
Reinforcement Learning - Lecture 3
Finite Horizon MDPs and Backward Induction

ENS M2

October 1, 2025

Contents

1 Finite Horizon Markov Decision Processes 2

2 Policy Definitions 2

3 Classic Examples 3

3.1 Riverswim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Secretary Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Policy Evaluation 4

4.1 Value Function Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Monte-Carlo Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.3 Choice of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Backward Induction 5

5.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.2 Example: Photo-Booth Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Finding an Optimal Policy 6

6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6.2 Optimal Backward Induction Algorithm . . . . . . . . . . . . . . . . . . . . . . . 6

7 Application to the Secretary Problem 7

1



Reinforcement Learning - Lecture 3 ENS M2

1 Finite Horizon Markov Decision Processes

Definition

Finite Horizon MDP

• The horizon T is a finite positive integer

• The state space S = (St)
T
t=1 is finite with cardinality S

• The action space A = (At)
T−1
t=1 is finite with cardinality A

Dynamical system defined by:

• An initial state S1 ∈ S1

• ∀t ≥ 1, St+1 = ϕ(St, At, ut) where st is the current state, At is the action taken at
time t, and ut is a random variable with known distribution (extended randomiza-
tion)

• The reward is defined by Rt = r(St, At, St+1)

• Cumulated reward: WT =
∑T−1

t=1 Rt

MDP view: kernel Pt(s, a, s
′) = P(St+1 = s′|St = s,At = a)

2 Policy Definitions

Definition

Types of Policies

• Decision rule: πt: A mapping from St to At

• Policy: π = (πt)
T
t=1

• Randomized decision rule: πt: A mapping from St to M1(At) where M1(At) is
the set of probability distributions on At

• Randomized policy: π = (πt)
T
t=1

• Strategy ψ: for each time t, maps a history ht ∈ (S1×A1)× . . .× (St) to a decision
rule πt

At = ψ(S1, A1, . . . , St)

Tip

Markov Property
For a fixed policy π:

St+1 = ϕ(St, πt(St), ut)

The law of St+1 is given by St (and At = πt(St))
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⇒ (St) is a Markov Chain
This means that the law of St+1 given (S1, . . . , St) is the same as the law of St+1 given St.

3 Classic Examples

3.1 Riverswim

Example

Riverswim
We consider a riverswim with N + 1 boxes indexed from 0 to N .
r(s, a, s′) = 1 if s′ = N and 0 otherwise.
Action 1:

k(s, 1, s′) = P(St+1 = s′|At = 1, St = s) =


p if s′ = s+ 1

1− p if s′ = s− 1

0 otherwise

Action 2:

k(s, 2, s′) = P(St+1 = s′|At = 2, St = s) =


q if s′ = s+ 1

1− q − r if s′ = s

r if s′ = s− 1

Remember we need to clip the values of s to stay in the interval [0, N ].

3.2 Secretary Problem

Example

Secretary Problem
Let U1, . . . , UT be i.i.d. random variables with uniform distribution on [0, 1].
For t = 1, . . . , T :

• You observe Ut

• You decide to keep Ut or reject it forever

If you did not stop before, you keep UT .
Goal: Maximize the probability to keep the maximum of U1, . . . , UT .
Formalization as MDP:

• State space: St = [0, 1]×N where N means 0 if we did not stop and k if we stopped
at time k

• Action space: At = {0, 1} where 0 means stop and 1 means continue

• r(st, at, st+1) = 0 except r(sT−1, aT−1, sT ) = 1 if denoting sT = ((u0, . . . , uT ), k) we
have uk = max(u1, . . . , uT )

• k(s, a, s′) → s′ = (s, u) with u uniform on [0, 1]
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• ϕ(s, a, u) = (s, u)

4 Policy Evaluation

4.1 Value Function Definition

A policy π is fixed.

We take an initial state s ∈ S1.

We consider the random variable:

V π(s) = Eπ

[
T∑
t=1

Rt

∣∣∣S1 = s

]

where Eπ means that the expectation is taken with respect to the law of the process when
we apply policy π.

The objective is to maximize E[V π(S1)].

4.2 Monte-Carlo Evaluation

Monte-Carlo Algorithm:

1. Take N (large integer)

2. For k = 1, . . . , N :

• s = s1, rew = 0

• For t = 1, . . . , T :
– Sample s′ from k(s, πt(s), ·)
– rew = rew + r(s, πt(s), s

′)

– s = s′

• results.append(rew)

3. Return mean(results)

Complexity: O(NT · |S|)

4.3 Choice of N

If 0 ≤ r(s, a, s′) ≤ 1 then 0 ≤ rew ≤ T .

By Hoeffding’s inequality:

P(|Ȳk − E[Y ]| ≥ ϵ) ≤ 2 exp

(
−2Nϵ2

T 2

)
≤ δ

We obtain: N ≥ T 2

2ϵ2
log

(
2
δ

)
In the end, the complexity is O

(
NT 3

ϵ2
log

(
1
δ

))
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5 Backward Induction

5.1 Principle

Grid with time on the abscissa and state on the ordinate. We can fill the grid backwards.

Definition

Temporal Value Function

V π
t (s) = Eπ

[
T∑

k=t

Rk

∣∣∣St = s

]
for t = 1, . . . , T

V π(s) = V π
1 (s)

For t = T , we know that:

V π
T (s) = Eπ[RT |ST = s] = E[r(s, πT (s), ST+1)]

Recurrence relation:

V π
t (s) = Eπ[r(St, π(St), St+1) +

T∑
k=t+1

Rk|St = s]

=
∑
s′∈S

p(s, π(s), s′)[r(s, π(s), s′) + V π
t+1(s

′)]

5.2 Example: Photo-Booth Problem

Example

Photo-Booth Problem
Each shot has a value given by the law:

3∑
k=1

pkδvk

where (p1, p2, p3) ∈ M1({1, 2, 3}) and v = (v1, v2, v3) ∈ R3.
The shots are independent.
After each shot, either stop and keep the shot or continue.
Strategy 1: Stop only if the shot has value v3.
Grid of values with pV = p1v1 + p2v2 + p3v3.

Complexity of backward induction: O(T · |S|2)

This is better if |S| is small.
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6 Finding an Optimal Policy

6.1 Definitions

Definition

Dominance and Optimality

• A policy π dominates a policy π′ (π ≻ π′) if ∀s ∈ S, V π(s) ≥ V π′
(s)

• A policy π is optimal if ∀π′, π ≻ π′

Definition

Optimal Value Function

v∗(s) = max
π

V π(s)

v∗(s) is called the value function of the MDP.

Question: Is there always an optimal policy π∗ such that V π∗
= V ∗?

Answer: Yes.

6.2 Optimal Backward Induction Algorithm

Definition

Optimal Temporal Value Functions

V ∗
t (s) = max

π
V π
t (s) for t = 1, . . . , T

With backward induction:
At t = T :

V ∗
T (s) = max

a∈A
Eπ[r(s, a, ST+1)|ST = s] = max

a∈A

∑
s′∈S

p(s, a, s′)r(s, a, s′)

π∗T (s) = argmax
a∈A

∑
s′∈S

p(s, a, s′)r(s, a, s′)

For t = T − 1, . . . , 1:

V ∗
t (s) = max

a∈A

∑
s′∈S

p(s, a, s′)[r(s, a, s′) + V ∗
t+1(s

′)]

Theorem

Backward Induction Algorithm
Q(s, a, t) =

∑
s′∈S k(s, a, s

′)[r(s, a, s′) + V ∗
t+1(s

′)]

V ∗
t (s) = maxa∈AQ(s, a, t)

π∗t (s) = argmaxa∈AQ(s, a, t)
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We can fill the grid backwards and choose the optimal action at each state.

7 Application to the Secretary Problem

We deduce that the optimal policy is to observe until a certain step then choose the first one
that is better than all the previous ones.

Let’s compute the value of step r such that:

• Never stop before t = r

• Stop for t > r as soon as the current secretary is the current best

Backward induction shows that the optimal policy is of this form:

V (r) =
T∑
t=r

1

T
·
(
1− 1

r

)
·
(
1− 1

r + 1

)
· · ·

(
1− 1

t− 1

)

=
T∑
t=r

1

T
· r − 1

r
· r

r + 1
· · · t− 2

t− 1

=

T∑
t=r

1

T
· r − 1

t− 1

=
r − 1

T

T∑
t=r

1

t− 1
≈ r − 1

T
(log(T )− log(r))

for T large enough. This is roughly equal to x ln
(
1
x

)
with x = r

T .

The maximum is reached for x = 1
e thus r = T

e .

v(r∗) =
1

e

This example characterizes optimal stopping problems.
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