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1 Finite Horizon Markov Decision Processes

Finite Horizon MDP

e The horizon T is a finite positive integer

e The state space S = (S;)L_; is finite with cardinality S

e The action space A = (A;)! is finite with cardinality A
Dynamical system defined by:

e An initial state S; € S;

o Vt > 1,511 = &(St, Ar, ur) where s; is the current state, A, is the action taken at
time ¢, and wu; is a random variable with known distribution (extended randomiza-
tion)

e The reward is defined by R; = r(St, Ay, St41)
e Cumulated reward: Wy = Zz:ll Ry

MDP view: kernel Py(s,a,s’) =P(Siy1 = §'|S¢ = s, A = a)

2 Policy Definitions

Types of Policies

e Decision rule: 7;: A mapping from S; to A
e Policy: m = (m)L,

e Randomized decision rule: 7;: A mapping from S; to M1 (A;) where M (Ay) is
the set of probability distributions on Ay

e Randomized policy: 7 = (m;)L,

e Strategy v: for each time ¢, maps a history h; € (S1 x A1) X ... x (S) to a decision
rule m;

Ay =9(S1,A1,...,5)

Tip

Markov Property
For a fixed policy m:
Sty1 = ¢(St, m(St), ut)

The law of Sy41 is given by Sy (and A; = m(St))
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= (S;) is a Markov Chain
This means that the law of Sy given (St,...,S¢) is the same as the law of S;y; given S;.

3 Classic Examples

3.1 Riverswim

Riverswim
We consider a riverswim with N + 1 boxes indexed from 0 to N.
r(s,a,s') =1if s = N and 0 otherwise.
Action 1:
P if sy =s+1
k(s,1,8) =P(Sir1=61Ar=1,S,=s) =< 1—p ifs=s—1
0 otherwise
Action 2:
q ifsyf =s+1
k(s,2,8') =P(Sty1 =541 =2,81=8) =1 —q—1r ifs=s
r ifsyf=s5—1
Remember we need to clip the values of s to stay in the interval [0, N].

3.2 Secretary Problem

Secretary Problem
Let Uy, ...,Ur be i.i.d. random variables with uniform distribution on [0, 1].
Fort=1,...,T:

e You observe Uy
e You decide to keep U; or reject it forever

If you did not stop before, you keep Ur.
Goal: Maximize the probability to keep the maximum of Uy, ..., Ur.
Formalization as MDP:

e State space: Sy = [0, 1] x N where N means 0 if we did not stop and k if we stopped
at time k

e Action space: A; = {0,1} where 0 means stop and 1 means continue

o (s, a4, 8¢41) = 0 except r(sp—1,ar—1,s7) = 1 if denoting sp = ((ug, ..., ur), k) we
have ug = max(ug,...,ur)

o k(s,a,s") — s = (s,u) with u uniform on [0, 1]
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[ o O(s,a,u) = (s,u) ]

4 Policy Evaluation

4.1 Value Function Definition

A policy 7 is fixed.
We take an initial state s € Sy.

We consider the random variable:

VT(s) =E"

T
ZRt‘Sl =S
t=1

where E™ means that the expectation is taken with respect to the law of the process when
we apply policy 7.

The objective is to maximize E[V™(S7)].

4.2 Monte-Carlo Evaluation
Monte-Carlo Algorithm:

1. Take N (large integer)
2. Fork=1,...,N:

o s=351, rew =0

e Fort=1,...,T:
— Sample s’ from k(s, m(s), ")
— rew = rew + 7(s, m(8), s')
—s=3s

e results.append(rew)

3. Return mean(results)

Complexity: O(NT -|S|)

4.3 Choice of N

If0<r(s,a,s") <1then 0 <rew <T.

By Hoeffding’s inequality:

2
P(IYk — B[Y]| > ¢) < 2exp (—Q*Z; ) <5

We obtain: N > %log (%)

€

In the end, the complexity is O (N? log (%))

4
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5 Backward Induction

5.1 Principle

Grid with time on the abscissa and state on the ordinate. We can fill the grid backwards.

Temporal Value Function

T

ZRk‘St =35

k=t

Vi"(s) =E" fort=1,...,T

V7(s) = Vi'(s)
For t =T, we know that:

Vi (s) = E"[Rr|ST = s] = E[r(s, mr(s), ST41)]

Recurrence relation:

T
Vi (s) = B™[r(S, w(Sh), Sev1) + Y RalS: = o]
k=t+1

= 3" pls,m(s), ) lr(s, w(s), &) + Vi ()]

s'eS

5.2 Example: Photo-Booth Problem

Photo-Booth Problem
Each shot has a value given by the law:

3
Z pk:(svk
k=1

where (p1,p2,p3) € M1({1,2,3}) and v = (v1, v2,v3) € R3.
The shots are independent.

After each shot, either stop and keep the shot or continue.
Strategy 1: Stop only if the shot has value vs.

Grid of values with pV = piv1 + pave + p3vs.

Complexity of backward induction: O(T - |S|?)
This is better if |S| is small.
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6 Finding an Optimal Policy

6.1 Definitions

Definition

Dominance and Optimality
e A policy 7 dominates a policy 7’ (7 = 7') if Vs € S, V™(s) > V™ (s)

e A policy 7 is optimal if Va/, 7 = 7’

Definition

| r

Optimal Value Function
v*(s) = max V7 (s)

v*(s) is called the value function of the MDP.

Question: Is there always an optimal policy 7* such that V™ = V*?

Answer: Yes.

6.2 Optimal Backward Induction Algorithm

Definition

Optimal Temporal Value Functions

Vi*(s) = max V] (s) for t =1,...,T

With backward induction:
At t=T:

h = ]E7r = =] / !
VI (s) max [r(s,a,Sr41)|ST = $] max /Zesp(s, a,s)r(s,a,s")
S

m(s) = argmax > _ p(s, a,5)r(s, a, ')
s'eS

Fort=T-1,...,1:

Vi'(s) =max » p(s,a,s)[r(s,a,s") + Vij(s)]

;
ED\
m
9}

Theorem
Backward Induction Algorithm
Q(S, a, t) - ZS/GS k(37 a, SI)[T(Sv a, 8/) + th—l(sl)]

‘/t*(s) = MaXge A Q(Sv a, t)

7'(2‘(3) = argmaXgecA Q(S7 a, t)
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[ We can fill the grid backwards and choose the optimal action at each state. ]

7 Application to the Secretary Problem

We deduce that the optimal policy is to observe until a certain step then choose the first one
that is better than all the previous ones.

Let’s compute the value of step r such that:

e Never stop before t = r

e Stop for £ > r as soon as the current secretary is the current best

Backward induction shows that the optimal policy is of this form:

-4 (-2 () (r)

t=r
_zT:l r—1 T t—2
N T r r+1 t—1
t=r
- Lored
4~ T t—1
t=r
T
r—1 1 r—1
7 2 =1 ™ (oB(T) ~ ok(r)

for T large enough. This is roughly equal to z In (%) with x = 7.
The maximum is reached for x = % thus r = %

o) =+

This example characterizes optimal stopping problems.
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