Mathematical foundations in deep learning Part VIII: Unfolded algorithms

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

Deep learning: generalities

(extracted from: datasciencepr.com)

- Deep networks are composed of a stack of layers.
- Each layer is composed with linear transforms (e.g. convolution, pooling), nonlinear transforms (i.e. activation functions).

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H} \times \mathcal{G} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\begin{equation*}
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right) \tag{1}
\end{equation*}
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\eta^{[K]}\left(W^{[K]} \ldots \eta^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}$ denotes a weight matrix,
- $b^{[k]}$ is a bias vector,
- $\eta^{[k]}$ is the nonlinear activation function.

Standard activation functions

- Most basic: $\eta=\mathrm{Id}=\operatorname{prox}_{0}$,
- Saturated linear activation function: $\eta=\operatorname{prox}_{\iota_{C}}$ with $C=[-1,1]$,
- Rectified linear unit (ReLU): $\eta=\operatorname{prox}_{{ }_{\iota C}}$ with $C=[0,+\infty[$,
- Parametric ReLU,
- Bent identity,
- Inverse square root,
- Unimodal sigmoid
- Elliot function
- Softmax
\rightarrow Most of activation functions are proximity operators.
\rightarrow Exhaustive list in P. L. Combettes and J.-C. Pesquet, Deep neural network structures solving variational inequalities, Set-Valued and Variational Analysis, vol. 28, pp. 491-518, September 2020. [PDF]

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H} \times \mathcal{G} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\eta^{[K]}\left(W^{[K]} \ldots \eta^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}$ denotes a weight matrix,
- $b^{[k]}$ is a bias vector,
- $\eta^{[k]}$ is the nonlinear activation function.

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H}_{0} \times \mathcal{H}_{K} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\eta^{[K]}\left(W^{[K]} \ldots \eta^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}$ denotes a weight matrix,
- $b^{[k]}$ is a bias vector,
- $\eta^{[k]}$ is the nonlinear activation function.

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H}_{0} \times \mathcal{H}_{K} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\operatorname{prox}_{f[K]}\left(W^{[K]} \ldots \operatorname{prox}_{f[1]}^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}$ denotes a weight matrix,
- $b^{[k]}$ is a bias vector,
- $\eta^{[k]}$ is the nonlinear activation function.

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H}_{0} \times \mathcal{H}_{K} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\operatorname{prox}_{f[K]}\left(W^{[K]} \ldots \operatorname{prox}_{f[1]}^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}: \mathcal{H}_{k-1} \rightarrow \mathcal{H}_{k}$ denotes a bounded linear operator,
- $b^{[k]}$ is a bias vector,
- $\eta^{[k]}$ is the nonlinear activation function.

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H}_{0} \times \mathcal{H}_{K} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\operatorname{prox}_{f[K]}\left(W^{[K]} \ldots \operatorname{prox}_{f[1]}^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}: \mathcal{H}_{k-1} \rightarrow \mathcal{H}_{k}$ denotes a bounded linear operator,
- $b^{[k]} \in \mathcal{H}_{k}$ is a bias vector,
- $\eta^{[k]}$ is the nonlinear activation function.

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H}_{0} \times \mathcal{H}_{K} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\operatorname{prox}_{f[K]}\left(W^{[K]} \ldots \operatorname{prox}_{f[1]}^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}: \mathcal{H}_{k-1} \rightarrow \mathcal{H}_{k}$ denotes a bounded linear operator,
- $b^{[k]} \in \mathcal{H}_{k}$ is a bias vector,
- $f^{[k]} \in \Gamma_{0}\left(\mathcal{H}_{k}\right)$.

Feedforward neural network model

- Database: $\mathcal{S}=\left\{\left(\bar{u}_{\ell}, z_{\ell}\right) \in \mathcal{H}_{0} \times \mathcal{H}_{K} \mid \ell \in\{1, \ldots, L\}\right\}$
- Goal: Learn a prediction function d_{Θ}

$$
\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \mathrm{E}(\Theta):=\frac{1}{L} \sum_{\ell=1}^{l} f\left(z_{\ell}, \mathrm{d}_{\Theta}\left(u_{\ell}\right)\right)
$$

- Feedforward neural network model:

$$
\mathrm{d}_{\Theta}\left(u_{\ell}\right)=\operatorname{prox}_{f_{[K]}}\left(W^{[K]} \ldots \operatorname{prox}_{f^{[1]}}^{[1]}\left(W^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

where for every $k \in\{1, \ldots, K\}$,

- $W^{[k]}: \mathcal{H}_{k-1} \rightarrow \mathcal{H}_{k}$ denotes a bounded linear operator,
- $b^{[k]} \in \mathcal{H}_{k}$ is a bias vector,
- $f^{[k]} \in \Gamma_{0}\left(\mathcal{H}_{k}\right)$.
\rightarrow This model allows to derive tight Lipschitz bounds for feedforward neural networks in order to evaluate their stability.

More details in P. L. Combettes and J.-C. Pesquet, Deep neural network structures solving variational inequalities, Set-Valued and Variat. Anal., vol. 28, pp. 491-518, 2020. [PDF] ${ }^{5}$

Unfolded Forward-Backward

- Reminder: One iteration of Forward-Backward to solve

$$
\underset{x}{\operatorname{minimize}} f(x)+g(x)
$$

is, for some $\gamma>0, x_{k+1}=\operatorname{prox}_{\gamma g}\left(x_{k}-\gamma \nabla f\left(x_{k}\right)\right)$

- Specific case: Considering the specific minimization problem

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2}\|A x-z\|_{2}^{2}+\lambda\|x\|_{1}
$$

the iteration are

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\gamma \lambda\|\cdot\|_{1}}\left(x_{k}-\gamma A^{*} A x_{k}+\gamma A^{*} z\right) \\
& =\operatorname{prox}_{\gamma \lambda\|\cdot\|_{1}}\left(\left(\mathrm{I}-\gamma A^{*} A\right) x_{k}+\gamma A^{*} z\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { which can be equivalently written } \\
& \qquad x_{k+1}=\eta^{[k]}\left(W^{[k]} x_{k}+b^{[k]}\right) \text { where } \begin{cases}W^{[k]}=\mathrm{I}-\gamma A^{*} A \\
b^{[k]}=\gamma A^{*} z \\
\eta^{[k]} & =\operatorname{prox}_{\gamma \lambda\|\cdot\|_{1}}\end{cases}
\end{aligned}
$$

Unfolded Condat-Vũ splitting algorithm

- Reminder: One iteration of Condat-Vũ splitting to solve

$$
\underset{x}{\operatorname{minimize}} f(x)+g(L x)
$$

is, for some $\sigma, \tau>0$,

$$
\begin{aligned}
& x_{k+1}=x_{k}-\tau \nabla f\left(x_{k}\right)-\tau L^{*} y_{k} \\
& y_{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(y_{k}+\sigma L\left(2 x_{k+1}-x_{k}\right)\right)
\end{aligned}
$$

- Specific case: Considering the specific minimization problem

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2}\|A x-z\|_{2}^{2}+\lambda\|L x\|_{1}
$$

the iteration are

$$
\begin{aligned}
& x_{k+1}=x_{k}-\tau A^{*}\left(A x_{k}-z\right)-\tau L^{*} y_{k} \\
& y_{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(y_{k}+\sigma L\left(2 x_{k+1}-x_{k}\right)\right)
\end{aligned}
$$

Unfolded Condat-Vũ splitting algorithm

- Specific case: Considering the specific minimization problem

$$
\underset{x}{\operatorname{minimize}} \frac{1}{2}\|A x-z\|_{2}^{2}+\lambda\|L x\|_{1}
$$

the iteration are

$$
\begin{aligned}
& x_{k+1}=x_{k}-\tau A^{*}\left(A x_{k}-z\right)-\tau L^{*} y_{k} \\
& y_{k+1}=\operatorname{prox}_{\sigma g^{*}}\left(y_{k}+\sigma L\left(2 x_{k+1}-x_{k}\right)\right)
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
& x_{k+1}=\left(\operatorname{Id}-\tau A^{*} A\right) x_{k}-\tau L^{*} y_{k}+\tau A^{*} \mathrm{z} \\
& y_{k+1}=\operatorname{prox}_{\sigma\|\cdot\|^{*}}\left(\sigma L\left(\operatorname{Id}-2 \tau A^{*} A\right) x_{k}+\left(\operatorname{Id}-2 \tau \sigma L L^{*}\right) y_{k}+2 \tau \sigma L A^{*} \mathrm{z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { which can be equivalently written } \\
& \qquad u_{k+1}=\eta^{[k]}\left(W^{[k]} u_{k}+b^{[k]}\right) \text { where }\left\{\begin{array}{l}
u_{k}=\left(x_{k}, y_{k}\right) \\
D^{[k]}=\left(\begin{array}{cc}
\mathrm{Id}-\tau A^{*} A & -\tau L^{*} \\
\sigma L\left(\mathrm{Id}-2 \tau A^{*} A\right) & \text { Id }-2 \tau \sigma L L^{*}
\end{array}\right) \\
b^{[k]}=\binom{\tau A^{*} z}{2 \tau \sigma L A^{*} z} \\
\eta^{[k]}=\binom{\mathrm{Id}}{\mathrm{Irox}_{\sigma\|\cdot\|}}
\end{array}\right.
\end{aligned}
$$

Unfolded Condat-Vũ splitting algorithm

- Reminder: Predictor designed from proximal algorithm

$$
d_{\Theta}\left(u_{\ell}\right)=\eta^{[K]}\left(D^{[K]} \ldots \eta^{[1]}\left(D^{[1]} u_{\ell}+b^{[1]}\right) \ldots+b^{[K]}\right)
$$

- Learn the parameters Θ : The parameter to learn can be the algorithmix step-size γ_{k} but also $D^{[k]}$ or $b^{[k]}$.
- Algorithmic strategy: based on stochastic gradient descent to estimate

$$
\min _{\Theta} \frac{1}{L} \sum_{\ell=1}^{\prime} f\left(z_{\ell}, d_{\Theta}\left(u_{\ell}\right)\right)
$$

\rightarrow require the computation of the gradient of f_{Θ} (backpropagation strategy, automatic differentiation)

Unfolded Condat-Vũ splitting algorithm

- Image restoration on MNIST database: original \bar{x}, degraded z, restored ones by EPLL, TV, NLTV, IRCNN, MWCC, and the proposed full DeepPDNet $(K=6)$.
(first row) uniform 3×3 blur and Gaussian noise with $\alpha=20$,
(second row) uniform 5×5 blur and Gaussian noise with $\alpha=20$,
(third row) uniform 7×7 blur and Gaussian noise with $\alpha=20$.

\rightarrow Results extracted from M. Jiu and N. Pustelnik, A deep primal-dual proximal network for image restoration, accepted to IEEE JSTSP, 2021. [PDF]

Unfolded Condat-Vũ splitting algorithm:

- Image restoration on MNIST database: Performance PSNR/SSIM for different configurations.

Data	Method	3×3 Blur			5×5 Blur	7×7 Blur
		$\alpha=10$	$\alpha=20$	$\alpha=30$	$\alpha=20$	$\alpha=20$
		PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
MNIST	EPLL [18]	24.02/0.8564	20.99/0.7628	19.05/0.6871	16.42/0.5629	13.97/0.3265
	TV [8]	25.07/0.8583	19.58/0.7004	18.86/0.6681	18.86/0.6681	16.31/0.5665
	NLTV [57]	25.49/0.8697	21.98/0.7738	20.73/0.7353	20.73/0.7353	16.79/0.6228
	MWCNN [58]	19.16/0.7219	18.53/0.6782	17.78/0.6499	15.83/0.5343	13.04/0.3175
	IRCNN [59]	28.52/0.8904	25.00/0.8193	22.63/0.7723	21.46/0.7698	18.29/0.6546
	Partial DeepPDNet	23.67/0.8366	22.03/0.7983	20.93/0.7750	17.96/0.6534	16.21/0.5505
	Full DeepPDNet	27.40/0.9410	25.09/0.9254	23.61/0.9097	22.43/0.8738	20.43/0.8157

\rightarrow Results extracted from M. Jiu and N. Pustelnik, A deep primal-dual proximal network for image restoration, accepted to IEEE JSTSP, 2021.

Unfolded Condat-Vũ splitting algorithm: robustness

- Image restoration on MNIST database: Robustness to additional noise.

\rightarrow Results extracted from M. Jiu and N. Pustelnik, A deep primal-dual proximal network for image restoration, accepted to IEEE JSTSP, 2021.

