Reinforcement Learning - Lectures 8-9

Contents

[L Planning in discounted MDPs| 2
[1.1  Now planning| . . . . . . . . . . e e 2

|2 Learning in finite discounted MDPs| 5
2.1 Q-table formulation of Bellman optimality equationf. . . . . . . .. ... ... .. 6

3  Approximate dynamic programming| 7
[3.1  Performance loss due to Value Function Approximation| . . . . ... ... .. .. 7
3.2 Bellman residual minimizationl . . . . . .. .. ... .. ... ... ... ... .. 8
[3.3  Minimizing the Bellman residual| . . . . .. ... ... ... ... ... . ... .. 9
[3.4 Approximate Value Iteration (AVI) . . . . ... ... ..o o o000 9
3.5 Implementation of fitted Q-iterations| . . . . . . . . . . ... ... 10
[3.6  Non-parametric regressors| . . . . . . . . . ... 11
3.7 Neural Network approximation| . . . . . .. ... ... ... ... ... ...... 12




\)

Reinforcement Learning - Lectures 7-8-9

1 Planning in discounted MDPs

1.1 Now planning
We look for an optimal policy ie: 7* : & — A such that:
VT >VT v

Note

The existence is not obvious at first!

Definition: Bellman operator T*

| r

T :R* - R”
Rk T* — / / /
VWeR", (T'V)(s) gg%k(s,a, $)[r(s,a,8") + 7V (s)]

| V

Proposition:

T* is isotonic and a y-contractant.
v-contractant: |max(f) — max(g)| < max(|f — g|)
Hence:

(T*V1)(s) = (T"Va)(s)

mgxz k(s,a,s)[r(s,a,s) +~vVi(s)] — max Z k(s,a,s)[r(s,a,s") +~vVa(s)]
< max (Z k(s,a, 8 )y (Vi(s') — VQ(s')))

< max (Z k(s,a,s")ymax|Vi(s') — Vg(s')|>
a - s’

S

< ’Y”Vl - ‘/.2”00 max (Z k(s,a, 3'))
S/
= (| T*Vi = T*Valloo < 7IIV1 = V2lloo

T* isotonic: exercise

.

r

Consequences: T* has a unique fixed point V* ie: VVj € R¥, (T*)"Vp — V* when n — 400

Theorem (Bellman optimality theorem):

V* is the optimal value function ie: V*(s) = max, V™(s). A policy such that T"V* = V*
is an optimal policy.

| r

Definition: Greedy Policy

For every V € R¥, there exists at least one policy 7 such that T™V = T*V.
This policy is called a greedy policy with respect to V and is characterized by:

k / / V /
Vs €S, w(s)eargréleaﬁigs (s,a,8)[r(s,a,5") + vV (s")]




w

Reinforcement Learning - Lectures 7-8-9

Theorem (Policy improvement lemma):

For any policy 7, any greedy policy 7’ with respect to V™ improves on 7 ie: A
Proof: T V™ = T*V7™ > 7Y™ = |/~ (by definition of greedy policy and isotonicity of
™)

= (T V"> TV >V = ... = (T" )"V > V"

When n — 400, (T™)"V™ = V™ hence V™ > V7

| r

Warning

Proof of Bellman optimality theorem:
Let m* be a greedy policy with respect to V*.

e For any policy w, T™ < T™* hence: V™ = (T™)"V™ < (T*)"V™ — V* hence V* > V7

o T™'V* =T*V* = V* hence V™ = V*

Any finite MDP has a deterministic optimal policy.

Algorithm: Value iteration algorithm

Input: € > 0 the precision parameter, Vy € R an initial value function
Output: an e-approximation of V*

1. VTV

2. while ||T*V = V||o > =2 do
o Vi T*V

3. end while

4. return T*V
Proof: Let V,, = (T*)"Vy. We have:

IV = V¥loo < TV = (T")Valloo + [[(T*) Vi = Valloo

<AV = Valloo +7IVe = Vacilloo

because V,, = (T*)V,,—1. Hence:

* v
Ve = Vloo < E”Vn = Va-llos

Now if ||V, — V,,—1 ooSw‘chen Vi, — V¥l < e
Y

| r

Proposition:
. . . . log (%) . .
The Value iteration algorithm requires at most ?77 iterations where M = ||T*Vj —
Volloo-
Proof:

||Vn+1 - Vn“oo = ||(T*)Vn - (T*)Vn—lnoo < 'Y||Vn - Vn—1||oo <. < ’Yn”T*VO - %Hoo




W

Reinforcement Learning - Lectures 7-8-9

Hence if:
M M
e <—6(1—7)> _ e <—6(1—7)>
- l-v T —log(v)
then v < % hence ||Vo41 — Valloo < @

| r

Algorithm: Policy iteration algorithm

Input: an initial policy mg
Output: 7* an optimal policy

1. ™+ mg
2. ' < None
3. while 7 # 7’ do

e Compute V7
o T

e 7 < a greedy policy with respect to V'™
4. end while

5. return w

| '

Properties:

The policy iteration algorithm always returns an optimal policy in at most ].A||S| iterations

(one can prove that the number of iterations can be bounded by O (%) ).

| r

Lemma:

Let (Uy,) be the sequence of value functions generated by the Value Iteration algorithm and
(V3,) be the sequence of value functions generated by the above Policy Iteration algorithm.
If Uy = Vp then Vn,U, <V,

Proof by induction:

Assume that U, <V, then:

Un+1 = T*(Un) < T*(Vn) — T™n+1 (Vn) < TTn+1 (Vn) _ Vn+1

| r

Algorithm 3: Linear Programming

Let o : § — Ry be a positive weight function over the states.
V* is the solution of the linear program:

sy Sesa s)V(s)
subject to:
VseS,ac A, V(s)> Z k(s,a,s)[r(s,a,s) +vV(s)]
s'esS
Proof:




ot

Reinforcement Learning - Lectures 7-8-9

By Bellman’s optimality equation T7*(V*) = V* thus V* satisfies the constraints with
equality.
If V satisfies the constraint then let W =V — V*

Vs,a, W(s)>v> k(s,a,s)W(s)

= If s_ € argming W (s) then:

W(s-) 27 ) k(s a,s)W(s') > yW(s-)

thus W(s_) > 0 and Vs, W(s) > 0 thus V" > V*
Therefore: ) a(s)V(s) > > a(s)V*(s)

2 Learning in finite discounted MDPs

Definition

State-action value function (Q-function):
The state-action value function Q™ : S x A — R of a policy 7 is the expected return when
first taking action a in state s, and then following policy 7:

Qﬂ-(S?a) =E" Z’)’th | Sl = S,Al =aqa

t=1

= Z k(s,a,s")[r(s,a,s) +~V7(s)]

s’'eS
Remark: V7™ (s) = Q™ (s, m(s))

Policy improvement Lemma 2:

For any policies 7, 7’

Vs €S,Q (s, m'(s)) > Q(s,m(s)) = Vs € S,V (s) > V™ (s)

Furthermore, if one of the inequalities in the hypothesis is strict, then at least one of the
inequalities in the RHS is strict.
Proof: for all s € S:

V™ (s) = Q" (s, 7(s))
< Q7(s,7'(s))
=" k(s 7(s), 51)[r(s,7'(s), 81) + 4V (51)]

with V7™ (s1) = Q™ (s1,7(s1)) < Q™ (s1,7'(s1))




Reinforcement Learning - Lectures 7-8-9 6

= V7™(s) < Zk (s,7'(s), s1)[r(s,7'(s), s1)

+72k s1,7 (s1), 82)[r(s1,7(s1), 52) + 7V (52)]]]

with V7 (s2) = Q™(s2, m(s2)) < Q™ (s2,7'(s2))

2.1 Q-table formulation of Bellman optimality equation

A policy 7 is optimal iff Vs € S, 7(s) € arg max,c 4 Q™ (s, a)
Proof: A policy 7 such that:

€ 4 = k ! / V(s
7(s) arggle%icQ (s,a) argrglgicé (s,a,8)[r(s,a,s") +~V7(s")]

is a greedy policy with respect to V™ and then T*V™ =T"V™ = V™ hence V™" = V*.
If 359 € S,a € A such that Q™ (sp,m(s0)) < Q™ (s0,a) then by policy improvement lemma 2,

the policy 7’ defined by:
W,(S) _ {7‘(’(8) ?fsi‘éso
a if s = sp

is preferable: V™ (s0) > V™ (s)

The Q-learning Algorithm

Input:
e Qo an initial guess for the Q-table (may be zero)
e 5o an initial state
e 7 a learning policy (may be greedy wrt Q)

e 7' the number of iterations

L. Q<+ Qo
2. 54 359
3. fortin 0,1,...,7 — 1 do

e a < Select action (7(Q,s))

e 7', s’ < observe reward and transition from state s using action a

* Q(s,a) < Q(s,a) + oy (r' + y(maxy Q(s', a')) — Q(s, a))

o s+ s

4. return Q




Reinforcement Learning - Lectures 7-8-9 7

Theorem: Convergence of Q-learning

Let ay(s,a) = atl(s, 0,)=(s,a)
If for all s € S,a € A it holds that > 72, au(s,a) = 0o and Y 5o ax(s, a)? < oo then with
probability 1 the Q-learning algorithm converges to Q* the optimal Q-table as t — +o0.

SARSA algorithm

Input: Same

L Q<+ Qo

2. 54 59

3. a < Select action (w(Q, s))
4. for tin 0,1,...,7 —1 do

e 7', s’ < random reward and transition from s using action a
e o/ + Select action (7(Q, s"))
Q(s,a) + Q(s,a) + au(r(s, a,s') +7Q(s',a) — Q(s,a))

o 5§

e a+—ad
5. end for

6. return

\.

Distributional policy evaluation for homework: we just need to optimize the expectation
criteria for homework.

3 Approximate dynamic programming

When the state space S is large (or continuous), we have access only to simulation and not the
exact dynamics.

We need a representation of the value function by an approximation space.

V*VvVT.S—>R

We will approximate V*, V7 in a space S, a subset of RS.

Sampling error: 7(s,a,s’) and k(s,a,s’) will possibly not be known exactly. Instead you
will have access to a simulation: r(s,a,s’) ~ 7(s,a,s’),k(s,a,s’) ~ l%(s,a, s")

e Sample s € § with some probability distribution p
e Given s € S, and an action a € A, sample s’ according to k(s,a, s’)
Today we focus on discounted infinite horizon MDPs.

3.1 Performance loss due to Value Function Approximation

T*(s) € argmaxged Y gcs k(s,a,8)[r(s,a,s") +~yV*(s')] is the optimal policy.
Now, assume that I only use V instead of V*:



Qo

Reinforcement Learning - Lectures 7-8-9

7(s) € argmaxaca Y gcgk(s,a,8)[r(s,a,s") +~V(s')] is a suboptimal policy.
How much do I lose?
When V7 is the value function of policy 7 then:

- -
V* = V7llow < T2 [V = Vo
-
Proof:

IV* =V loo <[IT*V = T"V]|oo + [[T"V = TV |og
<AV = Voo + 9V = V7 log
=WV =V oo + IV = Voo + [V = V7|o0)
= 29[V = Vlloo +[V" = V7|oo

2
<oV Vi
(where T™, T* are «y-contractant)

Proposition:

There exists € > 0 such that if ||[V* — V|| < € then 7 is optimal and V™ = V*.
Proof: Let 0 = ming.y~y« ||V —V*||o. We have § > 0 since the set of policies is finite.
Let € such that %,—ye < 4. Then:

IV =Vloo <e=[[VT =Vl <6
hence V™ = V*

3.2 Bellman residual minimization

Let F be a subset of RS, a function space equipped with the norm || - ||.

For a function V € RS, the Bellman residual is defined as: B(V) = ||V —T*V||. The optimal
value function V* satisfies 7*V* = V* and hence B(V*) = 0. This motivates to approximate
V* by infyer B(V).

Here we first consider the norm ||- || and we will express the suboptimality gap ||V* — V||«
as a function of the Bellman Residual B(V) = ||T*V — V|| .

For any function V € RS:
LIV = Ve < 21TV = Viieo

2. Let m be the greedy policy with respect to V', then:

2
V=V loo € ——[IT*V = Voo
| lloo < 7 |

3. Let Vgr € argminycr ||[T*V — V||« then:

IT*Ver = VBRlleo < (1+7) ot [IV" = Vo




Reinforcement Learning - Lectures 7-8-9 9

Overall, if mpp is greedy with respect to Vg then:

2049) IV* = Vlloo

V* - VTER||, <
l lloo < 1—~ ver

Proof:

L IV* = Vl]lo S [V* =T*V]loo + ||T*V = Vl|ooc <AV* = Voo + [|T*V = V|0
Thus: (1 —9)||[V* = Vl]|eo < ||T*V — V|eo

IVF = Voo <[V = Voo + [V = V7loo
SV =T*V]loo + IT"V = V7|0
STV = Vlloo +7MV = V7loo

Thus: (1 =7)[[V* =V loo < [[T*V = Vl|eo
And using (1) we get: ||[V* — V|| < %HT*V —Vlloo

3. I T*V = Vlloo < [IT*V = V*|loo + [IV* = Vlloo < (L +NIIV* = V]|oo
hence: [TV — Virlle < infver [TV ~ Vil < (1 +DIIV* - Vil

3.3 Minimizing the Bellman residual

Let F = {fa,a € ©} be a family of functions. We want to find Vg € arg minycx B(V).
Minimizing B over || - ||o is computationally hard / impossible.
Even if we choose a distribution p on & and minimize in || - ||, 2 norm can be hard:

o B(a) = ||[T"Va — Va2 = /S (T*Vi(s) — Vau(3))2dla(s)

If it is the case we resort to stochastic gradient descent: a +— o — nV,B(a).

o We draw n states at random according to the distribution p: s1,...,5, ~ p
e We define the empirical Bellman residual for parameter o: B(a) = LS (T Val(si) —
Va(si))?

o We perform a gradient descent with:

. R
VabB(a) =~ D (T*Valsi) = Va(s:)) (vP™ — )V Va(s:)
i=1
where 7, is a greedy policy with respect to V, and P™* is the transition matrix under
policy 7,

3.4 Approximate Value Iteration (AVI)

VI is defined by: Vi1 =1T"V}.
AVT is defined by: Vipi1 = A(T*Vy) where A is an approximation operator, typically a
projection on a subspace F of R®. Then:

Via1 = in ||[T"V, —V
E+1 arg‘x}lenjarH k Hoo



Reinforcement Learning - Lectures 7-8-9

Proposition:

and the iteration Vj of AVI converge.

In that case, if A = I, is the projection operator in ||-||~ then: AT™* is still a contraction

Warning

Problem:
Impractical in general since the projection Il is hard to compute.

| '

Proposition:

Wg@gHT Vi, — AT VkHooJrWHV — Volloo

Proof: Let € = maxp<x ||[T*Vi — AT*Vi||oo. We have:

IV* = V™| <

IV* = Vitalloo < |[T*V" = T Villoo + [[T"Vi = Vitlloo
<AV = Valloo + €

And:

3 €
IV* = Villoo < L+ 4+ 9" e+ V' = Volloo < 7 — + ¥V = Volloo

From Proposition 1: ||[V* — V“K||oo < %HV* — Vi||oo

hence: K1

2 2

Y i Y
(1—=7)

IV* = V™| <

= V*_V oo
(1_,7) H OH

| '

Let V& be the K-th iterate of AVI and 7% be the corresponding greedy policy. Then:

3.5 Implementation of fitted Q-iterations
We assume that we have the generative model mentioned above:
e a sampler from distribution y over &

e a transition sampler: Spyq | Sy, At

Then Q*(s,a) = >, k(s,a,s')[r(s,a,s") +~+V*(s')] is the unique fixed point of 7% : S x A —

7

T*Q(s,a) = Z k(s,a,s)[r(s,a,s) + 7 max Q(s',b)]

S

So the fitted Q-iteration algorithm can be written: Qr11 = A(T*Qy)

Let F be a vector space over S x A defined by a set of features ¢1,...,¢4: S x A — R.

d
F =< Qu(s,a)= Zaj¢j(s,a),a e R?

J=1

1 is a probability distribution over &



Reinforcement Learning - Lectures 7-8-9 11

= in |70, — O|?
Qr+1 argglelgll Qr — Qll2

Algorithm: Fitted Q-Iteration

1. Start with Qg : S x A — R for example = 0
2. fork=1,...,K do

Sample s1,...,8, ~ p and aq,...,a, ~ uniform over A

Use the generative transitions to get Ry,..., R, and s),...,s], (rewards and
next states associated to (s;, a;))

Compute an estimation T*Qy(s;, a;) as Z; = R; + v maxqe 4 Qi (s}, a)

Compute Q11 by solving:

RN
Qp41 = arg e > (Qalsi i) — Z:)°

i=1

Since F is linear, this is a classical least square minimization problem.

Q(s,a) = E[r(s,a,S") +ymaxp Q(s,b)]
If Q = Qg then:

Qo(s,a) = E[r(s, a,5") + ymax Qy(s', b)]
We can use dynamics for many pairs:
° 5 ~p
e A, ~ uniform

e Sample S/ as next state, R; as reward (r(S;, 4;,S))

n

1(0) = (Qa(Si, Ai) — (Ri + 7 max Qg (S, b)))?

=1

Is the general iterating scheme:
e Start from Qp(s,a) =0
® Qi1 = Qg,,, where 01 = argming[(0)

Parametric form: Qy(s,a) = (¢(s,a), )
Where ¢(s,a) : S x A — R? is a feature vector.

3.6 Non-parametric regressors

K-nearest neighbors:

e Sample s1,...,85, ~ 1

e For any a € A, sample S/ ,, R; , next state and reward according to the dynamics

11



Reinforcement Learning - Lectures 7-8-9 12

o Start with Qo(s,a) =0

e For every i:
!

Qr+1(8i,0i) = Ry, + Y max Qr(S; 4,50)

Where Qp(s,b) = %Z]K:l Qk(s1;,b) where d(s,s1,(5)) < -++ < d(s,51,(s)) are the K
nearest neighbors of s in the training set s1,...,sy,.
3.7 Neural Network approximation

We can also try to approximate the Q-function with a Neural Network: Qg(s,a) where 6 are the
weights of the NN.

Algorithm: Deep Q-Learning

1. epochs = 1000, 8y = random
2. for k in range(epochs):
e Sample (S;, A;,5)) (i=1,...,n)

o lg =3,1Qo(Si, Ai) — (Ri + v maxy Qg, (5], b))]?
® Opi1 = 0r —nVol(Or)

12



	Planning in discounted MDPs
	Now planning

	Learning in finite discounted MDPs
	Q-table formulation of Bellman optimality equation

	Approximate dynamic programming
	Performance loss due to Value Function Approximation
	Bellman residual minimization
	Minimizing the Bellman residual
	Approximate Value Iteration (AVI)
	Implementation of fitted Q-iterations
	Non-parametric regressors
	Neural Network approximation


