It therefore appears that, under this randomization scheme, the treatment arm with
higher probability for a patient with baseline covariates W is the one for which the conditional variance
of the outcome is higher.

If we knew the optimal design then we could undertake the covariate-adjusted trial consisting in
drawing independently observations from PQ0,g0 . The next task would be to build a regular, asymptot-
ically linear estimator with asymptotic variance VarPQ0 ,g0

D∗(PQ0,g0) based on the resulting data. In the
present situation, we are going to “target” g0 at some pre-determined interim steps. By targeting g0 we
mean estimating g0 based on past observations and relying on the resulting estimator to collect the next
block of data. In addition to targeting g0, each interim analysis will also consist in building an adaptive,
targeted, regular and asymptotically linear estimator of ψ0. The details of this procedure are presented in
Section 2.2.

2.2 Data-Generating Mechanism and Estimation Procedures
Describing the data-generating mechanism amounts to presenting how we target the optimal design g0 at
each interim step, which involves the estimation of the conditional expectation QY,0. We initiate the de-
scription in Section 2.2.1, describe a LASSO estimation procedure of QY,0 in Section 2.2.2 and the related
targeting procedure of g0 in Section 2.2.3. By then, the data-generating mechanism is fully characterized
by recursion.

2.2.1 Initiating the Data-Generating Mechanism

In the sequel, we denote Oi ≡ (Wi,Ai,Yi) the ith observation that we sample. The indexing reflects the
time ordering of the data collection: j < i implies that O j was collected before or at the same time as Oi.
For convenience, we let On ≡ (O1, . . . ,On) be the ordered vector of first n observations, with convention
O0 ≡ /0. In the adaptive trial, the treatment Ai is drawn conditionally on Wi from the Bernoulli law
with parameter gi(1|Wi), where the randomization scheme gi : A → [0,1] depends on past observations
Oi−1. We set gn ≡ (g1, . . . ,gn), the ordered vector of first n randomization schemes. The data-generating
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distribution of On is denoted PQ0,gn . It is formally characterized by the following factorization of the
density of On wrt the product of the dominating measures: for any g ∈ G ,

PQ0,gn(On) =
n

∏
i=1

PQ0,gi(Oi) =
n

∏
i=1

QW,0(Wi)×gi(Ai|Wi)×PQ0,g(Yi|Ai,Wi).

Let gb be the balanced randomization scheme, for which each arm is assigned with probability 1/2
regardless of baseline covariates. For a pre-specified n0, we first draw n0 independent observations
O1, . . . ,On0 from PQ0,gb . At an interim point, suppose one has thus far drawn n observations On ∼ PQ0,gn .
An estimator of QY,0 is obtained based on On. The next randomization scheme gn+1 is defined using
the latter estimator and (On,gn), then the (n+ 1)th observation On+1 is drawn from PQ0,gn+1 . We will
describe the estimation of QY,0 and construction of gn+1 in the two following sections.

2.2.2 LASSO Estimation of the Outcome’s Conditional Expectation

Consider {bn}n≥1 and {dn}d≥1 two non-decreasing, possibly unbounded sequences over R+ and, for
some M > 0 and every n≥ 1, introduce the subset

BM,n ≡
{

β ∈ `1 : ‖β‖1 ≤min(bn,M) and ∀ j ≥ dn, β
j = 0

}
(3)

of `1 ≡
{

β ∈ RN : ∑ j∈N |β j|< ∞
}

. Let
{

φ j : j ∈ N
}

be a uniformly bounded set of functions from A ×
W to R. Without loss of generality, we may assume that ‖φ j‖∞ = 1 for all j ∈ N, where ‖ · ‖∞ denotes
the supremum norm. For all β ∈ `1, we denote Φβ : A ×W → R the function such that Φβ (A,W ) ≡
∑ j∈N β jφ j(A,W ).

The construction of our LASSO estimators of QY,0 relies on a working model Q1 and on a loss
function L for QY,0, both specified by the investigators. This means that QY,0 is the minimizer of QY 7→
PQ0,gL(QY ) over the set of all conditional expectations of Y given (A,W ), of which Q1 is a user-specified
subset (the value of g∈ G plays no role in this statement). For instance, they can take Q1 ≡ {QY,β ≡Φβ :
β ∈ BM,n} with M = 1, and the least-square loss function L characterized over the latter by

L(QY,β )(O)≡ (Y −QY,β (A,W ))2. (4)

They can also take Q1≡{QY,β ≡ expit(Φβ ) : β ∈BM,n}with M a deterministic upper-bound on | logit(Y )|
(recall that Y is assumed bounded away from 0 and 1), and the quasi negative-log-likelihood loss function
L characterized over the latter by

−L(QY,β )(O)≡ Y log(QY,β (A,W ))+(1−Y ) log
(
1−QY,β (A,W )

)
. (5)

Note that in both cases, for all β ∈ BM,n, ‖QY,β‖∞ is upper-bounded by a deterministic upper-bound
on |Y |.

Recall that we have already drawn n observations On ∼ PQ0,gn . Given a user-specified reference
gr ∈ G that is bounded away from 0 and 1, we estimate QY,0 with QY,βn , where

βn ∈ argmin
β∈BM,n

1
n

n

∑
i=1

(
L(QY,β )(Oi)

gr(Ai|Wi)

gi(Ai|Wi)

)
. (6)

The above minimization with the constraint ‖β‖1 ≤min(bn,M), see (3), can be rewritten as a minimiza-
tion free of the latter constraint by adding a term of the form λn‖β‖1 to the empirical criterion, where
λn depends on bn. This is the so-called LASSO procedure introduced by Tibshirani (1996) for the sake
of obtaining estimators with fewer nonzero parameter values, thus effectively reducing the number of
variables upon which the given solution is dependent. Note that when dn = d is held constant by choice,
(6) should be interpreted as a standard parametric procedure rather than as a LASSO.
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2.2.3 Adapting Towards the Optimal Design

We now turn to the construction of the next randomization scheme gn+1.
Our optimal design minimizes g 7→ VarPQ0 ,g

D∗(PQ0,g) over the class G of all randomization schemes,
see (2). We adopt a loss-based approach, by defining gn+1 as the minimizer in g of an estimator of
VarPQ0 ,g

D∗(PQ0,g) over a user-specified class of randomization schemes. This approach is applicable in
the largest generality. In the case that W is discrete, or if one is willing to assign treatment only based
on a discrete summary measure V of W , gn+1 can be defined explicitly as an estimator of the Neyman
design based on QY,βn and observations On; we refer the readers to (Chambaz and van der Laan, 2013)
for details.

To proceed, we first note that, for all g′ ∈ G ,

g0 = argmin
g∈G

EPQ0 ,g
′
(Y −QY,0(A,W ))2

g(A|W )g′(A|W )
.

This equality teaches us that for the sake of estimating g0 using observations drawn from PQ0,g′ we may
consider the loss function LQY characterized over G by

LQY (g)(O)≡ (Y −QY (A,W ))2

g(A|W )
,

provided it is weighted by 1/g′(A|W ). Note that this loss function is indexed by a given QY .
Recall that we have already drawn n observations On ∼ PQ0,gn and estimated QY,0 with QY,βn . Now,

given a class G1 ⊂ G of randomization schemes uniformly bounded away from 0 and 1, we define the
next randomization scheme as

gn+1 ∈ argmin
g∈G1

1
n

n

∑
i=1

LQY,βn
(g)(Oi)

gi(Ai|Wi)
= argmin

g∈G1

1
n

n

∑
i=1

(
Y −QY,βn(Oi)

)2

g(Ai|Wi)gi(Ai|Wi)
(7)

This completes the description of our data-generating mechanism.

2.3 Targeted Maximum Likelihood Estimation
Given n observations On ∼ PQ0,gn and the estimator QY,βn of QY,0 defined in (6), we may carry out the
estimation of the parameter of interest ψ0. We adopt the targeted minimum loss estimation methodology.
In the setting of a covariate-adjusted RCT with fixed design, a TMLE estimator is unbiased and asymp-
totically Gaussian regardless of the specification of the working model used for the estimation of QY,0.
It is known that unbiasedness and asymptotic normality still hold in the context of this technical report
(CARA RCT for the estimation of ψ0 based on copies of O), provided that the randomization schemes
depend on W only through a summary measure taking finitely many values and that the working model
used for the estimation of QY,0 be a simple linear model (this basically amounts to taking dn = d constant
and bn = M) in Section 2.2.2), see (Chambaz and van der Laan, 2013). Yet by relying on more flexible
randomization schemes and on more adaptive estimators of QY,0 we may achieve a greater efficiency
through better estimation of the optimality criteria that may facilitate adaptation toward the optimal de-
sign, better adjustment of the variables that may directly improve on the estimation of the parameter of
interest, and a more accurate estimation of the variance of the estimator.

In a glimpse, the proposed strategy consists in targetedly fluctuating the initial estimator QY,βn by min-
imizing a pre-specified loss along a least favorable (wrt ψ0) submodel through QY,βn , and then evaluating
Ψ at the resulting updated estimator of Q0. Formally, consider the following one-dimensional parametric
working model through QY,βn : for a given closed, bounded interval E ⊂ R containing 0 in its interior,{

QY,βn(ε)≡ expit
(
logit(QY,βn)+ εH(gn)

)
: ε ∈ E

}
, (8)
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with notation H(g)(O)≡ 2A−1
g(A|W ) for every g∈ G1. This model passes through QY,βn at ε = 0 in such a way

that ∂

∂ε
L(QY,βn(ε))|ε=0 = D∗Y (QY,βn ,gn). The optimal fluctuation parameter εn minimizes the weighted

empirical risk along the working model:

εn ∈ argmin
ε∈E

1
n

n

∑
i=1

L(QY,βn(ε))(Oi)
gn(Ai|Wi)

gi(Ai|Wi)
. (9)

Set Q∗Y,βn
≡ QY,βn(εn) then Q∗

βn
≡ (QW,n,Q∗Y,βn

) where QW,n is the empirical marginal distribution of
the W . The TMLE estimator of ψ0 is finally defined as

ψ
∗
n ≡

1
n

n

∑
i=1

Q∗Y,βn
(1,Wi)−Q∗Y,βn

(0,Wi).

It satisfies ψ∗n = Ψ(PQ∗
βn
,g) for any g ∈ G .

3 Asymptotics
We first introduce further notation in Section 3.1 then we successively investigate the convergence of the
targeted CARA design in Section 3.2 and the asymptotic behavior of the TMLE estimator in Section 3.3.

3.1 Notation
In general, given a known g ∈ G and an observation O drawn from PQ0,g, Z ≡ g(A|W ) is a deterministic
function of g and O. Note that Z should be interpreted as a weight associated with O and will be used
as such. Therefore, we can augment O with Z, i.e., substitute (O,Z) for O, while still denoting (O,Z)∼
PQ0,g. In particular, during the course of our trial, conditionally on Oi−1, the randomization scheme gi
is known and we can substitute (Oi,Zi) = (Oi,gi(Ai|Wi)) ∼ PQ0,gi for Oi drawn from PQ0,gi . By uniform
boundedness of G1, the inverse weights 1/gi(Ai|Wi) are bounded.

The empirical distribution of On is denoted Pn. For a function f : O × [0,1]→ Rd , we will use the
notation Pn f ≡ n−1

∑
n
i=1 f (Oi,Zi). Likewise, for any fixed PQ,g ∈M , PQ,g f ≡ EPQ,g f (O,Z) and, for each

i = 1, . . . ,n, PQ0,gi f ≡ EQ0,gi [ f (Oi,Zi)|Oi−1], PQ0,gn f ≡ n−1
∑

n
i=1 EQ0,gi [ f (Oi,Zi)|Oi−1].

We endow the set {QY : PQ,g ∈M } of all conditional expectations of Y given (A,W ) under PQ,g ∈M
with the norm ‖ · ‖Y,0 characterized by

‖QY −Q′Y‖2
Y,0 ≡ EPQ0 ,g

r

(
QY (A,W )−Q′Y (A,W )

)2
.

Similarly, we endow the set G with the norm ‖ · ‖A,0 characterized by

‖g−g′‖2
A,0 ≡ EQW,0

(
g(1|W )−g′(1|W )

)2
.

For any class F of functions equipped with a norm ‖ · ‖ and ε > 0, N(F ,‖ · ‖,ε) is the ε-bracketing
of F wrt ‖·‖ and J(1,F ,‖·‖)≡

∫ 1
0

√
logN(F ,‖ · ‖,ε)dε is the corresponding bracketing entropy (eval-

uated at 1). Finally, the uniform norm of a real-valued operator Π on F is ‖Π‖F ≡ sup f∈F |Π( f )|.

3.2 Convergence of the Targeted CARA Design
Our first concern is the convergence of QY,βn , see (6).

Proposition 1 (Convergence of QY,βn ). Consider the following assumptions:
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A1. The conditional density under Q0 of Y given (A,W ) wrt some dominating measure is bounded away
from 0.

A2. There exists a unique β0 ∈
⋃

n≥1 BM,n such that

β0 ∈ argmin
β∈
⋃

n≥1 Bn

PQ0,gr L(QY,β ).

A3. It holds that dn = O(nr) for some r > 0 and supβ∈BM,n
|(Pn−PQ0,gn)L(QY,β )|= oP(1).

Under A1–A3,
∥∥QY,βn −QY,β0

∥∥
Y,0→ 0 in probability.

In summary, QY,βn converges to QY,β0 in probability for the norm ‖ · ‖Y,0 if such a limit exists and
if the dimension of the LASSO parameters grows polynomially wrt the sample size. Note that the limit
QY,β0 depends on the user-supplied reference design gr. Based on (Dümbgen, Van De Geer, Veraar, and
Wellner, 2010) we show that A3 holds for instance when L is given by (4) and Q1 = {Φβ : β ∈ B1,n}.
The proof of Proposition 1 relies on empirical process theory for martingales, chaining arguments and
tools developed by van Handel (2011). It requires that the sequence {gn}n≥1 of randomization schemes
be uniformly bounded away from 0 and 1, which is guaranteed by specification of the user-supplied set
G1.

We now turn to the convergence of the targeted CARA design {gn}n≥1, see (7), toward a fixed,
limiting design g∗0 ∈ G1.

Proposition 2 (Convergence of the targeted CARA Design). Consider the setup of Proposition 1 and the
following additional assumptions:

A4. There exists a unique g∗0 ∈ G1 such that

g∗0 ∈ argmin
g∈G1

PQ0,gr
LQY,β0

(g)

gr . (10)

A5. The class 1/G1 ≡ {1/g : g ∈ G1} satisfies the finite entropy condition J(1,1/G1,‖ · ‖A,0)< ∞.

Under A1–A5, ‖gn(1|W )−g∗0(1|W )‖A,0→ 0 in probability.

We have already emphasized that through the choice of G1, the investigators of the RCT benefit from
a great flexibility in treatment allocation. The main constraint on G1 is A4, a condition on the complex-
ity/richness of the class. We refer the reader to(van der Vaart, 1998, Examples 19.7-19.11, Lemma 19.15)
for typical examples. They notably include “well-behaved” parametric classes and VC classes. In par-
ticular, G1 can consist of randomization schemes such that the allocation probabilities only depend on W
through a discrete summary measure of it, as considered in (Chambaz and van der Laan, 2013).

The limiting randomization scheme g∗0 depends on the user-supplied reference design gr only through
QY,β0 : replacing gr with any g ∈ G in (10) does not alter the definition of g0∗. Furthermore, g∗0 can be
interpreted as the most optimal design in G1 given the limiting conditional outcome model QY,β0 :

g∗0 ∈ argmin
g∈G1

VarPQ0 ,g
D∗Y (QY,β0 ,g) = argmin

g∈G1

{
VarPQ0 ,g

D∗Y (Q0,g)+PQ0,g

(
QY,0−QY,β0

)2

g2

}
.

Comparing the above equality with (2) yields that g∗0 = g0, the Neyman design, whenever QY,β0 = QY,0.
In general, g∗0 minimizes an objective function writing as the sum of the Cramér-Rao lower bound and a
second-order term residual. This underscores the motivation for using a flexible estimator in estimating
QY,0: by minimizing this second-order residual of the limiting conditional outcome model, we are closer
to adapting toward the desired optimal design.
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3.3 Consistency and Central Limit Theorem
As with the initial LASSO estimators of the conditional outcome, we are firstly concerned with the
convergence of the updated estimators Q∗Y,βn

:

Proposition 3 (Consistency). Consider the setups of Propositions 1 and 2 and the follow additional
assumption:

A6. There exists a unique ε0 ∈ E such that

ε0 ∈ argmin
ε∈E

PQ0,g∗0
L(QY,β0(ε)).

Assume that A1–A6 are met and define Q∗Y,β0
≡ QY,β0(ε0). It holds that ‖Q∗Y,βn

−Q∗Y,β0
‖Y,0 → 0 in

probability. Moreover, ψ∗n consistently estimates ψ0.

If QY,β0 = QY,0 then ε0 = 0: the updating procedure preserves the consistency of the initial estimator
Ψ(PQY,βn ,g) for any g ∈ G . More importantly, Proposition 3 guarantees that even if QY,β0 6= QY,0 then
ψ∗n still consistently estimates ψ0, by double-robustness. Nonetheless, the convergence of the updated
estimators Q∗Y,βn

(to the truth or otherwise) is crucial for studying the asymptotic behavior of ψ∗n .

Proposition 4 (Central Limit Theorem for ψ∗n ). Consider the setups of Propositions 1, 2 and 3 and the
following additional assumption:

A7. For any deterministic function F, F(O) = 0 PQ0,g∗0
-almost surely implies that F = 0.

Assume that A1–A7 are met. For both β = β0 and β = βn, introduce d∗Y,β and q∗Y,β characterized by

d∗Y,β (O,Z) ≡ 2A−1
Z

(
Y −Q∗Y,β (A,W )

)
,

q∗Y,β ≡ Q∗Y,β (1,W )−Q∗Y,β (0,W )

and, for any g ∈ G ,

Σn ≡
1
n

n

∑
i=1

(
d∗Y,βn

(Oi,Zi)+D∗W (P∗Qβn ,g
(Wi))

)2
. (11)

Then (Σn/n)−1/2(ψ∗n −ψ0) converges in distribution to the standard normal distribution.

The asymptotic results in Proposition 4 underpin the statistical analysis of the proposed targeted
CARA RCT. In particular, denoting ξ1−α/2 the (1−α/2)-quantile of the standard normal distribution,[
ψ∗n ±ξ1−α/2(Σn/n)1/2

]
is a confidence interval of asymptotic level (1−α).

4 Simulation Study
We present here the results of a simulation study of the performances of the targeted procedure exposed
in the previous sections.

4.1 Simulation Scheme
We rely on the same simulation scheme as in (Chambaz and van der Laan, 2013). For completeness, let
us recall that Q0 is such that:
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• the baseline covariate W equals (U,V ), where U and V are independently drawn with U uniformly
distributed on [0,1] and QW,0(V = 1) = 1/2, QW,0(V = 2) = 1/3, QW,0(V = 3) = 1/6;

• the conditional distribution of Y given (A,W ) is the Gamma distribution with conditional mean

QY,0(A,W ) = 2U2 +2U +1+
(

AV +
1−A
1+V

)
and conditional variance

σ
2
0 (Y |A,W ) =

(
U +A(1+V )+

1−A
1+V

)2

.

The marginal treatment effect on an additive scale satisfies ψ0 =
91
72 ' 1.264.

We target the optimal designs corresponding to eight parametric working models G11, . . . ,G18 that we
present in Table 1.

working model parametric form dimension optimal variance
G11 θ0 1 18.50
G12 ∑

3
v=1 θv1{V = v} 3 18.18

G13 θ0 +θ1U 2 18.37
G14 ∑

3
v=1 θv1{V = v}+θ4U 4 18.05

G15 θ0 +∑
3
v=1 θv1{V = v}U 4 18.12

G16 ∑
3
v=1 θv1{V = v}+θ4U +∑

3
v=2 θ3+v1{V = v}U 6 18.01

G17 θ0 +∑
3
v=1 θv1{V = v}U +∑

3
v=1 θ4+v1{V = v}U2 7 18.36

G18 ∑
3
v=1 θv1{V = v}+θ4U +θ5U2 +∑

3
v=2 θ4+v1{V = v}U

+∑
3
v=2 θ6+v1{V = v}U2 9 18.03

Table 1: Parametric working models G1k (k = 1, . . . ,8). In the second column, we report the parametric
forms of logit((gθ (W )−δ )/(1−2δ )) for generic elements gθ ∈ G1k (k = 1, . . . ,8). We set δ = 10−2.
In the third column, we give the dimensions of the models. In the fourth column, we report the nu-
merical values of argming∈G1k

VarPQ0 ,g
D∗(PQ0,g)(O) (k = 1, . . . ,8), with precision 10−2. Recall that

VarPQ0 ,g
b D∗(PQ0,g)(O) = 23.87, with precision 10−2.

In addition to the latter parametric working models, we consider eight statistical procedures for the
estimation of the conditional expectation QY,0. Four of them consist in parametric estimation on small-
dimensional models Q11, . . . ,Q14. In contrast, the four others rely on moderate-dimensional paramet-
ric models, `1-penalization and cross-validation to select the best regularization parameter. We denote
Q15, . . . ,Q18 these “machine-learning”, as opposed to “parametric”, procedures/models, which embody
the LASSO estimating procedure of Section 2.2.2. We summarize in Table 2 what are Q11, . . . ,Q18. All
procedures involve the logistic loss, even though the support of the marginal distribution of Y under P0 is
R+, not [0,1]. In fact, given a sample O1, . . . ,On, we first scale Y1, . . . ,Yn to [0,1], then regress the scaled
outcomes on (A,W ) based on the logistic loss and one procedure among Q11, . . . ,Q18, then scale back
the resulting conditional expectation to the original range of the observed outcomes.

Set B = 1000 and let n = (250,500,750,1000,1250,1500,1750,2000,2250,2500) be a sequence of
sample sizes. For each combination (k, l)∈ {1, . . . ,8}2, we repeatedly simulate B = 1000 times a targeted
CARA RCT based on G1k and Q1l , performing an update of the randomization scheme and the computa-
tion of the TMLE of ψ0 at every intermediate sample size ni (1 ≤ i ≤ 10), which we denote ψ∗ni,klb. The
simulations are mutually independent. The associated 95%-confidence intervals Ini,klb rely on estimated
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working model parametric form dimension

pa
ra

m
et

ri
c

Q11 ∑
3
v=1 θv1{V = v}+θ4U +θ5A 5

Q12 θ0 +A
(
θ1U +∑

3
v=2 θv1{V = v}

)
+(1−A)

(
θ4U +∑

3
v=2 θ3+v1{V = v}

)
7

Q13 A
(
∑

3
v=1 θv1{V = v}+θ4U

)
+(1−A)

(
∑

3
v=1 θ4+v1{V = v}+θ8U

)
8

Q14 A
(
∑

3
v=1 θv1{V = v}+θ4U +θ5U2

)
+(1−A)

(
∑

3
v=1 θ5+v1{V = v}+θ9U +θ10U2

)
10

L
A

SS
O

Q15 A
(
∑

3
v=1 θv1{V = v}+θ4U +θ5U2

)
+(1−A)

(
∑

3
v=1 θ5+v1{V = v}+θ9U +θ10U2

)
10

Q16 A
(
∑

3
v=1 θv1{V = v}+∑

5
l=1 θ3+lU l

)
+(1−A)

(
∑

3
v=1 θ8+v1{V = v}+∑

5
l=1 θ11+lU l

)
16

Q17 A
(
∑

3
v=1 θv1{V = v}+∑

10
l=1 θ3+lU l

)
+(1−A)

(
∑

3
v=1 θ13+v1{V = v}+∑

10
l=1 θ16+lU l

)
26

Q18 A
(
∑

3
v=1 θv1{V = v}+∑

20
l=1 θ3+lU l

)
+(1−A)

(
∑

3
v=1 θ23+v1{V = v}+∑

20
l=1 θ26+lU l

)
46

Table 2: Working models Q1k(k=1, . . . , 8) for the conditional expectation QY,0. In the second col-
umn, we report the parametric form of logit((qθ (A,W )−δ )/(1−2δ )) for generic elements qθ ∈Q1k
(k = 1, . . . ,8). We set δ = 10−2. In the third column, we give the dimensions of the models. All
working models are exploited in combination with the quasi negative-log-likelihood loss function (5).
Models Q11,Q12,Q13,Q14 are straightforwardly fitted by relying on the R function glm. Models
Q15,Q16,Q17,Q18 are LASSO-fitted by relying on the R function glmnet.

variances of the TMLE as given in (11). For each combination (k, l) and intermediate sample size ni, we
compute the empirical variance of the corresponding TMLE

Ŝni,kl =
1
B

B

∑
b=1

ψ
∗2
ni,klb−

(
1
B

B

∑
b=1

ψni,klb

)2

and the empirical coverage of the corresponding confidence interval

Ĉni,kl =
1
B

B

∑
b=1

1{ψ0 ∈Ini,klb}.

The simulation study is conducted using R (R Core Team, 2014) and the package glmnet (Friedman,
Hastie, and Tibshirani, 2010).

4.2 Discussion of the Results
4.2.1 Coverage

We propose an evaluation of the coverage performances based on testing. For every (k, l) ∈ {1, . . . ,8}2

and ni (1 ≤ i ≤ 10), the statistic B× Ĉni,kl follows a Binomial distribution with parameter (B,πni,kl) for
some πni,kl ∈ [0,1]. Denote p̂95

ni,kl the exact p-value of the one-sided binomial test of H95
ni,kl : “πni,kl ≥ 95%”

against “πni,kl < 95%”. Under H95
ni,kl , p̂95

ni,kl is drawn from the uniform distribution on [0,1].
For every ni (1≤ i≤ 10), we carry out one-sample Kolmogorov-Smirnov tests of the null stating that

the common law of { p̂95
ni,kl : 1≤ k≤ 8, l ∈L } (L ⊂{1, . . . ,8}) is the uniform distribution on [0,1] against
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ni 250 500 750 1000 1250 1500 1750 2000 2250 2500⋂
1≤ k ≤ 8
1≤ l ≤ 8

H95
ni,kl < 0.001 < 0.001 0.011 0.003 0.011 0.006 0.110 0.362 0.003 0.059

⋂
1≤ k ≤ 8
1≤ l ≤ 4

H95
ni,kl < 0.001 0.015 0.023 < 0.001 0.151 0.034 0.025 0.080 0.281 0.414

⋂
1≤ k ≤ 8
5≤ l ≤ 8

H95
ni,kl < 0.001 < 0.001 0.175 0.567 0.004 0.037 0.785 0.804 0.004 0.072

⋂
1≤ k ≤ 8
1≤ l ≤ 8

H94
ni,kl 0.028 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 3: Evaluating the coverage performances based on testing. The first row gives p-values of
Kolmogorov-Smirnov tests of the null consisting of the intersection of all H95

ni,kl . The second and third
rows give p-values of Kolmogorov-Smirnov tests of the nulls consisting in the intersections of all H95

ni,kl

based on parametric procedures (second row) and of all H95
ni,kl based on LASSO procedures (third row).

The fourth row gives p-values of Kolmogorov-Smirnov tests of the null consisting of the intersection of
all H94

ni,kl .

the alternative that the common law is stochastically smaller than the uniform distribution on [0,1]. Re-
jecting the null for its alternative indicates a defective coverage. The p-values of four such Kolmogorov-
Smirnov tests are reported in Table 3. The first row corresponds to the choice L = {1, . . . ,8}. It teaches
us that the expected 95%-coverage is generally not guaranteed. One may wonder if the same conclu-
sion holds when focusing in turn on the parametric procedures (set L = {1, . . . ,4}) or on the LASSO
procedures (set L = {5, . . . ,8}). Inspecting the second and third rows of Table 3 does not reveal an
interesting pattern. One may now wonder to what extent the 95%-coverage is deficient. To answer this
question, we proceed similarly. We denote p̂94

ni,kl the exact p-value of the one-sided binomial test of H94
ni,kl :

“πni,kl ≥ 94%” against “πni,kl < 94%”. Under H94
ni,kl , p̂94

ni,kl is drawn from the uniform distribution on [0,1].
For every ni (1≤ i≤ 10), we carry out a one-sample Kolmogorov-Smirnov test of the null stating that the
common law of {p̂94

ni,kl : 1 ≤ k ≤ 8,1 ≤ l ≤ 8} is the uniform distribution on [0,1] against the alternative
that the common law is stochastically smaller than the uniform distribution on [0,1]. The p-values of
these tests are reported in the fourth row of Table 3. The conclusion is clear and satisfactory: even if the
95%-confidence intervals fail to guarantee the wished coverage, one can safely consider them as valid
94%-confidence intervals.

4.2.2 Standard Deviation

Here we investigate how the targeted CARA RCT behaves in terms of standard deviation of the produced
estimators. As in the previous subsection, the investigation relies on testing. For every (k, l) ∈ {1, . . . ,8}2

and ni (1≤ i≤ 10), we first compute the statistic

Tni,kl =
1
B ∑

B
b=1(Σni,klb)

1/2−
(
Ŝni,kl

)1/2(
1
B ∑

B
b=1 Σni,klb−

( 1
B ∑

B
b=1(Σni,klb)1/2

)2
)1/2 ,

where Σni,klb is the estimated variance of the TMLE produced at intermediate sample size ni by the bth
simulated targeted CARA RCT based on G1k and Q1l , see (11). Thus, Tni,kl sheds some light on the
estimation of the standard deviation of the TMLE ψ∗ni

at sample size ni by (Σni/n)1/2 for the targeted
CARA RCT based on G1k and Q1l .
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For every ni (1 ≤ i ≤ 10), we perform a Lilliefors test of normality based on the sample {Tni,kl : 1 ≤
k≤ 8, l ∈L } with L = {1, . . . ,8}. The p-values of these tests are reported in Table 4. They teach us that
there is no stark evidence of non-normality across the ten intermediate sample sizes. This first conclusion
justifies the next step: for every ni (1≤ i≤ 10), we perform a one-sided Student test of “µni ≥ 0” against
“µni < 0”, where µni denotes the mean of the common distribution of {Tni,kl : 1≤ k≤ 8, l ∈L }with L =
{1, . . . ,8}. The p-values of these tests are reported in the two first rows of Table 4. Adjusting for multiple
testing in terms of the Benjamini and Yekutieli procedure for controlling the false discovery rate at the
5% level, we conclude that estimating the variance as in (11) is over-optimistic at least for intermediate
sample sizes smaller than or equal to n3 = 750. One may wonder if the same conclusions hold when
focusing in turn on the parametric procedures (set L = {1, . . . ,4}) or on the LASSO procedures (set
L = {5, . . . ,8}). Inspecting separately the third and fourth rows of Table 4 on one hand then the fifth
and sixth rows on the other hand leads to the conclusion that estimating the variance as in (11) is over-
optimistic only for intermediate sample sizes smaller than or equal to n2 = 500, still adjusting for multiple
testing in terms of the Benjamini and Yekutieli procedure for controlling the false discovery rate at the
5% level.

The gap between the conclusions reached when considering all procedures or the parametric and
LASSO ones separately may be simply explained by a loss of power due to the reduction of sample size
(64 versus 32), or by subtle differences induced by the nature of Q1l . In any case, in light of Section 4.2.1,
the under-estimation of the true variance based on (11) is necessarily slight at most.

ni 250 500 750 1000 1250 1500 1750 2000 2250 2500
Lilliefors 0.670 0.330 0.866 0.033 0.538 0.837 0.133 0.528 0.466 0.022
Student < 0.001 < 0.001 0.002 0.006 0.008 0.012 0.007 0.008 0.044 0.038

Lilliefors 0.755 0.043 0.270 0.021 0.543 0.620 0.206 0.172 0.685 0.206
Student < 0.001 < 0.001 0.013 0.026 0.025 0.026 0.021 0.036 0.226 0.420

Lilliefors 0.561 0.894 0.864 0.517 0.500 0.314 0.251 0.783 0.971 0.283
Student < 0.001 < 0.001 0.044 0.059 0.087 0.116 0.084 0.063 0.050 0.011

Table 4: Investigating the targeted CARA RCT in terms of standard deviation of the produced
estimators. In the first row we report the p-values of the Lilliefors tests of normality of the sample
{Tni,kl : 1 ≤ k, l ≤ 8} (1 ≤ i ≤ 10). In the second row, we report the p-values of the Student tests of
“µni ≥ 0” against “µni < 0”, where µni denotes the mean of the common distribution of {Tni,kl : 1 ≤
k, l ≤ 8}. In the third and fourth rows (fifth and sixth rows, respectively), we report the p-values of the
same Lilliefors and Student tests based on the samples {Tni,kl : 1 ≤ k ≤ 8,1 ≤ l ≤ 4} corresponding to
parametric procedures (on the samples {Tni,kl : 1≤ k≤ 8,5≤ l≤ 8} corresponding to LASSO procedures,
respectively).

5 Discussion
We have presented in this technical report a new group-sequential CARA RCT design and inferential
procedure built on top of it. The procedure is targeted in the sense that (i) the sequence of randomization
schemes is group-sequentially determined by targeting a user-specified optimal randomization design
based on accruing data and, (ii) our estimator of the user-specified parameter of interest, seen as the value
of a functional evaluated at the true, unknown distribution of the data, is targeted toward it by following
the paradigm of targeted minimum loss estimation. We focused for clarity on the case that the parameter
of interest is the marginal effect of a binary treatment and that the targeted optimal design is the Neyman
allocation, in an effort to produce an estimator with smaller asymptotic variance, but our methodology
extends beyond this instructive framework. For clarity too, we considered the case that the estimator
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of the conditional outcome given treatment and baseline covariates, a key element of the procedure, is
obtained by LASSO regression, although our methodology can hinge on a wide class of data-adaptive
estimators. Under mild assumptions, the resulting sequence of randomization schemes converges to a
limiting design, and the TMLE estimator is consistent and asymptotically Gaussian, with an asymptotic
variance that we can estimate too. Thus we can build valid confidence intervals of given asymptotic
levels. A simulation study confirms our theoretical results. Across 64 different choices of pairs of working
models and 10 intermediate sample sizes ranging from 250 to 2500, there is no empirical evidence that our
95%-confidence intervals do not provide at least 94%-coverage, based on 1000 independent replications.
In addition, in the same framework, there is no empirical evidence that our estimators of the variances of
the TMLE estimators are over-optimistic for sample sizes larger than 500, adjusting for multiple testing
in terms of the Benjamini and Yekutieli procedure for controlling the false discovery rate at the 5% level.
For smaller sample sizes, the under-estimation is slight at most.

We will soon make available a R package to allow interested readers to test the procedure. The proofs
of our theoretical results will be presented in a forthcoming article. In this article, we will also describe
and study a more general targeted CARA RCT design and related TMLE methodology involving possibly
aggressive data-adaptive/machine-learning procedures and not only LASSO regression. In the future, we
will also consider alternative strategies to randomly assign successive patients to the treatment arms in
such a way that the overall empirical conditional distribution of treatment given baseline covariates be as
close as possible to the current best estimator of the targeted optimal design. This will require both new
theoretical developments and simulation studies.
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