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1 Back to the homework

For the optimization of the quantiles resolving the exact problem does not lead to good results,
we could try to find the best beta that gives the best policy for the problem for a certain quantile.

Indeed we can define:
VaRs = inf{t : P(X <t¢)>1-4}

P(X > u) = P(e?X > 7Y)

exp(B(U3(X) =" (8))) = 8 & u'(8) = Up(X) + 3 In (;)

VB > 0,P(X > u*(8)) < 6 = VaRg(X) < u*(8)

= VaRs(X) < igfu*(ﬁ) = igf (Uﬁ(X) + ;m <<15>)

This quantity is called the Entropic Value at Risk (EVaR):

EVaRs(X) = inf (UMX )+ 510 (<15>)

Measures of Risk are called coherent if they satisfy the following properties:

Definition: Measure of Risk
A risk measure p is coherent if it satisfies:
e (P1) Translation invariance: p(X +¢) = p(X) + ¢
e (P2) Subadditivity: p(X +Y) < p(X) + p(Y)
e (P3) Monotonicity: X <Y = p(X) < p(Y)
(P4)

e (P4) Positive homogeneity: Y\ > 0, p(AX) = A\p(X)

Examples of risk measures:

e E[X] is a coherent risk measure.

® UB:
— (P1): Ug(X +¢) = § In(E[PXH9)) =
— (P2): Us(X +Y): OK
— (P3): OK

In(e’°E[ePX]) = ¢ + Ug(X)
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— (P4): Us(AX) =
AUp(X)

%ln(E[eﬁ)‘X]). If X ~ N (p,0?) then Ug(AX) = Au+ )P;i -

e VaR;s(X): Not subadditive
o E[X]+ \y/Var(X): Not monotone

| r

Note
Definition: Conditional Value at Risk

CVaRs(X) = E[X | X > VaR;(X)]
is called the Conditional Value at Risk (CVaR). It can also be expressed as:

1
CVaRs(X) = inf (t+ Yrix —t)+]) _ /0 VaRy (X) du

Proposition:

-
(=%

CVaR is a coherent risk measure for all § € (0, 1).

Proposition:

| r

e EVaR is a coherent risk measure.

o CVaR;s(X) < EVaRs(X)

Example

| r

For X ~ N(0,1):

N5

1
uv 2

wmf ) o) () (R )

Note
Algorithm in practice:
e Take a grid of 8 values

e For each 3 compute the optimal policy for Ug with the distributed planning algo-
rithm

e Choose the best policy among the different 8 for the quantile of interest

2 Infinite Horizon MDPs

MDP: (S, A, k,7)
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We introduce a discount factor v € (0,1) which measures the preference of present rewards
over future rewards.

+oo
I
t=1
o I K ﬁ =+l
o> ﬁ =~'~0
Alternative interpretation: W = E; [>/_; R¢] with 7 ~ Geometric(1 — )

2.1 Policy Evaluation

Fix a policy 7 and a state s € S:

+oo
Vi(s)=E Ztht | S1=s
t=1
+oo
=E|E |[vRi+ > 'R | S1 =55

t=2

=E[Ry | Sy =s]+ Y k(s,7(s),s)E

)

+0o0
Z’Yth ’ 52 = S/]
t=2

— B[Ry | S = 5]+ k(s,m(s), s)V(s)

s

The last part is equal to vE [E:fﬁ YW Ry | S = s’}.
If R™(s) =E[Ry | S1 =s|=3,k(s,m(s),s)r(s,m(s),s’) then:

VT(s) = R"(s) + 7 Y _k(s,m(s),s)V"(s)

2.1.1 Matrix form

V7(s1)
VT = VW:(SQ) e R*
V“(Sk)
where S = {1,2,...,k} and k = |S]|.
R7(1)
R™ = Rﬂz(z) € R
R7(F)

K™ = (k(s,m(s),s"))1<s,s<k € RFxk
is a stochastic matrix.
We have then:
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& (I—7K")V™ = R"
& V™=(I—-yK")"'R"
= (L + 7K™+ (K™)? + - 9 (KT RT
This matrix is invertible because K™ is stochastic: Vs, K™(s,j) = 1. Thus for all A the
eigenvalues of K™ satisfy: |A| <1 and K™u = \u.

2.2 Bellman Operator
We define T7 : RF — R* as: T™(V) = R™ + yK™V, the Bellman operator for policy 7.

T™ is affine, isotonic and contractant:

e Isotonic: if V < V' (in the sense that Vs, V(s) < V/(s)) then T™(V) < T™ (V")
Indeed:
TT(V1)(3) = B7(0) +7 D_ K™, Vi) < B7(6) +7 D K7 (5, )Va(j) = T7(Va)(0)

e Contractant: YV, Vs € R ||[T™ (V1) — T™(Va)|loo < YIIVi — Valloo
Indeed:

T (V1) (@) = T (Vo) ()] = 7 |3 K™ (6, (Vi (4) = Va(5))
i

<> K(i,5)Vi(4) — Va(y)]
J
<71 = V2lloo

Consequences: 7™ has a unique fixed point V™ such that 77(V™) = V™ and for any

V eRF, (T™)"(V) — V™ when n — +oo0.
Let V,, = (T™)"V, V™ satisfies: T™(V™) = V™ then:

Ve = VTleo = [IT7 (V1) = T" (Voo < AlIVa1 = V7 loo 7"V = V7{loo = 0

when n — +o0.

2.3 Evaluating a policy from samples

Two main approaches:
e Monte Carlo evaluation

e Temporal Difference (TD) learning
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Algorithm: Temporal Difference Learning

Input: Vj the initial guess € R¥, T the number of iterations

1. V&1
2. 5=5;
3. fort=1to T do
e R+ r(S,7(S),5’) where

e S’ « next state from using 7(.5)
o V(9) < (1 —a)V(S) + ar(R+V(5"))
e S+ 9

4. return V

Evolution of V:

0 a1l a1 Ry V7T (1)
0 0 0 V7 (2)
Vilo| — 0 — : — o= | VT(3)
0 0 a2R2 Vﬂ-(4)
0 0 0 V™ (5)

One can prove that if oy — 0, >,y = +oo and >, af < +oo then V; — V™ when
t — 400 with probability 1.
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