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1 The Bakery Problem

It is interesting to start from the expression of the reward:
Rt = g(At A Ut) — €(At — Ut)+

=9g(A) — (L +9)(A —Up) 4+
Since £ - Ut > At, we have: g(At A Ut) - E(At - Ut)+ = g(At)
And g(A¢) — (14 g)(Ar — Up) 4 = gAs
If Ay > Up: = g(Ur) — U(Ay — Up) = (g + £)(Ur) — £(Ar)

Let ¢(a) = E[R|A; = a] = ga — ({ + g)E[(a — U)+]
=ga — (g + 6) foa P(Ut < u)du
=ga—(g+70) [;(a — u)dF(u) where F is the CDF of Uy.

Continuing the calculations, we find the maximum at a* = F~! (ﬁ), where F~! is the
quantile function of the demand.

2 Monte-Carlo Policy Evaluation

2.1 Theoretical Background

Monte-Carlo Evaluation:

Let Xi,..., Xy be N independent random variables with the same law p € M (R)
Let n = ]E[Xl]

Estimation of u: iy = % Zf\il X;

The law of large numbers ensures that iy — p almost surely when N — +oc.

2.2 Variance Analysis

The variance of the estimator:

N N
. 1 1 o
Var(fiy) = Var (N ;_1 Xi) = N2 ;_1: Var(X;) = N

[\

where 02 = Var(X;)

[ is an unbiased estimator of p with variance that decreases as 1/N.

To have |y — p| <€, we take n = %, which gives:

R Var(X
Bl(ioy — 1)) = i = ¢

€2
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2.3 Variance Bounds

If Xy € [a,b] almost surely, the worst case is a Bernoulli distribution and the variance is bounded

by (b_f)Q because:

(b—a)?

Var(X;) = E[X7] - E[X1]* <E[X}] - E[X)]* < 1

2.4 Central Limit Theorem
VN (jiy — 1) = N(0,0?) in distribution

By normalizing: \/N\}’\L/I\’i_(ig)) — N(0,1)
ar( X1

This means that for N large enough:
pE |AN — 277 BN +
with 95% probability.

2.5 Variance Estimation

. 1 .
0% = N1 > (Xi— in)? = o’

almost surely when N — 4-c0.

3 Non-Asymptotic Bounds

3.1 Bienaymé-Tchebychev Inequality

R Var(X7)
P(lan — p| > €) < ——22
(‘,U/N M| s 6) = Ne2
For a 5% error, we take N = Vgg(;e(zl )

3.2 Hoeffding Inequality

If P(X; € [a,b]) =1 then:

. 2N 2
P(lain — p| > €) < 2exp <_(b—a)2>

For a 5% error, we take N = (b;e‘;)Q log (53z)
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4 Sequential Estimators

4.1 Recursive Empirical Mean

fier1 = A(fi, Xev1)
Recursive computation of empirical mean:

N ot i+ 1 X
Mt+1—t+1,ut 1 t+1

By induction, we can show that ji; = % 25:1 Xi

1
g1 = fip + —— (X4 — i
M1 Nt+t+1( t+1 — fit)

This is a stochastic approximation algorithm that resembles gradient descent.

5 Stochastic Gradient Descent

5.1 Problem Formulation
The idea is to minimize ¢(a) = E[(X; — a)?] by differentiating:

¢'(a) = 2E[a — X1]

Gradient Descent:

ug € R (1)
upp1 = ug — py VI (ug) (2)
Stochastic Gradient Descent:
ug € R (3)
Ups1 = up — ptVF (up) (4)

with E[V F}(u;)] = VF}(uy)

5.2 Convex Functions

A function F : R? — R is convex if:

v,y € RLVA € [0,1], F(Az + (1 — M)y) < AF(z) + (1 — A)F(y)

To choose the step size, we can use the Lipschitz inequality:
[F(z) = F(y)| < Lljz —y||

where L is the Lipschitz constant.
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Gradient Descent Convergence
R

With this assumption, we can take p; = Vi and obtain:

_BL
VT

We must choose R such that ||ug — u*|| < R where u* = arg min,, F'(u).

F(ur) = F(u")

6 Back to the Bakery Problem

When we don’t know the distribution of Uy;:

Idea 1: Plug-in estimate of the distribution
F1 (ﬁ) requires F

Fy(u) = 37 | 1y,<, empirical CDF

But we don’t have the past demands.

We can use estimation with censoring such as the Kaplan-Meier estimator.

S(u) = P(Up > u)

Estimate by:
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