
LECTURE NOTES & HOMEWORK SHEET]1

— MATHEMATICS OF DEEP LEARNING —

RÉMI GRIBONVAL

1. Overview of the course

A high-level view on neural networks. Neural networks provide flexible ways of describing
parametrized families of functions fθ : Rd → Rk where θ denotes the corresponding param-
eters (to be detailed in due time). They are widely used in machine learning where the
parameters are tuned on training data by running some optimization algorithm. Typically,
for a supervised learning task, the training data is (xi, yi)

n
i=1 and the goal is to minimize

some empirical risk R̂(θ) := 1
n

∑n
i=1 `(fθ(xi), yi) which is an approximation of an ideal risk

R?(θ) := E(X,Y)`(fθ(xi), yi) under the (unknown) probability distribution from which the

data is assumed to be drawn i.i.d. In the case of least squares regression, where xi ∈ Rd and
yi ∈ Rk with k = 1, the conditional expectation f(x) := E(Y |X = x) minimizes the ideal
risk, and the goodness of fθ is measured by a discrepancy d(fθ, f) := EX(fθ(X)− f(X))2.
The success of neural networks in addressing a learning task is related to:

• the “expressivity” of neural networks, i.e., the capacity to approximate a given
function f using a neural network fθ. The landmark result is the so-called Universal
Approximation Theorem, and other related mathematical questions revolve around
approximation theory, to characterize which tradeoffs are achievable between
approximation accuracy and number of network parameters (aka “complexity”),
and how such tradeoffs may depend on “regularity” properties of f .
• optimization algorithms, to (approximately / empirically) minimize R?(θ) or

its empirical version R̂(θ). Computational scalability when the number of training
samples is large is often adressed with stochastic gradient descent approaches,
which convergence can be controlled under certain convexity and/or smoothness
assumptions. Neural networks typically yield non-convex optimization problems,
and guaranteeing convergence can sometimes be done by finely analyzing the shape
of the “landscape” of θ 7→ R?(θ) and/or the initialization of the algorithms.
• statistical relevance, depending on how many training samples (n) are available

compared to the number of network parameters. An overfitting phenomenon
is classically related to the notion of VC-dimension, but a so-called “double
descent” has been recently observed, which can be explained in certain scenarios
using tools from statistical physics and random matrix theory.

1

2 RÉMI GRIBONVAL

2. Generalities on neural networks

2.1. Basic definitions and notations. The realization of a neural network is a function
fθ : Rd → Rk which depends on the network parameters (weights and biases) and its
architecture (activation function % : R→ R, aka nonlinearity, number of layers L, number
of neurons per layer N`). One can define %-networks of increasing complexity:

• A neuron: its realization is g(x) = %(〈a, x〉+ b), ∀x ∈ Rd where a ∈ Rd and b ∈ R
• A scalar-valued shallow %-network, aka one-hidden-layer network: its realiza-

tion is g(x) =
∑n

i=1 ci%(〈ai, x〉+ bi) + d. The weight matrix A ∈ Rn×d with rows
ai, together with the bias vector b = (bi)

n
i=1, coefficient vector c = (ci)

n
i=1 define

affine linear transforms x 7→W1(x) = Ax+ b and y 7→W2(x) = 〈c, y〉+d. The net-
work is parameterized by θ = (W1,W2), and its realization reads fθ = W2 ◦ % ◦W1,
where by abuse of notation we denote % : y = (yi)

n
i=1 7→ %(y) = (%(yi))

n
i=1.

• The realization of a %-network with L layers, parameterized by θ = (W`)
L
`=1

where W` : RN`−1 → RN` are affine transforms, is fθ = WL ◦ % . . . ◦W1. There are
L affine layers and L− 1 nonlinear layers, aka hidden layers, and N0 = d, NL = k.

To state approximation theorems we will denote C(K) the Banach algebra of continuous
real-valued functions on a compact set K ⊂ Rd, equipped with the sup norm.

2.2. Universal approximation. Just as polynomials, neural networks have a universal
approximation property.

Definition 1. Single-hidden layer %-networks have the universal approximation prop-
erty (UAP) if the following holds: for every compact set K ⊂ Rd, every continuous
function f ∈ C(K), and every ε > 0, there exists an integer n ≥ 1, weight vectors ai ∈ Rd,
biases bi ∈ R and coefficients ci ∈ R such that

‖f(·)−
n∑
i=1

ci%(〈ai, ·〉+ bi)‖L∞(K) ≤ ε.

Alternatively, denoting Σn(%) the set of realizations of single-hidden-layer %-networks with
n hidden neurons, which write g(·) =

∑n
i=1 ci%(〈ai, ·〉+ bi)+d, the universal approximation

property means that Σ∞(%) = ∪n∈NΣn(%) is dense in C(K), with respect to the sup-norm.

The UAP was initially proved [5, 2] with sigmoidal activation functions: non-decreasing
functions % : R→ R such that limt→−∞ %(t) = 0 and limt→+∞ %(t) = 1 [7]. To what extent
can the sigmoid-like assumption be weakened? A few counter-examples are helpful.

Exercise 1 (K). Show that if % : R→ R is affine (i.e. there are c, d such that %(t) = ct+d)
then any realization of a corresponding network, no matter how deep, is an affine function.

Exercise 2 (K). Show that if % : R → R is polynomial of degree at most r then any
realization of a %-network of depth at most L is a polynomial. Give a bound on its degree.

These are the only counter-examples, if we restrict to continuous activation functions.

Theorem 1 ([6, Theorem 1]). Let % : R→ R be continuous. The following are equivalent:

LECTURE NOTES & HOMEWORK SHEET]1 — MATHEMATICS OF DEEP LEARNING — 3

(1) single-hidden layer %-networks have the universal approximation property
(2) % is not a polynomial

The proof exploits Stone-Weierstrass’s theorem.

Theorem 2 (Stone-Weierstrass [9, 3]). Consider K a compact metric space. A sub-algebra
A of C(K) is dense in C(K) if, and only if

(1) it separates points: for every x, y ∈ K there is f ∈ A such that f(x) 6= f(y);
(2) for every x ∈ K there is f ∈ A such that f(x) 6= 0.

A classical example is with A the set of polynomials. Theorem 1 is proved in three steps.

• Step 1: reduction to the univariate case
• Step 2: reduction to the smooth case
• Step 3: proof for the univariate smooth case

In Step 1, using Stone-Weierstrass with A the set of all finite linear combinations of func-
tions {x 7→ exp(〈v, x〉), v ∈ Rd}, it is sufficient to prove that for every v ∈ Rd, the function
f : x 7→ exp(〈v, x〉) can be approximated arbitrarily well in the sup-norm on any compact.
It is thus sufficient to prove that the closure of Σ∞(%) contains t 7→ et.

In Step 2, we smooth the activation function % with a compactly supported C∞ function
ψ to obtain σ = ψ ? %, which is C∞, and show that for any a, b ∈ R, the function x 7→
σ(ax+ b) =

∫
R %(ax+ b− y)ψ(y)dy is in the closure of Σ∞(%). As a result, it is sufficient

to show that Σ∞(σ) is dense in C(K) to establish that the same holds for Σ∞(%).
In Step 3, we show that whenever σ is C∞ and not a polynomial, the closure of Σ∞(σ)

contains all monomials x 7→ xk, hence all polynomials. Since polynomials are dense in
C(K) (by Stone-Weierstrass again), this yields the conclusion. Indeed, by induction on the

integer k ≥ 0, for every compact K the closure of Σ2k(σ) in C(K) contains x 7→ σ(k)(t)
k! xk

for every t ∈ R. Given k, since σ is not a polynomial, there exists tk ∈ R such that
σ(k)(tk) 6= 0, hence x 7→ xk is in the closure of Σ2k(σ), hence also in the closure of Σ∞(σ).

Exercise 3 (KK). Check carefully the density arguments, and fill in the missing details
in the above proof. In particular: why is σ not a polynomial ?

2.3. A pathological activation function. For any non-polynomial activation function,
by the UAP, any f ∈ C(K) is arbitrarily well approximated by a shallow network provided
the number of hidden neurons, n, grows to infinity. If we allow some depth, this can also
be achieved with a fixed number of neurons . . . for certain pathological activation functions.

Theorem 3 ([7, Theorem 4]). Denote Σn(%) the set of realizations of %-networks with
L = 3 layers (two hidden layers) and at most n hidden neurons. There exists an analytic
and sigmoidal activation function % : R → R such that: for any dimension d, Σn(%) is
dense in C(K) with K = [0, 1]d and n = 9d+ 3.

In fact, there is an architecture of neural network in Σn(%) with N0 = d, N1 = 3d,
N2 = 6d + 3, N3 = 1, such that any f ∈ C(K) can be approximated arbitrarily well by
tuning appropriately the W = 21d2 + 15d+ 3 weights as well as the n biases.

4 RÉMI GRIBONVAL

The detailed proof involves Kolmogorov’s superposition theorem and will not be pre-
sented here. A simpler but still striking result has a more elementary proof

Theorem 4. There is an activation function % : R → R, which is analytic almost ev-
erywhere, such that in the univariate case (d = 1) the set Σ1(%) of shallow networks with
n = 1 neuron is dense in C(K) for every compact set K ⊂ R.

Proof. Wlog (up to dilations) we consider K = [0, 1]. By Stone-Weierstrass, the set A of
polynomials with rational coefficients is dense in C(K). As A is countable, consider an
enumeration A = {un}n∈N and define % as the concatenation of all functions un : [0, 1]→ R.
In other words, set %(x) := un(x−n) with n = bxc for x ≥ 0 (and %(x) = 0 for x < 0). �

3. Focus on ReLU networks

From now on we focus on networks with the ReLU activation function

%(t) = ReLU(t) = t+ = max(t, 0)

Exercise 4 (K). Explain how to implement the following functions (see Figure 1) with a
ReLU-network:

• a sigmoid-like function, with a shallow network (L = 2);
• the absolute value function, with L = 2;
• a hat function, first with L = 2, then with L = 3 and a more narrow hidden layer;
• the soft-thresholding function, f(t) = t(1− 1/|t|)+;
• the identity function.

Python exercise (optional): write a jupyter notebook showing these implementations
and the graph representation of the corresponding networks (for example using pytorch).

Figure 1. (left) sigmoid-like function; (middle) hat function; (right) soft-
thresholding function

3.1. ReLU-networks and continuous piecewise linear functions.

Lemma 1. The realization of a ReLU-network is continuous and piecewise affine linear
(denoted CPwL). Start by proving it for a shallow network, then use composition.

Exercise 5 (K). Prove it

The converse is true for univariate CPwL functions (d = 1).

Lemma 2. If f : R→ R is CPwL then it is the realization of some shallow ReLU-network.

Exercise 6 (K). Prove it.

LECTURE NOTES & HOMEWORK SHEET]1 — MATHEMATICS OF DEEP LEARNING — 5

For CPwL functions f : Rd → R with d > 1, the converse no longer holds.

Exercise 7 (KK). Prove that (x, y) ∈ R2 7→ min(0,max(x, y)) is the realization of a
ReLU-network with L = 3 layers, but not the realization of a shallow ReLU-network.

Lemma 3. If f : Rd → R is CPwL, compactly supported, and nonzero, then it cannot be
implemented as the realization of any shallow ReLU-network.

Exercise 8 (K). Show that proving the result for d = 2 is enough to prove it for any d.

Exercise 9 (Optional, KKK). Prove the result for d = 2.

Increasing the depth to L ≥ 3 is thus necessary. For d ∈ {2, 3}, L = 3 is in fact sufficient
to implement any CPwL function, as a consequence of the following theorem.

Theorem 5 ([1, Theorem 2.1]). Every CPwL function f : Rd → R is the realization of a
ReLU-network of depth L = dlog2(d+ 1)e+ 1.

In dimension d ∈ {2, 3}, L = 3 is necessary and sufficient. For d ≥ 4, the minimum
number of layers needed to implement any CPwL function is still unknown.

3.2. Number of pieces and complexity of a network. When f is CPwL, there exists
a finite partition of Rd into connected sets such that the restriction of f to each of these sets
is affine. The “number of pieces” of f is the smallest size among all such partitions. In the
univariate case, n is thus the size of the smallest partition of R into intervals I1 = (−∞, t1),
I2 = [t1, t2), . . . In−1 = [tn−2, tn−1), In = [tn−1,∞) such that f is affine on each Ii. To
these n intervals correspond n− 1 breakpoints a1 < . . . < an−1.

For any %, the complexity of a (shallow or deep) %-network parameterized by θ =
(W1, . . . ,WL), with W` : x ∈ RN`−1 7→ A`x+ b` ∈ RN` , can be measured in terms of:

• the number of hidden neurons N(θ) :=
∑L−1

`=1 N`;

• the number of connections (aka number of nonzero weights) W (θ) :=
∑L

`=1 ‖A`‖0;
• the width is max1≤`≤L−1N`

Here, the `0 pseudo-norm of a matrix simply counts the number of nonzero entries.
The number of pieces of univariate shallow ReLU-networks is directly related to their

complexity.

Exercise 10 (K). Consider fθ : R→ R the realization of a shallow ReLU-network.

• Show that W (θ) ≤ 2N(θ) and that there exists a shallow ReLU-network θ′ with the
same realization fθ′ = fθ such that 2N(θ′) = W (θ′) ≤W (θ).
• Show that the number of breakpoints of fθ = fθ′ is N(θ′) = W (θ′)/2.

Bounds on the number pieces of deeper univariate ReLU-networks are also available.

Lemma 4 ([4, Lemma 5.19]). There exist constants CL, L ≥ 2 with the following property.
If fθ : R → R is the realization of a ReLU-network with L (affine) layers, then its number

of pieces is bounded by CL min
(
N(θ)L−1,W (θ)bL/2c

)
.

The proof makes extensive use of results by Telgarsky [10].

6 RÉMI GRIBONVAL

Exercise 11 (Optional KKK). Show that these bounds are sharp.
Hint: use the sawtooth functions on [0, 1] defined recursively from the hat function h0 =
max(2x, 2− 2x) as hj+1 = hj ◦ h0 and their various implementations as ReLU-networks.
Python exercise (optional)provide a python implementation of these sawtooth func-
tions as ReLU network and illustrate both the realization and the graph of the network.

4. From implementation to approximation

While ReLU-networks can only implement CPwL functions, they can be used to approx-
imate any function f . How good is this approximation when we increase the network
complexity ? Upper bounds are available under some assumptions on the regularity of f .

Theorem 6. Assume f is 1-Lipschitz on [0, 1]. For every n ≥ 1 there is a shallow ReLU
neural network with n neurons such that ‖f − g‖L∞([0,1]) ≤ 2/(n+ 1).

In Class Exercise 1. Prove this result. Can we control the magnitude of the weights ?

Solution 1. Consider a regular grid xi = i/(n+1), 0 ≤ i ≤ n+1. Let g ∈ Σn be the CPwL
function with n breakpoints xi, 1 ≤ i ≤ n such that g(xi) = f(xi) for all i. For 0 ≤ i ≤ n
and x ∈ [xi, xi+1], since g is piecewise linear and f is 1-Lipschitz, we have

|g(x)− g(xi)| ≤ |g(xi+1)− g(xi)| = |f(xi+1)− f(xi)| ≤ |xi+1 − xi| ≤ 1/(n+ 1)

hence, using that f(xi) = g(xi),

|f(x)− g(x)| ≤ |f(x)− f(xi)|+ |f(xi)− g(x)| ≤ |x− xi|+ |g(xi)− g(x)| ≤ 2/(n+ 1)

The above result implies that the error of best approximation of a Lipschitz function by a
shallow ReLU-network with n hidden neurons satisfies En(f) := d(f,Σn) ≤ 2|f |Lip/(n+ 1).
There are similar results in higher dimension.

Can we get even higher approximation rates by assuming more regularity on f ?

4.1. Lower approximation bounds for shallow networks.

Lemma 5. Assume that f ∈ C3(R) is not affine. There is C > 0 s.t.: if g is piecewise
affine with n pieces, then ‖f − g‖L1(R) ≥ Cn−2.

Proof. Warmup: consider X2 : x 7→ x2, Pr the set of polynomials of degree at most r,
and observe that C0 := dist(X2,P1)L1(K) > 0 with K = [0, 1]. Also observe that

• ∃x0 s.t. f ′′(x0) 6= 0; wlog (shift and multiply) x0 = 0 and f ′′(x0) > 2;
• wlog (dilate and multiply) f ′′(x) ≥ 2 on K = [0, 1] and ‖f ′′′‖L∞(K) ≤ 3C0.

g : x 7→ γ−2f(xγ); g′(x) = γ−1f ′(xγ), g′′(x) = f ′′(xγ), g′′′(x) = γf ′′′(xγ)
• these shifts/multiplication/dilations rescale ‖f − g‖L1(R) by some constant C(f).
• the restriction of g to [0, 1] has at most n pieces Ii ⊂ [0, 1]

‖f − g‖L1(R) ≥ ‖f − g‖L1([0,1]) ≥
n∑
i=1

‖f − g‖L1(Ii)

Main technical step (Taylor-like, postponed to Lemma 6): ‖f − g‖L1(Ii) ≥
C0
2 |Ii|

3

LECTURE NOTES & HOMEWORK SHEET]1 — MATHEMATICS OF DEEP LEARNING — 7

• Using Hölder inequality(
n∑
i=1

|Ii|3
)1/3

× n1−1/3 ≥
n∑
i=1

|Ii| × 1 = 1.

Conclusion: ‖f − g‖L1(R) ≥ C(f)C0
2 n
−2. �

Lemma 6. Let C0 := dist(X2,P1)L1(K) with K = [0, 1]. Consider f ∈ C3(K) such that

f ′′ ≥ 2 on K = [0, 1] and C := ‖f ′′′‖L∞(K) ≤ 3C0. For any interval I ⊂ K we have

‖f − P‖L1(I) ≥
C0

2
|I|3, ∀P ∈ P1.

Proof. Denote I = [a, b];
Step 1: By change of variable, for each P ∈ P1 there are Q,R ∈ P1 such that

‖X2 − P‖L1(I) = (b− a)‖(b− a)2X2 −Q‖L1(K) = (b− a)3‖X2 −R‖L1(K) ≥ C0|I|3.

Step 2: The Taylor expansion of f at a, T = αX2 +P , P ∈ P1, α = f ′′(a)/2 ≥ 1, satisfies

‖f − T‖L∞(I) ≤ C
6 |I|

3 ≤ C0
2 |I|

3 hence

‖f − T‖L1(I) ≤ ‖f − T‖L∞(I) ≤
C0

2
|I|3.

Step 3: For each Q ∈ P1 there is R ∈ P1 such that, with T = αX2 + P as above,

‖f −Q‖L1(I) ≥ ‖T −Q‖ − ‖f − T‖ = α‖X2 −R‖ − ‖f − T‖ ≥ C0|I|3 −
C0

2
|I|3 =

C0

2
|I|3.

�

Corollary 1. If f ∈ C3(R) is not affine then d(f,Σn)L1 ≥ C(f)n−2, ∀n ≥ 1.

In particular, this holds for any compactly supported nonzero C3 function.
Can we get a faster rate of approximation using deeper ReLU-networks ?

4.2. Lower approximation bounds for networks of bounded depth. Even with
deep ReLU-networks, there is a limit to how well we can approximate C3 functions.

Lemma 7. If f ∈ C3(R) is not affine then d(f,ΣL
n)L1 ≥ C(f)n−2(L−1), ∀n ≥ 1, with ΣL

n

the set of realizations of ReLU-networks of depth at most L with at most n neurons.

Exercise 12 (K). Prove this result and a similar one, with the set Σ′Ln of realizations of
ReLU-networks of depth at most L with at most n nonzero weights.
Hint: use Lemma 5 and Lemma 4.

Exercise 13 (Optional KKK). Adapt Lemma 5 using the ‖ ·‖p norm, 0 < p <∞, instead

of the ‖ · ‖1 norm. Adapt it to f ∈ C3(Rd) which is not affine, in dimension d > 1.
Hint: see e.g. [8] where such results have been established.

8 RÉMI GRIBONVAL

Despite the limitations highlighted by Lemma 7, it can pay off to use deeper ReLU-
networks. A basic building piece is the approximation of the square function, x 7→ x2,
with accuracy exponential in the number of neurons / nonzero weights when depth is
unconstrained [11, Proposition 2].

Lemma 8. Consider f : x 7→ x2. There is C > 0 such that for every integer j ≥ 1, there
exists a ReLU-network θ with N(θ) ≤ C × j, W (θ) ≤ C × j, of width max`N` ≤ C, which

realization fθ approximates f to accuracy 4−(j+1) in the sup-norm on K = [0, 1].

Figure 2. [top] Approximation of the square function f (blue) by id

(green); [below] approximation of the residual r0 = f − id (blue) by −h0/4
(green); of r1 = r0 + h0/4 (blue) by −(1/4)2h0 ◦ h0 (green), etc.

Proof sketch. As illustrated on Figure 2, on K = [0, 1], a natural approximation of f by
a CPwL function with n = 1 piece is with id. This leads to a residual r0 := f − id :
x 7→ x2 − x, which is symmetric around 1/2. A natural CPwL approximation of r0 with
n = 2 pieces is −1

4h0(x) with h0 the hat function h0(x) = min(2x, 2 − 2x). The residual
r1 = r0 +h0/4 is piecewise quadratic, on the intervals [0, 1/2] and [1/2, 1], and displays two
shifted, dilated and scaled copies of r0. This residual is well approximated by−(1/4)2h0◦h0,
and the process can be repeated in a “fractal-like” matter. This yields a decomposition

f = id + r0 = id− 1
4h0 + r1 = . . . = id−

j∑
`=0

1

4`+1
h` + rj+1,

where hj = h0◦hj−1 is the sawtooth function with 2j teeth (and 2j+1 linear pieces on [0, 1]).

The truncated sum fj := id−
∑j

`=0
1

4`+1h` yields ‖f − fj‖L∞(K) = ‖rj+1‖L∞(K) = 4−(j+1).

LECTURE NOTES & HOMEWORK SHEET]1 — MATHEMATICS OF DEEP LEARNING — 9

As h0 is the realization of a ReLU-network (either shallow with L = 2, N1 = 3, or deeper
with L = 3, N1 = 2, N2 = 1), hj is also a realization of a ReLU-network of controlled
depth and complexity. Eventually, fj is the realization of a ReLU-network is controlled by
carefully reusing computations done for computing fj−1. �

Exercise 14 (K). Fill in the missing details to exhibit a ReLU-network realizing fj with
the claimed complexity. What is the value of C? How deep is this network ?
Python exercise (optional): write a jupyter notebook showing these implementations
and the graph representation of the corresponding networks.

Exercise 15 (KK). Can we hope to reduce the approximation error of f with the same
complexity budget ? Can we hope to improve the lower bound in Lemma 7 ?

Exercise 16 (K). Consider Md : (x1, . . . , xd) 7→ Πd
i=1xi.

Show that for every j ≥ 1, M2 can be uniformly approximated on [0, 1]2 by the realization
of some ReLU-network θ of depth L = O(j) with N(θ) = O(j) neurons, W (θ) = O(j)
connections and accuracy exponentially decaying with j. Specify the achieved complexity
and accuracy as a function of j.
Same question with Md on [0, 1]d when d is a power of two. Same question for arbitrary d.
Python exercise (optional): write a jupyter notebook showing these implementations
and the graph representation of the corresponding networks.

References

[1] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding Deep Neural
Networks with Rectified Linear Units. ICLR, 2018.

[2] George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control. Signals
Syst., 2(4):303–314, 1989.

[3] Louis de Branges. The Stone-Weierstrass theorem. Proc. Amer. Math. Soc., 10(5):822–824, 1959.
[4] Remi Gribonval, Gitta Kutyniok, Morten Nielsen, and Felix Voigtlaender. Approximation spaces of

deep neural networks. arXiv.org, May 2019.
[5] Kurt Hornik, Maxwell B Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2(5):359–366, 1989.
[6] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–
867, 1993.

[7] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by MLP neural networks. Neuro-
computing, 25(1-3):81–91, 1999.

[8] Philipp Petersen and Felix Voigtländer. Optimal approximation of piecewise smooth functions using
deep ReLU neural networks. Neural Networks, 108:296–330, 2018.

[9] M H Stone. The Generalized Weierstrass Approximation Theorem. Mathematics Magazine, 21(4):167–
184, 1948.

[10] Matus Telgarsky. Benefits of depth in neural networks. Journal of Machine Learning Research,
49(June):1517–1539, June 2016.

[11] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 2017.

	1. Overview of the course
	2. Generalities on neural networks
	2.1. Basic definitions and notations
	2.2. Universal approximation
	2.3. A pathological activation function

	3. Focus on ReLU networks
	3.1. ReLU-networks and continuous piecewise linear functions
	3.2. Number of pieces and complexity of a network.

	4. From implementation to approximation
	4.1. Lower approximation bounds for shallow networks
	4.2. Lower approximation bounds for networks of bounded depth

	References

