Reinforcement Learning - Lecture 5 Utilities, Distributional Planning and Von Neumann-Morgenstern Theorem

ENS M2

October 19, 2025

Contents

1	Dis	tributional Statistics Functions	2
	1.1	General Functional	2
2	Qua	antiles and Limitations	2
	2.1	Problem with Quantiles	2
3	Utilities and Utility Functions		
	3.1	Definition of Utilities	2
	3.2	Examples of Utilities	3
4	Risk Measures and β -Means		
	4.1	Definition of β -Means	3
	4.2	Special Cases	3
5	Characterization of Translation-Invariant Utilities		
	5.1	General Question	4
	5.2	Special Cases	4
	5.3	Complete Characterization	4
6	Beyond Utilities: Von Neumann-Morgenstern Theorem		4
	6.1	Stochastic Order	4
	6.2	Main Theorem	5
	6.3	Proof Sketch	5
7	Dis	tributional Planning	5
	7.1	General Problem	5
	7 2	Naiva Distributional Planning Algorithm	6

1 Distributional Statistics Functions

1.1 General Functional

Let $\psi: \mathcal{M}_1(\mathbb{R}) \to \mathbb{R}^K$ be defined such that:

$$\psi(\nu^{\pi}(s,t)) = \phi(\psi(\nu^{\pi}(s',t+1)))$$

We saw that this does not work directly with $\psi(\nu) = \text{Var}(\nu)$ but it works with:

$$\psi(\nu) = (\mathbb{E}[\nu], \mathbb{E}[\nu^2])$$

Warning

Exercise

Show that it works with $\psi(\nu) = (\mathbb{E}[\nu], \mathbb{E}[\nu^2], \dots, \mathbb{E}[\nu^K])$ for any $K \geq 1$. This requires at least:

$$\forall x \in \mathbb{R}, \nu, \nu' \in \mathcal{M}_1(\mathbb{R}), \psi(\nu) = \psi(\nu') \Rightarrow \psi(\tau_x \nu) = \psi(\tau_x \nu')$$

where τ_x is the translation operator.

2 Quantiles and Limitations

2.1 Problem with Quantiles

For quantiles, we also need:

$$\psi(\nu_1) = \psi(\nu_1') \text{ and } \psi(\nu_2) = \psi(\nu_2') \Rightarrow \psi\left(\frac{1}{2}(\nu_1 + \nu_2)\right) = \psi\left(\frac{1}{2}(\nu_1' + \nu_2')\right)$$

However, this is not true in general.

3 Utilities and Utility Functions

3.1 Definition of Utilities

Definition

Utility

We consider a utility: $\psi(\nu) = \mathbb{E}_{X \sim \nu}[f(X)]$. For a utility: $\psi = \psi_f$

$$\psi\left(\sum_{k} q_{k} \nu_{k}\right) = \mathbb{E}_{X_{k} \sim \nu_{k}, I \sim q}[f(X_{I})] = \sum_{k} q_{k} \mathbb{E}_{X_{k} \sim \nu_{k}}[f(X_{k})]$$

For utilities, this condition is sufficient.

We need:

$$\forall x \in \mathbb{R}, \nu, \nu' \in \mathcal{M}_1(\mathbb{R}), X \sim \nu, Y \sim \nu', \mathbb{E}[f(X)] = \mathbb{E}[f(Y)] \Rightarrow \mathbb{E}[f(X+x)] = \mathbb{E}[f(Y+x)]$$

3.2 Examples of Utilities

Example

Exponential Utility

$$f(x) = e^{\beta x}$$
:

$$\mathbb{E}[e^{\beta(X+x)}] = e^{\beta x} \mathbb{E}[e^{\beta X}] = e^{\beta x} \mathbb{E}[e^{\beta Y}] = \mathbb{E}[e^{\beta(Y+x)}]$$

This means:

$$\mathbb{E}\left[e^{\beta\left(r(S_t,\pi(S_t),S_{t+1})+\sum_{k=t+1}^T R_k\right)}\middle|S_t=s\right]$$

$$=\sum_{s'\in\mathcal{S}}k(s,\pi(s),s')e^{\beta r(s,\pi(s),s')}\cdot\mathbb{E}\left[e^{\beta\sum_{k=t+1}^T R_k}\middle|S_{t+1}=s'\right]$$

$$W(s,t) = \sum_{s' \in \mathcal{S}} k(s, \pi(s), s') e^{\beta r(s, \pi(s), s')} \cdot W(s', t+1)$$

4 Risk Measures and β -Means

4.1 Definition of β -Means

Definition

 β -Mean

If $\nu \in \mathcal{M}_1(\mathbb{R})$ (bounded) and $\beta \in \mathbb{R}$, we define:

$$U_{\beta}(\nu) = \frac{1}{\beta} \ln(\mathbb{E}_{X \sim \nu}[e^{\beta X}])$$

for $\beta \neq 0$ and $U_0(\nu) = \mathbb{E}(\nu)$ for $\beta = 0$.

Tip

Properties

The function $\beta \to U_{\beta}(\nu)$ is increasing on \mathbb{R} .

If
$$\mathbb{P}(a \leq X \leq b) = 1$$
 then $a \leq U_{\beta}(\nu) \leq b$ and $\lim_{\beta \to 0} U_{\beta}(X) = \mathbb{E}(X) = U_{0}(X)$.

4.2 Special Cases

Example

Normal Distribution

If $X \sim \mathcal{N}(\mu, \sigma^2)$ then:

$$\mathbb{E}[e^{\beta X}] = e^{\beta \mu} \mathbb{E}[e^{\beta \sigma Z}]$$

with $Z \sim \mathcal{N}(0,1)$, which gives:

$$\mathbb{E}[e^{\beta X}] = e^{\beta \mu + \frac{\beta^2 \sigma^2}{2}}$$

Asymptotic behavior:

- When $\beta \to +\infty$, $U_{\beta}(X) \to \sup(X)$
- When $\beta \to -\infty$, $U_{\beta}(X) \to \inf(X)$

5 Characterization of Translation-Invariant Utilities

5.1 General Question

Are there other utilities f such that:

$$\forall x \in \mathbb{R}, \mathbb{E}[f(X)] = \mathbb{E}[f(Y)] \Rightarrow \mathbb{E}[f(X+x)] = \mathbb{E}[f(Y+x)]?$$

5.2 Special Cases

Case K = 1:

- f = constant works
- $f(x) = \alpha + \beta x$ works
- $f(x) = Ce^{\beta x}$ works

5.3 Complete Characterization

Theorem

Characterization Theorem

The only utilities satisfying the translation invariance condition are of the form:

$$f(x) = x^k e^{\beta x}$$

for $0 \le k \le K - 1$ and $\beta \in \mathbb{R}$.

This property is called **Bellman closure**.

6 Beyond Utilities: Von Neumann-Morgenstern Theorem

6.1 Stochastic Order

Assume that ν has support in $[\underline{x}, \overline{x}]$ and that if $\nu_1 \leq_{st} \nu_2$, then $\psi(\nu_1) \leq \psi(\nu_2)$ with \leq_{st} a partial order on CDFs defined as:

$$\nu_1 \leq_{st} \nu_2 \Leftrightarrow \forall x \in \mathbb{R}, F_{\nu_1}(x) \geq F_{\nu_2}(x)$$

6.2Main Theorem

Theorem

Von Neumann-Morgenstern Theorem

Under the above assumptions, if:

$$\psi(\nu_1) = \psi(\nu_2) \Rightarrow \psi(p\nu_1 + (1-p)\nu_2) = \psi(p\nu_1 + (1-p)\nu_2)$$

then there exists a utility ψ_f such that:

$$\forall \nu_1, \nu_2, \psi(\nu_1) \leq \psi(\nu_2) \Leftrightarrow \psi_f(\nu_1) \leq \psi_f(\nu_2)$$

with $\psi_f(\nu_1) = \int f(x) d\nu_1(x)$ and $\psi_f(\nu_2) = \int f(x) d\nu_2(x)$. This condition is natural for MDPs because of the mixture law.

Proof Sketch 6.3

Proof:

By induction: if $\forall i, \psi(\nu_i) = \psi(\nu_i')$ then $\psi(\sum_{i=1}^k p_i \nu_i) = \psi(\sum_{i=1}^k p_i \nu_i')$

Take $\nu = \sum p_i \delta_{x_i}$. Note that: $\delta_{\underline{x}} \leq_{st} \nu \leq_{st} \delta_{\bar{x}}$

In particular: $\delta_{\underline{x}} \leq_{st} \delta_x \leq_{st} \delta_{\bar{x}} \Rightarrow \psi(\delta_{\underline{x}}) \leq \psi(\delta_x) \leq \psi(\delta_{\bar{x}})$

There exists $f(x) \in [0,1]$ such that:

$$\psi(\delta_x) = f(x)\psi(\delta_{\bar{x}}) + (1 - f(x))\psi(\delta_x)$$

Define: $U(\nu) = \int f(x) d\nu(x)$

$$U\left(\sum p_i \delta_{x_i}\right) = \sum f(x_i)p_i$$

7 Distributional Planning

General Problem

Planning Recap:

$$Q(s, a, t) = \sum_{s' \in \mathcal{S}} k(s, a, s') [r(s, a, s') + V_{s', t+1}^*]$$

$$V_{s, t}^* = \max_{a \in \mathcal{A}} Q(s, a, t)$$

And $\pi_t^*(s) = \arg\max_{a \in \mathcal{A}} Q(s, a, t)$ allows finding an optimal policy for $\mathbb{E}[\sum_{t=1}^T R_t | S_1 = s]$.

Question: What else can we optimize?

$$\max_{\pi} \mathbb{E}[\psi(\sum_{t=1}^{T} R_t)|S_1 = s]$$

7.2 Naive Distributional Planning Algorithm

$$Q_{\nu}(s, a, t) = \sum_{s' \in \mathcal{S}} k(s, a, s') \tau_{r(s, a, s')} \nu(s', t+1)$$
$$\psi^*(s, t) = \arg\max_{a \in \mathcal{A}} \psi(Q_{\nu}(s, a, t))$$
$$\nu^*(s, t) = Q_{\nu}(s, \psi^*(s, t), t)$$

This is a generalization of the backward induction algorithm (we replaced \mathbb{E} by ψ).