Learning in high dimension: inter-disciplinary insights

Aurélien Garivier March 1^{st} , 2021

- 1. Approximation: a Separation Result
- 2. Convergence of Wide Depth-2 Networks: Mean-Field Insight
- 3. Statistical Physics View on Generalization

Phenomenon: observations $(x, y) \in \mathcal{X} \times \mathcal{Y}$ in a product of measurables spaces $\mathcal{X} \subset \mathbb{R}^p$ and $\mathcal{Y} \subset \mathbb{R}^q$.

Goal: predict y from x. Prediction error measure by loss $\ell(\hat{y}, y) = \|\hat{y} - y\|^2/2$ typically.

Statistical hypothesis: there exists $F : \mathcal{X} \times \Omega \to \mathcal{Y}$ such that the observations are distributed as (X, Y) where X has distribution \mathbb{P}_X and $Y = F(X, \omega)$. Typically, $Y = f(X) + \epsilon$ where $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Examples:

- classification (OCR, image recognition, text classification, etc.)
- regression (response to a drug, weather or stock price forecast, etc.)

Target: best possible guess of *Y* given *X*: $f(X) = \mathbb{E}[Y|X]$.

Machine Learning

Mechanism of f is complex or hidden. Access to f only thru **examples** i.e. a sample $S_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ of random pairs **Learning algorithm** $\mathcal{A}_n : S_n \mapsto \hat{f}_n$ where $\hat{f}_n \in \mathcal{F} \subset \mathcal{Y}^{\mathcal{X}} \subset (\mathbb{R}^q)^{\mathbb{R}^p}$ $\mathcal{F} =$ hypothesis class = model. Example: linear regression

$$\mathcal{F} = \left\{ f_{\theta} : x \mapsto \left(\theta_{i,0} + \sum_{j=1}^{p} \theta_{i,j} x_{j} \right)_{1 \leq i \leq q} : \theta \in \mathcal{M}_{q,1+p}(\mathbb{R}) \right\}$$

Quality of prediction \hat{y} : loss function $\ell : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}_+$ e.g. $\ell(\hat{y}, y) = \frac{(\hat{y}-y)^2}{2}$ Quality of hypothesis $f \in \mathcal{F}$: generalization error = average loss

 $L(f) = \mathbb{E}[\ell(f(X), Y)]$ expectation is on new observation (X,Y)

Quality of the learning algorithm $\mathcal{A}:~\textbf{risk}$ = $\mbox{average average loss}$

$$R_n(\mathcal{A}_n) = \mathbb{E}\left[L(\hat{f}_n)
ight]$$
 expectation is on sample S_n

Empirical Risk Minimization

Learning = how to find the best possible $f \in \mathcal{F}$?

 \rightarrow Minimize the empirical loss = training error

$$L_n(f) = rac{1}{n} \sum_{k=1}^n \ellig(f(X_k),\,Y_kig)$$
 average loss on the sample

= unbiased estimator of the generalization error L(f)

Empirical Risk Minimizer: $\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg min}} L_n(f)$

Example: linear regression with quadratic loss (dates back at least to Gauss) $\hat{f}_n = f_{\hat{\theta}_n}$ where $\hat{\theta}_n^T = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, with

$$\mathbf{X} = \begin{pmatrix} 1 & X_1^1 & \dots & X_1^p \\ & \dots & & \\ 1 & X_n^1 & \dots & X_n^p \end{pmatrix} \text{ and } \mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

Regression by polynomials of degrees $1, 2, ..., n-1 \rightarrow$ more parameters is not necessarily better, bias / variance tradeoff, Structural Risk Minimization (penalize empirical risk by model complexity)

Feedforward Neural Networks: Mimicking Brains?

Neuron: $x \mapsto \sigma(\langle w, x \rangle + b)$ with

- parameter $w \in \mathbb{R}^p, b \in R$
- (non-linear) activation function $\sigma : \mathbb{R} \to \mathbb{R}$ typically $\sigma(x) = \frac{1}{1 + \exp(-x)}$ or $\sigma(x) = \max(x, 0)$ called ReLU

Layer: $x \mapsto \sigma(Mx + \mathbf{b})$ with

- parameter $M \in M_{q,p}(\mathbb{R}), \mathbf{b} \in \mathbb{R}^q$
- component-wise activation function $\sigma = \sigma^{\otimes q}$

Network: composition of layers $f_{\theta} = \sigma_D \circ T_D \circ \cdots \circ \sigma_1 \circ T_1$ with

- architecture $A = (D, (p_1, \ldots, p_{D-1}))$
- $-x_0=x, \ x_d=\sigma_d(T_dx_{d-1})\in\mathbb{R}^{p_d}$

$$- T_d x = M_d x + \mathbf{b}_d$$

- parameter $\theta = (M_1, \mathbf{b}_1, \dots, \dots, M_D, \mathbf{b}_D)$ $\theta \in \Theta_A = \prod_{d=1}^D \mathcal{M}_{p_{d-1}, p_d}(\mathbb{R}) \times \mathbb{R}^{p_d}$
- depth D (Ast. nb layers), width $\max_{1 \le d \le D} p_d$

How to learn with feedforward neural networks?

Choose architecture $A = [D, (p_1, \ldots, p_{D-1})]$

- depth D?
- what architectures are good if f has some with given properties?
- activation function? sigmoid $\sigma(x) = \frac{1}{1 + \exp(-x)}$ or ReLU $\sigma(x) = \max(x, 0)$
- \rightarrow approximation theory

Learn = find the good coefficients using S_n

– Empirical Risk Minimization: \hat{f}_n solution of

$$\min_{\substack{T_k \in \mathcal{M}_{p_d, 1+p_{d-1}}(\mathbb{R}) \\ 1 \leq d \leq D}} \frac{1}{n} \sum_{k=1}^n \ell(\sigma_D \circ T_D \circ \cdots \circ \sigma_1 \circ T_1(X_k), Y_k)$$

- non convex, high-dimensional optimization problem
- but gradient can be computed by back-propagation
- → does gradient descent work?

Apply \hat{f}_n to new data (X, Y)

- how to bound the generalization error $L(\hat{f}_n)$?
- should we regularize = penalize large coefficients?
- → no overfitting?

→ How to explain the huge empirical success of deep learning?

Approximation: a Separation Result

Lipschitz function approximation

Every Lipschitz function can be $\varepsilon\text{-approximated}$ by a poly-sized depth-2 NN:

- $\sigma(x) = \max\{0, x\}$ is the ReLU activation function
- $-f: [-R, R] \rightarrow \mathbb{R}$ is an *L*-Lipschitz function
- There is a function (implemented by a depth-2 neural network)

$$N_2(x) = f(0) + \sum_{i=1}^m \gamma_i \sigma(\alpha_i x + \beta_i)$$

- $\|f N_2\|_{\infty} \le \varepsilon \qquad \alpha_i \in \{-1, 1\}$
- $N_2 \text{ is } L\text{-Lipschitz on all } \mathbb{R} \qquad |\beta_i| \leq R$
- Width bounded as $m \leq rac{2RL}{arepsilon}$ $|\gamma_i| \leq 2L$

[Cybenko 1989] [Hornik et al. 1989] [Funahashi 1989] - N2 is a universal approximator

Lipschitz function approximation - proof

$$N_2(x) = f(0) + \sum_{i=1}^m \gamma_i \sigma(\alpha_i x + \beta_i)$$

Lipschitz function approximation - proof

For every
$$x, x_1, x_2 \in \left\langle \frac{i\varepsilon}{L}, \frac{(i+1)\varepsilon}{L} \right\rangle$$

 $|f(x_1) - f(x_2)| \le L|x_1 - x_2| \le L\frac{\varepsilon}{L} = \varepsilon$

Therefore we have

$$\frac{|N_2(\frac{i\varepsilon}{L}) - f(x)| \le \varepsilon}{|N_2(\frac{(i+1)\varepsilon}{L}) - f(x)| \le \varepsilon} \Big\} |N_2(x) - f(x)| \le \varepsilon$$

Why is Depth important? Sawteeth Function

Let
$$s(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ 2 - 2x & \text{if } \frac{1}{2} \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$= 2r(x) - 4r\left(x - \frac{1}{2}\right) + 2r(x - 1)$$

and for all $m \ge 1$ let $s_m = \underbrace{s \circ \cdots \circ s}_{m \text{ times}}$

Lemma

For all $m\geq 1$, all $k\in \left\{0,\ldots,2^{m-1}-1
ight\}$ and all $t\in [0,1]$,

$$s_m\left(\frac{k+t}{2^{m-1}}\right) = \begin{cases} 2t & \text{if } t \le \frac{1}{2} \\ 2-2t & \text{if } t \ge \frac{1}{2} \end{cases}$$

Why is Depth important? Square Function

Let
$$g(x) = x^2$$
, and for $m \ge 0$ let $g_m(x)$ be such that $\forall k \in \{0, \dots, 2^m\}$:
• $g_m\left(\frac{k}{2^m}\right) = g\left(\frac{k}{2^m}\right)$ • g_m is linear on $\left[\frac{k}{2^m}, \frac{k+1}{2^m}\right]$

Lemma

For all $k \in \left\{0, \ldots, 2^m - 1\right\}$ and all $t \in [0, 1]$,

$$g_m\left(\frac{k+t}{2^m}\right) - g\left(\frac{k+t}{2^m}\right) = \frac{t(1-t)}{4^m}$$

In particular, $\|g - g_m\|_{\infty} = \frac{1}{4^{m+1}}$ and for all $m \ge 2$,

$$g_m = g_{m-1} - \frac{1}{4^m} s_m = id - \sum_{j=1}^m \frac{1}{4^j} s_j$$

Corollary

For every $\epsilon > 0$, there exists a neural network f of depth $\lceil \log_4(1/\epsilon) \rceil$, width 3 and coefficients in [-4, 2] such that $||f - g||_{\infty} \le \epsilon$ on [0, 1]

Why is Depth important? Square Function

Lemma

$$\|g-g_m\|_{\infty}=rac{1}{4^{m+1}}$$
 and for all $m\geq 2$, $g_m=g_{m-1}-rac{1}{4^m}\ s_m=id-\sum_{j=1}^mrac{1}{4^j}\ s_j$

Corollary

For every $\epsilon > 0$, there exists a neural network f of depth $\lceil \log_4(1/\epsilon) \rceil$, width 3 and coefficients in [-4, 2] such that $||f - g||_{\infty} \le \epsilon$ on [0, 1]

Outline

Approximation: a Separation Result

A separation result

Depth-2 neural network

Convergence of Wide Depth-2 Networks: Mean-Field Insight

Statistical Physics View on Generalization

Statistical Learning: Recap in a Nutshell

Linear Models

Beyond Linear Models

Exponential Depth Separation

A. Daniely proved that there is a function F : $\mathbb{S}^{d-1} imes \mathbb{S}^{d-1} o \mathbb{R}$ such that

- there exist a poly(d)-sized depth-3 network N_3 s.t.

 $\|N_3 - F\|_{L^2(\mathbb{S}^{d-1} \times \mathbb{S}^{d-1})} \le \varepsilon$

- for every poly(d)-sized depth-2 neural network N_2

$$\|N_2 - F\|_{L^2(\mathbb{S}^{d-1} \times \mathbb{S}^{d-1})} > \varepsilon$$

He showed this for an inner product functions i.e.

$$F(\mathbf{x}, \, \mathbf{x}') = f(\langle \mathbf{x}, \, \mathbf{x}' \rangle)$$

where $f : [-1, 1] \rightarrow \mathbb{R}$.

[Martens et al. 2013] [Eldan and Shamir 2016] - similar results

Depth-2 σ -network

Function $N: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is implementing a depth-2 σ -network of width r and weights bounded by B if

$$N(\mathbf{x}, \mathbf{x}') = w_2^{\mathsf{T}} \sigma(W_1 \mathbf{x} + W_1 \mathbf{x}' + b\mathbf{1}) + b_2$$

 $W_1, W_1 \in [-B, B]^{r \times d}, w_2, b_1 \in [-B, B]^r, b_2 \in [-B, B].$

Depth-3 σ -network

Function $N: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ is implementing a depth-3 σ -network of width r and weights bounded by B if

$$\mathcal{N}(\mathbf{x},\mathbf{x}') = w_3^{\scriptscriptstyle T} \sigma(W_2 \sigma(W_1 \mathbf{x} + W_1 \mathbf{x}' + b\mathbf{1}) + b_2) + b_3$$

 $W_1, W_1 \in [-B, B]^{r \times d}, W_2 \in [-B, B]^{r \times r}, b_1, b_2 \in [-B, B]^r, b_3 \in [-B, B].$

Inner product approximation

Inner product function approximation

Inner product function approximation

Inner product approximated by N_i

- Approximation precision: $\frac{\varepsilon}{2L}$
- Width of approximation N_i : $\frac{16d^2L}{\epsilon}$

L-Lipschitz function f approximated by N_f

- Approximation precision: $\frac{\varepsilon}{2}$
- Width of approximation N_{f} : $\frac{4L}{\varepsilon}$

Inner product function approximated by $N_F = N_f \circ N_i$.

- Width of approximation N_F : $\frac{16d^2L}{\varepsilon}$
- Approximation precision:

$$\begin{split} |N_{F}(\mathbf{x}, \mathbf{x}') - F(\mathbf{x}, \mathbf{x}')| &= |N_{f}(N_{i}(\mathbf{x}, \mathbf{x}')) - f(\langle \mathbf{x}, \mathbf{x}' \rangle)| \\ &\leq |N_{f}(N_{i}(\mathbf{x}, \mathbf{x}')) - N_{f}(\langle \mathbf{x}, \mathbf{x}' \rangle)| + |N_{f}(\langle \mathbf{x}, \mathbf{x}' \rangle) - f(\langle \mathbf{x}, \mathbf{x}' \rangle)| \\ &\leq L|N_{i}(\mathbf{x}, \mathbf{x}') - \langle \mathbf{x}, \mathbf{x}' \rangle| + \frac{\varepsilon}{2} \leq L\frac{\varepsilon}{2L} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

Highly oscillating inner product function:

$$F(\mathbf{x}, \mathbf{x}') = f(\langle \mathbf{x}, \mathbf{x}' \rangle) = \sin(\pi d^3 \langle \mathbf{x}, \mathbf{x}' \rangle)$$

sin(x) is 1-Lipschitz \implies $sin(\pi d^3x)$ is (πd^3) -Lipschitz

We can ε -approximate F by a depth-3 neural network of width at most

$$\frac{16d^2L}{\varepsilon} = \frac{16\pi d^5}{\varepsilon}$$

Outline

Approximation: a Separation Result

A separation result

Depth-2 neural network

Convergence of Wide Depth-2 Networks: Mean-Field Insight

Statistical Physics View on Generalization

- Statistical Learning: Recap in a Nutshell
- Linear Models
- Beyond Linear Models

Legendre polynomials

$$P_0(x) = 1, P_1(x) = x$$

$$P_n(x) = \frac{2n+d-4}{n+d-3} x P_{n-1}(x) - \frac{n-1}{n+d-3} P_{n-2}(x)$$

Sequence $\{\sqrt{N_{d,n}}P_n\}_{n\geq 0}$ is **orthonormal basis** of $L^2(\mu_d)$ where

$$N_{n,d} = egin{pmatrix} d+n-1 \ d-1 \end{pmatrix} - egin{pmatrix} d+n-3 \ d-1 \end{pmatrix}$$

and μ_d is defined by pushing forward the uniform measure on \mathbb{S}^{d-1} using function $\mathbf{x}\to x_1$

$$d\mu_d(x) = \frac{\Gamma(\frac{d}{2})}{\sqrt{\pi}\Gamma(\frac{d-1}{2})} (1-x^2)^{\frac{d-3}{2}} dx$$

Legendre polynomials

Fig. 2.2 Legendre polynomials for dimension 3

Denote

$$h_n(\mathbf{x}, \mathbf{x}') = \sqrt{N_{d,n}} P_n(\langle \mathbf{x}, \mathbf{x}' \rangle)$$

Then

 $\{h_n\}_{n\geq 0}$ is a **basis** of the space of inner product functions

Let $F(\mathbf{x}, \mathbf{x}') = f(\langle \mathbf{x}, \mathbf{x}' \rangle)$ be any inner product function. Then

$$F(\mathbf{x},\mathbf{x}') = \sum_{i=0}^{\infty} \alpha_i h_i(\mathbf{x},\mathbf{x}')$$

Separable functions

Function $g(\mathbf{x}, \mathbf{x}')$ is $(\mathbf{v}, \mathbf{v}')$ -separable function if

$$g(\mathbf{x}, \, \mathbf{x}') = \psi(\langle \mathbf{v}, \, \mathbf{x} \rangle, \, \langle \mathbf{v}', \, \mathbf{x}' \rangle)$$

Denote

$$L_n^{\mathbf{x}}(\mathbf{x}') = h_n(\mathbf{x}, \mathbf{x}') = \sqrt{N_{d,n}} P_n(\langle \mathbf{x}, \mathbf{x}' \rangle)$$

$$\left\{L_{i}^{\mathbf{v}}(\mathbf{x})L_{j}^{\mathbf{v}'}(\mathbf{x}')\right\}_{i,j\geq0} - \mathbf{basis} \text{ of } (\mathbf{v}, \mathbf{v}') - \text{separable functions}$$

Any $(\mathbf{v}, \mathbf{v}')$ -separable function $g(\mathbf{x}, \mathbf{x}')$ can be written as

$$g(\mathbf{x}, \, \mathbf{x}') = \sum_{i,j \ge 0} \beta_{i,j} L_i^{\mathbf{v}}(\mathbf{x}) L_j^{\mathbf{v}'}(\mathbf{x}')$$

Note: neuron $\sigma(\langle \mathbf{v}, \mathbf{x} \rangle + \langle \mathbf{v}', \mathbf{x}' \rangle + \mathbf{b})$ is a separable function

Main result

Theorem

Let $F: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ be an inner product function and let $g_1, g_2, ..., g_r$ be separable functions. Then we have

$$\left\|F - \sum_{j=1}^{r} g_{j}\right\|^{2} = \left\|\mathcal{P}_{n}F\right\|\left(\left\|\mathcal{P}_{n}F\right\| - \frac{2\sum_{j=1}^{r} \|g_{j}\|}{\sqrt{N_{d,n}}}\right)$$

where \mathcal{P}_n is a projection operator such that

$$\mathcal{P}_n\left(\sum_{i=0}^{\infty}\alpha_ih_i\right)=\sum_{i=n}^{\infty}\alpha_ih_i$$

Note: whenever F has heavy Legendre tail, N_2 needs to be wide

Main result - proof

$$\begin{split} \|F - N_2\|^2 &= \sum_{i=0}^{\infty} \left\| \alpha_i h_i - \sum_{j=1}^r \beta_j^i L_i^{\mathbf{v}_j} \otimes L_i^{\mathbf{v}'_j} \right\|^2 \geq \sum_{i=n}^{\infty} \left\| \alpha_i h_i - \sum_{j=1}^r \beta_j^j L_i^{\mathbf{v}_j} \otimes L_i^{\mathbf{v}'_j} \right\|^2 \\ &\geq \sum_{i=n}^{\infty} \alpha_i^2 - 2 \sum_{i=n}^{\infty} \sum_{j=1}^r \langle \alpha_i h_i, \, \beta_j^i L_i^{\mathbf{v}_j} \otimes L_i^{\mathbf{v}'_j} \rangle \\ &= \|\mathcal{P}_n F\|^2 - 2 \sum_{i=n}^{\infty} \sum_{j=1}^r \frac{\beta_i^j \alpha_i P_i(\langle \mathbf{v}_j, \mathbf{v}'_j \rangle)}{\sqrt{N_{d,i}}} \\ &\geq \|\mathcal{P}_n F\|^2 - 2 \sum_{j=1}^r \sum_{i=n}^{\infty} \frac{|\beta_i^j| |\alpha_i|}{\sqrt{N_{d,n}}} \\ &\geq \|\mathcal{P}_n F\|^2 - 2 \sum_{j=1}^r \frac{1}{\sqrt{N_{d,n}}} \sqrt{\sum_{i=n}^{\infty} |\alpha_i|^2} \sqrt{\sum_{i=n}^{\infty} |\beta_i^j|^2} \\ &\geq \|\mathcal{P}_n F\|^2 - \frac{2 \|\mathcal{P}_n F\| \sum_{j=1}^r \|g_j\|}{\sqrt{N_{d,n}}} \end{split}$$

We are looking for a function that can not be well approximated by a low degree polynomial. For example:

 $\sin(\pi\sqrt{dmx})$

Lemma

Let $s_{d,m}(x) = \sin(\pi\sqrt{dmx})$. Then for any $d > d_0$ and for any degree k polynomial p we have

$$\int_{-1}^{1} (s_{d,m}(x) - p(x))^2 d\mu(x) \ge \frac{m-k}{4e\pi m}$$

Example

Proof of the Lemma

For large enough *d* and $|x| \leq \frac{1}{\sqrt{d}}$ we have

$$1 - x^2 \ge e^{-2x^2} \ge e^{-\frac{2}{d}} \implies (1 - x^2)^{\frac{d-3}{2}} \ge e^{-\frac{d-3}{d}} \ge e^{-1}$$

This, together with the fact that $\Gamma(\frac{d}{2})/\Gamma(\frac{d-1}{2}) \approx \sqrt{\frac{d}{2}}$, gives us

$$d\mu(x) = \frac{\Gamma(\frac{d}{2})}{\sqrt{\pi}\Gamma(\frac{d-1}{2})} (1-x^2)^{\frac{d-3}{2}} dx \ge \frac{\sqrt{d}}{2e\pi} \,\mathbb{1}_{\left[-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right]}(x) \,dx$$

and therefore, for every $f \ge 0$:

$$\int_{-1}^{1} f(x) d\mu_{d}(x) \geq \frac{\sqrt{d}}{2e\pi} \int_{-\frac{1}{\sqrt{d}}}^{\frac{1}{\sqrt{d}}} f(x) dx = \frac{1}{2e\pi} \int_{-1}^{1} f\left(\frac{t}{\sqrt{d}}\right) dt$$

Example

$$\int_{-1}^{1} f(x) d\mu_d(x) \geq \frac{1}{2e\pi} \int_{-1}^{1} f\left(\frac{t}{\sqrt{d}}\right) dt$$

Setting $f(x) = (\sin(\pi\sqrt{d}mx) - p(x))^2$ we obtain

$$\int_{-1}^{1} \left(\sin(\pi \sqrt{d}mx) - p(x) \right)^2 d\mu(x) \ge \frac{1}{2e\pi} \int_{-1}^{1} \left(\sin(\pi mx) - p\left(\frac{x}{\sqrt{d}}\right) \right)^2 dx$$

Setting

 $- f(x) = \sin(\pi d^3 x)$ $- n = d^2$ $- B = 2^d$

and using our main theorem, we get

$$\begin{aligned} &- \mathcal{P}_n F \geq \frac{1}{5e\pi} \\ &- \text{ To get } \frac{1}{50e^2\pi^2} \text{-approximatopn of } F \text{, the width of NN should be} \end{aligned}$$

$$\frac{\sqrt{N_{d,d^2}}}{20e\pi 2^{2d}(1+\sqrt{4d})+2^{d+1}}=2^{\Omega(d\log(d))}$$

Convergence of Wide Depth-2 Networks: Mean-Field Insight

Neural Nets into, - 5 v2 1 hidden (X7) Win (G2) A1 lager $y = g(x; o) = \frac{1}{N} \sum_{i=1}^{N} \sigma(x; o_i)$ $\partial_i = (a_i, b_i, \omega_i)$ $\sigma(x, 0) = \alpha \sigma(\langle \omega, x \rangle + b)$ an Jola] = 1/1+ C-22 $(x) = x_+$

Th ((gbenhar '89) $i\int \overline{TE} \left(f(x)^2 \right) < \infty$ $i\int \overline{\sigma} \left(f(x)^2 \right) < \infty \quad \text{outinuous, } \int \overline{\sigma} (x)^{-3} \frac{1}{x^{-3} + \infty}$ $\int \overline{\sigma} (x)^{-3} \frac{1}{x^{-3} + \infty}$ $\inf_{\substack{(a_i,b_i,\omega_i)_{1 \le i \le N}}} \frac{\prod_{i \le j \le N} f(x) - \frac{j}{N} \sum_{i \le j \le N} \frac{\sum_{i \le j \le N} f(x)}{\sum_{i \le j \le N} \sum_{i \le N} \sum_{i \le N} \sum_{i \le N} \sum_{i \le N} \frac{f(x)}{\sum_{i \le N} \sum_{i \le N} \sum_$ 32
PC: how to gind the good approximator? -> Gradient Descent: Stepsize 0^k = 0^k + S_k Un $\sigma_{h} = - V R(\delta)$ Uk = - VR(0^h) + E^k Enoise SGD:

TG: R(O) is not convexind it has local minima, etc...

BUT still (S)GD woles especially when the network is our-parameterized -> WHY!

Menc: $R[0] = \frac{12}{N} \left(\frac{12}{N} \frac{1$ $-3 \Theta_{i}^{h_{i}} = \Theta_{i}^{h_{i}} + 2 \frac{1}{2} \frac{1}{2} \left[\sigma(\mathbf{x}, \Theta_{i}) \left(9 - \frac{1}{2} \frac{1}{2} \sigma(\mathbf{x}, \Theta_{j}) \right) \right]$ $R_{N}(\theta) = TE[Y^{2}] + \frac{2}{N} \sum_{i=1}^{N} -TE[Y_{0}(x,\theta_{i})] + \frac{1}{N^{2}} \sum_{i=1}^{N} F(x,\theta_{i})\sigma(x_{0})]$ R(0) = R# + 2 Z V(0) + 1 Z U(8;8;) energy external potential potential

Important: the heard U is remidefinite: Vh brunded, anypartly supported $\int (10, 0_2) h(0_1) h(0_2) d\theta, d\theta_2 > 0$ repulsive interaction (in average suse)

onverification $\beta(x, 0) = \frac{1}{N} \sum_{i=1}^{N} \sigma(x, 0;)$ = (o(n, 0) e (d 0) when N is large, can be modelled by a dowsiley e

 $\rightarrow R_N(\partial)$ $\frac{n}{2} R(e) : R_{\#} + 2 \int \sqrt{(o)} e(dQ)$ $+ \int U(\partial_1, \partial_2) \rho(d\partial_1) \rho(d\partial_2)$ Rep: ifteo: Ve; R(e) & if R(e) + Eo => Ju(o, 0) e (do) & K then fing R(o) - inf R(e) & K

Remark:

 $R(p) = R_{\#} + 2 \int V(\sigma) p(d\sigma) + \int U(\sigma, \sigma_{L}) (d\sigma, \sigma$ is convexing ? wer optimization in sordim M. (@)

0- sim approach Punctional derivatie W(0, e) = 2 SR(e) = V(0) + SU(0,0') p(d0') = variation of energy when adding sparticule at 0 le is a minimum if $Supp(R_{*}) < argmin \Psi(\partial, e^{*})$ $\partial \in \mathbb{R}^{2}$

-> I dea 2: - Discretize (P) -> (D) - Mininge R(PN) on M. (D) STRY $R(p_N) = [R_{\#} +] + p_N V_N + p_N U_N p_N$ where $V_N(i) = V(\overline{\sigma}_i)$ and $U_N(ij) = U(\overline{\sigma}_i, \overline{\sigma}_j)$ Pt: Cuare of dimensionality: -> What Pollows proves Elat a good N. Noes not need to be exponential in D.

Idea 2: paticular approach $P_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\partial_i}$ each particle D: moves according to the parces of the system : at the t: he speed TE(5:15=): - Vo. V(0:) - - Z Vo. v(0: o') $= \overline{IE} \left[4 \sigma(x, \sigma_i) \right] - \frac{1}{N} \sum_{j=1}^{N} \overline{I_j} \left[\sigma(x, \sigma_i) \sigma(x, \sigma_j) \right]$ -> this is exactly (S) 6D o

-> prove that the particle system behaves like its continuous equivalent (statistical mechanics)

 $\overline{F}\left(\sigma_{i}^{h}/\overline{S}_{k}\right)=-\nabla \psi(\sigma_{i}^{h}, e_{k})$ (PE) 17,0 tike Pinik.

Entimity equation $\partial_z \rho_E = -\nabla \cdot (\rho_E(0) \nabla (\partial_z \rho_z))$ T D+dQ enters: le(0) v(0, le) baves: le(0, d0) v(0, d0, le) > variation of le: 30 (le (0) v(0, le))

-> $\partial_t \rho_t(\theta) = \nabla_t \cdot (\rho_t(\theta) \nabla_\theta \psi(\theta, \rho_t))$ Fixed paints : densities for s.t. all mans sits on gers velocity position: $Symp(e_*) < g @ erR^D : D U [0, e_*] = 0]$

Thm: if $\|\nabla_{x}\|_{\infty} \leq K_{2}$, $\|V_{z}\nabla_{x}(x, y)\|_{\infty} \leq K_{2}$ $\|Y_{y_{k}}\| \leq K_{2}$ $\| | \nabla_{y} v(o) \|_{2} \le \kappa_{3}, \| \nabla_{0}, v(0, 0) \|_{2} \le \kappa_{3}$ $|| v_{\sigma} v(\theta) - v_{\sigma} v(\theta') ||_{2} \le v_{3} || 0 - \sigma' ||_{2}$ $(|\nabla_{\partial_1} \cup (\partial_1, \partial_2) - \nabla_{\partial_1} \cup (\partial_1, \partial_2)||_2 \leq \kappa_3 ||\binom{\partial_1}{\partial_2} - \binom{\partial_1}{\partial_1}||_2$ POE P(TRP). SGD with with a lighton (Di), sign ? (o tep size 34 = FZ CE = rolation of the TDE Then $\exists C = C(K_i), \forall J : Sir x R - SIRAN || f||_{L_ip} \leq 1$ $sir R_N(O^k) - R(P_{h, 2}) \leq C \in I = [I] P ||_{L_ip} \leq 1$ $k : D = T_{\mathcal{E}} = Will's Proba : <math>\mathcal{H}_1 - \tilde{c} : S^2 = V_N \vee \mathcal{E} \left[\int D \cdot C_S : \tilde{c} + 3 \right]$

-> TOF acancte as DIM as NUD E <= 16 -> no anse of dimensionality numerical experiments -> PDE appears very a canate in practice. -replaced convergence can be proved in some cases -

Gradient Flows

i (t) = - V F(a(t)) "antimous time gradient descent" $x(t+\epsilon) = area min of F(2) + \frac{1}{2\epsilon} ||_{3} - x(\epsilon)||_{2}^{2}$ of GD: 20 = argining F(g) + 1 113-28112

-> general definition: for a distance d(...) $\mathcal{R}_{\varepsilon}((k+1)\varepsilon) = a_{\varepsilon} \min_{T, \varepsilon} \left(F(\varepsilon) + \frac{1}{2\varepsilon} d(\varepsilon, \varkappa_{\varepsilon}(t)) \right)$ x(t): lim xe(t) E-70 is the gradient Pow of the cost Junction F on X for the metric of

Prop: 2 e(1= V2. (e,10) V2 4/0,ee) is the gradient flow for the Cost R(e) in Wasserstein metric We (m, v)= (inf, v) 5/12. y/2 & (dr, dy)) 2 Gydigsof pard v: pela Von Rd x TR with was juds pand v

Nois GD $\mathcal{O}_{i}^{2_{i1}} = \mathcal{O}_{i}^{k} + 2s_{k} \nabla_{\mathcal{O}_{i}} \nabla (x_{k}, \mathcal{O}_{i}^{k}) (y_{k} - \frac{1}{N} \sum \sigma (x_{k}, \mathcal{O}_{i}^{k}))$ + VZINK gir ~ wd(0, ID) $\rightarrow \partial_r \rho_r(o) : \nabla o \cdot (\rho_r(o) \nabla_{\sigma} \psi(\partial_r \rho_r)) + \tau \Delta \rho_r(o)$ F(e)= 1R(e). TS(e) fra energy where $S(e) = - \int e(s) b_{s} e(s) d\theta$ entropy $e_{s}(0) = \frac{1}{2} (p) exp(-F \Psi (b, e_{s})) Beltzmann$ equation

Gre can prove convergence in a time that dependson D Cat not on W-

-> SED receives a rear optimum in time independent of the number of removes

Statistical Physics View on Generalization

Approximation: a Separation Result

A separation result

Depth-2 neural network

Convergence of Wide Depth-2 Networks: Mean-Field Insight

Statistical Physics View on Generalization

Statistical Learning: Recap in a Nutshell

Linear Models

Beyond Linear Models

Goal: find θ minimizing $L(\theta) = \mathbb{E}_P \Big[\ell \big(f_{\theta}(X), Y \big) \Big]$

But the learnt rule $\hat{f}_n = f_{\hat{\theta}_n}$ depends only on the sample S_n

PAC learning: for every $\epsilon, \delta > 0$, find the sample size $n(\epsilon, \delta)$ such that whatever the law P, if $n \ge n(\delta, \epsilon)$ then with probability at least $1 - \delta$ one has $L(\hat{\theta}_n) < \min_{\theta \in \Theta} L(\theta) + \epsilon$

Idea: Empirical Risk Minimization (ERM):

$$\hat{\theta}_n = \operatorname*{arg\,min}_{\theta \in \Theta} L_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(f_{\theta}(X_i), Y_i)$$

PAC learning theory (pessimistic): uniform law of large numbers

$$\mathbb{P}\left(\forall \theta \in \Theta, \ \left|L_n(\theta) - L(\theta)\right| \leq c \sqrt{\frac{\dim \Theta + \log \frac{1}{\delta}}{n}}\right) \geq 1 - \delta$$

Bias-variance tradeoff

The classical PAC theory does not work unless $n \gg \dim \Theta$ Consider different models $(\Theta_d)_{d>1}$ Example: images at different resolutions

Decomposition of the (quadratic) risk $\mathbb{E}\left[L(\hat{\theta}_n)\right] = b_d^2 + v_d$ Binst the main of (0)

- Bias:
$$b_d = \min_{ heta \in \Theta_d} L(heta)$$
 decreases with a

- Variance term:
$$v_d = \frac{\dim \Theta_d}{n}$$
 increases with

 \implies best choice = bias-variance balance

think: polynomial regression

src: https://miro.medium.com

Bias-variance tradeoff

src: https://miro.medium.com

The classical PAC theory does not work unless $n \gg \dim \Theta$

Consider different models $(\Theta_d)_{d\geq 1}$ Example: images at different resolutions

Decomposition of the (quadratic) risk $\mathbb{E}\left[L(\hat{\theta}_n)\right] = b_d^2 + v_d$

- Bias: $b_d = \min_{\theta \in \Theta_d} L(\theta)$ decreases with d
- Variance term: $v_d = \frac{\dim \Theta_d}{n}$ increases with d
- \implies best choice = bias-variance balance

think: polynomial regression

This statement is challenged by numerical experiments on neural networks

Model Size (ResNet18 Width)

Approximation: a Separation Result

A separation result

Depth-2 neural network

Convergence of Wide Depth-2 Networks: Mean-Field Insight

Statistical Physics View on Generalization

Statistical Learning: Recap in a Nutshell

Linear Models

Beyond Linear Models

Linear models

$$\hat{Y} = X \cdot \theta, \ \theta \in \mathbb{R}^d$$

Matrix notation:
$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \in M_{n,d}(\mathbb{R}), \ Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \in \mathbb{R}^n$$

 $L^{2} \text{ loss } \ell(\hat{Y}_{i}, Y_{i}) = (\hat{Y}_{i} - Y_{i})^{2} \text{ solution: Ordinary Least Square (OLS)}$ $\hat{\theta}_{n} \in \underset{\theta \in \mathbb{R}^{d}}{\arg \min} \left\| Y - X\theta \right\|_{2}^{2} \text{ satisfies the normal equations } XX^{T}\theta = X^{T}Y$

If $rank(X^T X) = d$ (requires $n \ge d$) there is a unique solution

$$\hat{\theta}_n = \left(X^T X \right)^{-1} X^T Y$$

Classical statistics theory

Otherwise, many solutions Popular: *least-norm* solution

$$\hat{\theta}_n = X^T (X X^T)^{-1} Y$$

Statistically spurious

Physics model: the teacher-student framework

- The model is true: $Y_i = \operatorname{sign}(X_i \cdot \theta^*)$
- $X_i \sim \mathcal{N}(0, I_d)$ cf images?
- $\; heta^* \sim \mathcal{N}(0, I_d)$ cf Bayesian approach?
- High-dimensional limit as $n, d \rightarrow \infty$ with $\alpha = n/d$ fixed

- volume of students with generalization error ϵ : $v(\epsilon) \propto \epsilon^{d \times \operatorname{entropy}(\epsilon)}$
- probability that a student with generalization error ϵ makes no mistake: $p(\epsilon) \propto \epsilon^{n \times \text{energy}(\epsilon)}$
- \implies average generalization error of ERM:

 $\int v(\epsilon) p(\epsilon) d\epsilon \approx \arg\max_{\epsilon} \operatorname{entropy}(\epsilon) + \alpha \operatorname{energy}(\epsilon)$

in the limit when $\alpha = n/d$ fixed

src: Learning to generalize, Opper'01

Physics model: the teacher-student framework

- The model is true: $Y_i = \operatorname{sign}(X_i \cdot \theta^*)$
- $X_i \sim \mathcal{N}(0, I_d)$ cf images?
- $\; heta^* \sim \mathcal{N}(0, \mathit{I_d})$ cf Bayesian approach?
- High-dimensional limit as $n, d \rightarrow \infty$ with $\alpha = n/d$ fixed

src: Learning to generalize, Opper'01

- volume of students with generalization error ϵ : $v(\epsilon) \propto \epsilon^{d \times \operatorname{entropy}(\epsilon)}$
- probability that a student with generalization error ϵ makes no mistake:

 $p(\epsilon) \propto \epsilon^{n imes ext{energy}(\epsilon)}$

 \implies average generalization error of ERM:

 $\int v(\epsilon)p(\epsilon)d\epsilon \approx \arg\max_{\epsilon} \operatorname{entropy}(\epsilon) + \alpha \operatorname{energy}(\epsilon)$

in the limit when $\alpha = n/d$ fixed

Statistical physics analysis

 \implies "spin glasses", physics analysis in the 1990's (Opper & Kinzel, etc.) rigorous proofs recently (Florent Krzakala, Lenka Zdeborova, etc.): can compute

- the "Bayes risk" $\mathbb{E}[L(\theta)|S_n]$ = mean risk of ERM
- the risk of the minimal-norm ERM

in the limit, as a function of $\boldsymbol{\alpha}.$

Other model discussed: Gaussian Mixture

$$X_i \sim \mathcal{N}\left(\frac{Y_i \mathbf{v}^*}{\sqrt{d}}, \Delta\right)$$

Similar results

Least norm solution

slide by Florent Krzakala

Least norm solution: "double descent"

slide by Florent Krzakala

Gradient Descent

Iterative optimization of θ :

$$\theta^t = \theta^{t-1} - \eta_t \nabla_\theta L_n(\theta^{t-1})$$

Here $f_{\theta}(x) = x \cdot \theta \implies$ $\nabla_{\theta} L_n(\theta^{t-1}) = \frac{1}{n} \sum_{i=1}^n \partial_1 \ell (f_{\theta}(X_i), Y_i) X_i \in \operatorname{span}(X_1, \dots, X_n)$

Representer theorem

$$\min_{\theta \in \mathbb{R}^d} L_n(\theta) = \min_{\theta \in \operatorname{span}(X_1, \dots, X_n)} L_n(\theta)$$

In fact, if $\theta = \theta_X + \theta_{X^{\perp}}$, then $L_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(X_i \cdot \theta, Y_i) = L_n(\theta_X)$

 $\implies \text{ if } \theta^0_{X^{\perp}} = 0 \text{ gradient descent finds the solution with minimal norm}$ $\implies \text{ other approach: minimize } \textit{ridge loss } L^{\lambda}_n(\theta) = L_n(\theta) + \lambda \|\theta\|^2$

Ridge loss

[Aubin, Krzakala, Lu, Zdeborova'20]

Pushing the boundaries

Which frontier should we choose?

Pushing the boundaries

Chasing the Bayes optimal result

Regularized logistic losses (almost) achieve Bayes optimal results!

[Aubin, Krzakala, Lu, Zdeborova'20]

Approximation: a Separation Result

A separation result

Depth-2 neural network

Convergence of Wide Depth-2 Networks: Mean-Field Insight

Statistical Physics View on Generalization

Statistical Learning: Recap in a Nutshell

Linear Models

Beyond Linear Models

Lifting the data: feature map

Find a better representation of the data that makes it linearly separable

 $X_i \mapsto \Phi(X_i)$

Template matching

Representer theorem: can search for

$$\hat{\theta}_n = \sum_{i=1}^n \beta_i X_i$$

The resulting prediction is hardly more than comparison with data:

$$f_{\hat{\theta}_n}(x) = \sum_{i=1}^n \beta_i X_i \cdot x$$

(cf nearest neighbor method)

 \implies can consider more general similarity functions than scalar product:

$$f_{ heta}(x) = \sum_{i=1}^{n} \beta_i \, K(X_i, x)$$

where K is an carefully chosen kernel

Ex: Gaussian Kernel

1-Nearest Neighbor Classifier

$$K(\mathbf{X}_i, \mathbf{X}_j) = e^{-\beta \|\mathbf{X}_i - \mathbf{X}_j\|_2^2}$$

As $\beta \to \infty$ converges to 1NN methods

Warning: $\beta = \text{inverse temperature} \neq \text{the one of previous slide}$

Ex: Gaussian Kernel

 $K(\mathbf{X}_i, \mathbf{X}_j) = e^{-\beta \|\mathbf{X}_i - \mathbf{X}_j\|_2^2}$

For lower values, interpolate between neighbours

Warning: $\beta = \text{inverse temperature} \neq \text{the one of previous slide}$

Mercer's Theorem & the feature map

If K(s,t) is symmetric and positive-definite, then there is an orthonormal basis $\{e_i\}_i$ of $L^2[a, b]$ consisting of « **eigenfunctions** » such that the corresponding sequence of eigenvalues $\{\lambda_i\}_i$ is nonnegative.

$$K(s,t) = \sum_{j=1}^{\infty} \lambda_j \, e_j(s) \, e_j(t)$$

All symmetric positive-definite Kernels can be seen as a projection in an infinite dimensional space

Example: Gaussian Kernel, 1D

$$K(\mathbf{X}_i, \mathbf{X}_j) = e^{-\frac{1}{2\sigma^2} \|\mathbf{X}_i - \mathbf{X}_j\|_2^2}$$

$$e^{\frac{-1}{2\sigma^2}(x_i - x_j)^2} = e^{\frac{-x_i^2 - x_j^2}{2\sigma^2}} \left(1 + \frac{2x_i x_j}{1!} + \frac{(2x_i x_j)^2}{2!} + \ldots \right)$$
(1.25)
$$= e^{\frac{-x_i^2 - x_j^2}{2\sigma^2}} \left(1 \cdot 1 + \sqrt{\frac{2}{1!}} x_i \cdot \sqrt{\frac{2}{1!}} x_j + \sqrt{\frac{(2)^2}{2!}} (x_i)^2 \cdot \sqrt{\frac{(2)^2}{2!}} (x_j)^2 + \ldots \right)$$
$$= \phi(x_i)^T \phi(x_j)$$
where, $\phi(x) = e^{\frac{-x^2}{2\sigma^2}} \left(1, \sqrt{\frac{2}{1!}} x, \sqrt{\frac{2^2}{2!}} x^2, \ldots \right)$

Infinite dimensional feature (polynomial) map!

Kernel methods

$$\mathcal{R} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f_\beta(\mathbf{X}_i))$$

$$f_{\beta}(\mathbf{X}) = \sum_{j=1}^{n} \beta_j K(\mathbf{X}_j, \mathbf{X}) \quad \beta \in \mathbb{R}^n$$

Gradient descent

$$\beta^t = \beta^{t-1} - \eta \, \nabla_\beta \mathscr{R}$$

Gradient flow

$$\dot{\beta}^t = -\nabla_\beta \mathscr{R}$$

$$\mathcal{R} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f_{\theta}(\mathbf{\Phi}_i))$$

Feature map $\Phi = g(X)$

 $f_{\boldsymbol{\theta}}(\boldsymbol{\Phi}) = \boldsymbol{\theta} \cdot \boldsymbol{\Phi} \qquad \boldsymbol{\theta} \in \mathbb{R}^{D = \infty}$

Gradient descent

$$\theta^t = \theta^{t-1} - \eta \, \nabla_\theta \mathscr{R}$$

Gradient flow

$$\dot{\theta}^t = -\nabla_{\theta} \mathscr{R}$$

$$K(X_i, X_j) = \Phi_i \cdot \Phi_j$$

$$\mathbf{K} = \begin{pmatrix} K(X^1, X^1) & K(X^1, X^2) & \dots & K(X^1, X^N) \\ K(X^2, X^1) & K(X^2, X^2) & \dots & K(X^2, X^N) \\ \dots & \dots & \dots & \dots \\ K(X^N, X^1) & K(X^N, X^2) & \dots & K(X^N, X^N) \end{pmatrix}$$

Say you have one million examples....

Kernel methods

$$\mathcal{R} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f_{\theta}(\mathbf{\Phi}_i))$$

Feature map $\Phi = g(X)$

 $f_{\theta}(\mathbf{\Phi}) = \theta \cdot \mathbf{\Phi} \qquad \theta \in \mathbb{R}^{D = \infty}$

Gradient descent

$$\theta^t = \theta^{t-1} - \eta \, \nabla_\theta \mathscr{R}$$

Gradient flow

$$\dot{\theta}^t = -\nabla_{\theta} \mathscr{R}$$

Kernel methods

$$\mathscr{R} = \frac{1}{n} \sum_{i=1}^{n} \mathscr{L}(y_i, f_{\theta}(\mathbf{\Phi}_i)) \qquad f_{\theta}(\mathbf{\Phi}) = \theta \cdot \mathbf{\Phi}$$

Feature map
$$\Phi = g(X)$$

 $\theta \in \mathbb{R}^{D=\infty}$

Idea 1: truncate the expansion of the feature map (e.g. polynomial features)

Idea 2: approximate the feature map by sampling

Random Fourier Features [Recht-Rahimi '07]

Take $F_1, \ldots, F_D \stackrel{iid}{\sim} Q$ Fourier coefficients in \mathbb{R}^d and choose feature map

$$\Phi(x) = \frac{1}{\sqrt{D}} \begin{pmatrix} e^{iF_1 \cdot x} \\ \vdots \\ e^{iF_D \cdot x} \end{pmatrix}$$

Then

$$\mathcal{K}(X_j, X_k) = \Phi(X_j) \cdot \Phi(X_k) = \frac{1}{D} \sum_{\ell=1}^{D} e^{i F_{\ell} \cdot (X_j - X_k)} \xrightarrow{D \to \infty} \int e^{i f \cdot (X_j - X_k)} dQ(f)$$

ightarrow if dQ/df= Fourier transform of κ , then ${\it K}(X_j,X_k)pprox\kappa(X_j-X_k)$

Kernel	$\kappa(\Delta)$	dQ(f)
Gaussian	$e^{-\ \Delta\ ^2/2}$	$(2\pi)^{-d/2}e^{-\ f\ ^2/2}$
Laplacian	$e^{-\ \Delta\ _1}$	$\prod_k \frac{1}{\pi(1+f_k^2)}$
Cauchy	$\prod_k \frac{2}{1+\Delta_k^2}$	$e^{-\ f\ _1}$

Equivalent representation: A WIIIIIIDE random 2-layer neural network

Infinitly wide neural net with random weights converges to kernel methods (Neal '96, Williams 98, Recht-Rahimi '07)

Deep connection with genuine neural networks in the "Lazy regime" [Jacot, Gabriel, Hongler '18; Chizat, Bach '19; Geiger et al. '19]e. by Florent Krzakala

Random feature model...

- **Dataset:** n vector $\mathbf{x}_i \in \mathbb{R}^d$, drawn randomly from $\mathcal{N}(0, \mathbf{1}_d)$
 - n labels y_i given by a function $y_i^0 = f^0(\mathbf{x} \cdot \theta^*)$

Architecture: Two-layers neural network with fixed first layer F

Cost function:

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, y_i^0) + \lambda \|\theta\|_2^2 \qquad \ell(.) = \begin{array}{c} \text{Logistic loss} \\ \text{Hinge loss} \\ \text{Square loss} \\ \cdots \end{array}$$

What is the training error & the generalisation error in the high dimensional limit $(d, p_{oe} n)$ Fibrem $\mathcal{R}_{rzakala}$

... and its solution

Mention COUILLET HERE

[Loureiro, Gerace, FK, Mézard, Zdeborova, '20]

Consider the unique fixed point of the following system of equations

$$\begin{cases} \hat{V}_{s} = \frac{a}{\gamma} \kappa_{1}^{2} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{\partial_{\sigma} q(y, \omega_{1})}{V} \right], \\ \hat{q}_{s} = \frac{a}{\gamma} \kappa_{1}^{2} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{(\eta(y, \omega_{1}) - \omega_{1})^{2}}{V^{2}} \right], \\ \hat{m}_{s} = \frac{a}{\gamma} \kappa_{1} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{(\eta(y, \omega_{1}) - \omega_{1})^{2}}{V^{2}} \right], \\ \hat{m}_{s} = \frac{a}{\gamma} \kappa_{1} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{(\eta(y, \omega_{1}) - \omega_{1})^{2}}{V} \right], \\ \hat{w}_{w} = a \kappa_{s}^{2} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{\partial_{\omega} q(y, \omega_{1})}{V} \right], \\ \hat{q}_{w} = a \kappa_{s}^{2} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{\partial_{\omega} q(y, \omega_{1}) - \omega_{1}}{V^{2}} \right], \\ \hat{q}_{w} = a \kappa_{s}^{2} \mathbb{E}_{\xi,y} \left[\mathcal{Z} \left(y, \omega_{0} \right) \frac{(\eta(y, \omega_{1}) - \omega_{1})^{2}}{V^{2}} \right], \\ \text{there } V = \kappa_{1}^{2} V_{s} + \kappa_{s}^{2} V_{w}, V^{0} = \rho - \frac{M^{2}}{Q}, Q = \kappa_{1}^{2} q_{s} + \kappa_{s}^{2} q_{w}, M = \kappa_{1} m_{s}, \omega_{0} = M/\sqrt{Q} \xi, \omega_{1} = \sqrt{Q} \xi \text{ and } g_{\mu} \text{ is the Stieltjes transform of } FF^{T} \\ \kappa_{0} = \mathbb{E} \left[\sigma(z) \right], \kappa_{1} \equiv \mathbb{E} \left[z\sigma(z) \right], \kappa_{\star} \equiv \mathbb{E} \left[\sigma(z)^{2} \right] - \kappa_{0}^{2} - \kappa_{1}^{2} \right] \text{ and } \vec{z}^{\mu} \sim \mathcal{N}(\vec{0}, \mathbf{I}_{\mathbf{p}})$$

Then in the high-dimensional limit: $\epsilon_{gen} = \mathbb{E}_{\lambda,\nu} \left[(f^0(\nu) - \hat{f}(\lambda))^2 \right]$ with $(\nu, \lambda) \sim \mathcal{N} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \rho & M^* \\ M^* & Q^* \end{pmatrix} \right]$

Definitions:

wł

$$\begin{split} \mathscr{D}_{\text{training}} &= \frac{\lambda}{2\alpha} q_{\nu}^{\star} + \mathbb{E}_{\xi y} \left[\mathscr{Z} \left(y, \omega_{0}^{\star} \right) \ell \left(y, \eta(y, \omega_{1}^{\star}) \right) \right] \\ \text{with } \omega_{0}^{\star} &= M^{\star} / \sqrt{Q^{\star}} \xi, \, \omega_{1}^{\star} = \sqrt{Q^{\star}} \xi \end{split}$$

Agrees with [Louart, Liao, Couillet'18 & Mei-Montanari '19] who solved a particular case using random matrix theory: linear function for $\ell'(x, y) = ||x - y||_2^2$ & Gausizian bandom weights a kala

A classification task

A classification task

Implicit regularisation of gradient descent [Rosset, Zhy, Hastie, '04] [Neyshabur, Tomyoka, Srebro, '15]

As $\lambda \to 0$, in the overparametrized regime, Logistic converges to max-margin, ℓ_2 converges to least norm slide by Florent Krzakala

Separation Result

Amit Daniely, Depth Separation for Neural Networks. Proceedings of the 2017 Conference on Learning Theory. Presentation by Tomáš Kocák

Mean-Field proof of convergence

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari, Linearized two-layers neural networks in high dimension, 2019.

L. Chizat, F. Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. Advances in Neural Information Processing Systems (NeurIPS), 2018

Statistical Physics view on Generalization

Florent Krzakala's website and work: https:

//florentkrzakala.com/files/leshouches2020/courses/florent Manfred Opper, Learning to generalize, in Model Neural Networks for Computation and Learning, 2001.