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1 Distributional Statistics Functions

1.1 General Functional
Let ¢ : M1(R) — RX be defined such that:
Y (s,t) = oW (V(s,t + 1))

We saw that this does not work directly with () = Var(v) but it works with:

Exercise
Show that it works with ¥ (v) = (E[v], E[¢?],...,E[v¥]) for any K > 1.
This requires at least:

Vz € Rv, v € Mi(R),¥(v) = (V) = (rv) = (1)

where 7, is the translation operator.

2 Quantiles and Limitations

2.1 Problem with Quantiles

For quantiles, we also need:

6(1) = $(0h) and 602) = 00) = 0 (501 +0)) = v (504 +05)

However, this is not true in general.

3 Utilities and Utility Functions

3.1 Definition of Utilities

Utility
We consider a utility: ¢(v) = Ex,[f(X)]. For a utility: ¢ = vy
We have:
Y (Z %%) = Exyma, Img[F (XD)] = D @B X [F(X3)]
k

k

For utilities, this condition is sufficient.

We need:

Vz € R, vt € Mi(R), X ~ v, Y ~ v/ E[f(X)] =E[f(Y)] = E[f(X + 2)] = E[f(Y + 2)]



Reinforcement Learning - Lecture 5 ENS M2

3.2 Examples of Utilities

Example

Exponential Utility
fla) = e
E[ePX+9)] = R [ePX] = P E[fY] = E[ePY +9)]

This means:
E [eﬁ(r(st»ﬂ'(st)vst-kl)+Zg=t+1 Ry)

Stzs]

— Z k(s,m(s),s)elr &™) [eﬁzfztﬂ Rl g = 3’]
s'eS
W (s, t) = Z k(s,m(s),s)ePr&m)) (s 4 1)

s'eS

4 Risk Measures and ($-Means

4.1 Definition of $-Means

Definition

B-Mean
If v € M;(R) (bounded) and 8 € R, we define:

Uﬂmzémmxdﬁﬂ)

for 8 # 0 and Up(v) = E(v) for 8 = 0.

Tip

Properties
The function § — Ug(v) is increasing on R.
If P(a < X <b) =1 then a < Ug(v) < b and limg_,o Ug(X) = E(X) = Up(X).

4.2 Special Cases

Example

Normal Distribution
If X ~ N (u,0?) then:
E[e’X] = ePHE[ef77?]

with Z ~ N(0,1), which gives:

]E[GBX] _ 65”"‘ ;32202

Asymptotic behavior:
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e When 8 — +o0, Ug(X) — sup(X)
e When 8 — —o0, Ug(X) — inf(X)

5 Characterization of Translation-Invariant Utilities

5.1 General Question
Are there other utilities f such that:

Ve € RE[f(X)] = E[f(Y)] = E[f(X + )] = E[f(Y +2)]?

5.2 Special Cases

Case K = 1:

e [ = constant works
o f(x) = o+ px works

e f(z) = CeP” works

5.3 Complete Characterization

Characterization Theorem
The only utilities satisfying the translation invariance condition are of the form:

f(z) = zFeP®

for0< k< K—1and S €R.

This property is called Bellman closure.

6 Beyond Utilities: Von Neumann-Morgenstern Theorem

6.1 Stochastic Order

Assume that v has support in [z, Z] and that if v; <g vo, then ¥(v1) < ¢(v2) with < a partial
order on CDFs defined as:

v <gt V2 & Vx € R,Fyl(ﬂf) > FVz(x)
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6.2 Main Theorem

Von Neumann-Morgenstern Theorem
Under the above assumptions, if:

(1) = p(r2) = ¢(pr1 + (1 = p)ra) = P(pr1 + (1 — p)ra)
then there exists a utility ¥y such that:
Vv, ve, (1) S P(12) & Y1) < Yp(va)

with ¢¥¢(v1) = [ f(z)dvi(z) and ¢;(v2) = [ f(z)dva(z
This condition is natural for MDPs because of the mlxture law.

6.3 Proof Sketch

Proof:
By induction: if Vi, ¢(1;) = (1)) then (X0 piws) = (XK, pis)
Take v = ) pidy,;. Note that: §, <g v <g dz
In particular: §; <g 0z <st 0z = ¥(0z) < ¥(dz) < ¥ (z)
There exists f(x) € [0,1] such that:

Define: U(v) = [ f(=
U (Zpiéx,-) =Y flz)p

7 Distributional Planning

7.1 General Problem

Planning Recap:
Q(s,a,t) stas r(s,a,8") + V]
s'eS

V:t = rc?e%fl( Q(S’ a, t)

And 7} (s) = arg maxae 4 Q(s, a,t) allows finding an optimal policy for B[S R;|S; = s].

Question: What else can we optimize?

T
max B[ (3" R)|S1 = 5
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7.2 Naive Distributional Planning Algorithm

Qu(s,a,t) =D k(s,a,8 )50 (st +1)

s'eS

W(& t) = arg maxw(QV(Sv a, t))
acA

V*(S,t) = QV(Sydj*(Sat)’t)

This is a generalization of the backward induction algorithm (we replaced E by ).



	Distributional Statistics Functions
	General Functional

	Quantiles and Limitations
	Problem with Quantiles

	Utilities and Utility Functions
	Definition of Utilities
	Examples of Utilities

	Risk Measures and -Means
	Definition of -Means
	Special Cases

	Characterization of Translation-Invariant Utilities
	General Question
	Special Cases
	Complete Characterization

	Beyond Utilities: Von Neumann-Morgenstern Theorem
	Stochastic Order
	Main Theorem
	Proof Sketch

	Distributional Planning
	General Problem
	Naive Distributional Planning Algorithm


