Lecture 2



Agenda

e Mathematical Formulation - A First Go
» Binary classification - Goal and Probabilistic setup

» The Principle of Empirical Risk Minimization (ERM)
» Concentration Bounds - McDarmid's Inequality
» Complexity (Combinatorial) - VC Dimension
e Some Popular Classifications Methods - Heuristics
» Parametric Approach: Linear Logistic Regression
» The (single layer) Perceptron Algorithm
» K-Nearest Neighbours
» Decision Trees - The CART Algorithm
e Assessing the Accuracy of the Results
» Cross Validation

» Bootstrap - The Plug-in Principle



Probabilistic setup for binary classification

e Random pair = (X, Y) ~ P unknown

o X = observation vector in X (ex: R? with d >> 1)

e Y = binary label in Y = {-1, +1}

e Our goal: guess the output Y from the input observation X

o Classifier: C:x € X' +— C(x) € {—1,1} in a class G

e Risk functional (unknown!) = Expected prediction error
L(C) = B[Y # C(X)

to minimize over C € G.



Theoretical Risk Minimization

o Let (x) = P(Y = +1|X = x) regression function
o Let p=P(Y = +1)
e Compute C* = argminceg L(C)
e Calculations yields the Naive Bayes Classifier
C'(x)=2-I{n(x) >1/2} -1, xe X
= affects the likeliest label given the observation X = x
e Minimum theoretical risk: L* = L(C*) = 1/2 — E[|n(X) — 1/2|]

e How close n(X) is to 1/2 governs the difficulty of the problem!



Theoretical Risk Minimization

e Theoretical excess of risk:
L(C) — L = E[n(X) —1/2]I{X € G*AG¢}]
where G*, G¢ denote the subsets of the input space X

G* = {n(X)>1/2}
Ge = {C(X)=+1}

and AAB = (AN B) U (AN B) the symmetric difference.

@ Insights: when a little of X's mass is concentrated around the
margin {7n(x) = 1/2}, the problem gets simpler.



Empirical Risk Minimization (ERM)

e Data =D, = {(X1, Y1),...,(Xu, Ya)}
o Classifier candidate: C: X — {—1,1} inaclass G

e Empirical risk functional = Training (misclassification) error

(€)= 3 HY: # C(X)

to minimize over C € G.

N

e Solution " empirical risk minimizer”: C, = argmin s L,(C)

e OK for the training data, now for future data (X, Y)?



Investigating the properties of the ER Minimizer

e Don't forget that C, is random (depending on the data D,)

e Let (X, Y) ~ P be a new random pair, independent from D,
Will C, performs well as a classifier for this novel pair?

= compute L(C,) = P(Y # C,(X) | D,)

A

e L(C,) is a random variable! It depends on the data D,.

o Deviation between the r.v. L(C,) and the min. error L* (cst)
= Study the excess of risk 0 < £(C) = L(C,) — L*

e Learning Theory: compute explicit confidence bounds, Ve > 0

A

Pp,(L(E,) — L* > €) <?



Learning Bounds

Consider Cy = arg minceg L(C) (theoret. minimizer over G)

Check the " bias-variance” decomposition

L(Cy)—L* < 2222 IL(C) = Lo(C)| + L(Go) — L

@ The second term depends on the model G solely (bias)

The 1st term (estimation) involves concentration of

Z ={L(C)~La(C)}ceg

= theory of empirical processes



Empirical processes - Basics

@ Let Xq, ..., X, bei.id. rv.'sdrawn as P
o Let P, =n"13""  dx, the empirical df

@ Let F be a class of functions f : R — R

Empirical process {P,f}rer: Pof =n 130 f(X), feF

Investigate which conditions on F allow to control

||Z|| = sup |Paf — Pf]|
feF

Ex.: recall Donsker’s theorem, F = {I{. < x}, x € R}

Vasup|n™ Y TI{X; < x} = P(] - 00,x])| = sup |B(t)|
xER i<n t€[0,1]



Basics inequalities

e Finite class: Card(F) = N.

"Union's bound” combined with Chernoff’s method

P(sup |Ppf — Pf| > €) < 2N - e~ 2"
feF

ifvfeF: 0<f<1
@ Cumulative distribution functions: Dvoretsky-Kiefer-Wolfowitz
1
P(vnsup |~ Y I{X; < x} — P(] - 00,x])| > ¢) < 272
xeR N i<n

o McDarmid (1989)



Measuring Complexity - Combinatorial Approach

@ Vapnik - Chervonenkis: VC dimension of a class A of subsets
AcCRY

o Let x/' = (xi,...,x,) be n points in RY. Define
» Trace:
Tr(A,x{) ={ANx{; Ac A}

» Shattering coefficient:

Sa(n) = max CardTr(A, x7)

» Ex: half-lines of R: S4(n)=n+1

@ Other approaches: entropy metric, Rademacher chaos, etc.



Parametric approach - Parametric logistic regression

e Explicit modelling of n(x) =P(Y = +1 | X = x) €]0,1]

e Logistic transform: f(x) = logitn(x) = |og(1j§7>?x))
o Inverse transform: n(x) = %

o Assume f € F = {f3(x); 6 € ©} with © C R?
efe(x)
W) = T enm

e Ex: linear logistic regression f(x) =a+'(-x, 0= (a,p)

e Maximize the log-likelihood

h(0; X1, xa) = Z{Yi log(ne(xi)) + (2y; — 1) log(1 — ma(x;)) }



The (single-layer) perceptron algorithm

@ The output Y is connected to the input X by
y = sign(tw - X — 3)
@ The input space is separated into two regions by a hyperplane

e Rosenblatt’s algorithm (1962) for minimizing

_ZYi(tW'Xi + )

@ Choose at random (x;, y;) for "feeding” the perceptron
© Gradient descent with rate p

w YiXi
(5)=Cg)+a”)")

© Converges only when the data are separable in a linear fashion

— (






A simplistic nonparametric method:
K-nearest neighbours

o Let K > 1. On RP, consider a metric d (ex: euclidean distance)

For any input value x, let 0 = o, be the permutation of {1,...,n}
such that
d(x,%,1)) < ... < d(X, X5 (n))

Consider the K-nearest neighbours

{Xo'(l)7 <. 7X0'(K)}

Majority vote: N, = Card{k € {1,...,K}; v,y =y}, y € {-1,1}

C(x) =ar max N,,
b= mac,y MW
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If k = kn — oo such that k, = o(n), then the K-NN rule is consistent
L(CK—NN) —L[*— 0, as n— o
But...

@ The rate can be arbitrarily slow

@ Instability: choice of K? metric D?
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Decision Trees: the CART Algorithm

@ Breiman, Friedman, Olshen & Stone (1986)

e Recursive Dyadic Partitioning: X = (X1, ..., X(9) ¢ RY
@ "Growing the Tree": iterate
@ For j=1to d, find s (best split value) so as to minimize the impurity
of the regions
(X > s} and {X < s}
@ Find the best split variable X;
o Measuring impurity:

» misclassification error
» Gini index



Play golf dataset

Dep. var
OUTLOOK TEMPERATURE | HUMDITY | WINDY PLAY
sunny 85 85 FALSE Don't Play
sunny 0 9| TRUE | DontPlay
overcast 83 78 FALSE Play
rain 70 96 FALSE Play
rain 68 80| FALSE |Play
rain 65 70 TRUE Don't Play
overcast 64 65| TRUE [P
sunny 72 95| FALSE | DontPlay
sunny £ 70| FALSE [Py
rain 75 80 FALSE Play
sunny 75 70 TRUE Play
overcast 72 90 TRUE Play
overcast 81 75| FALSE [Py
rain 7 8] TRUE |DontPay

3

Play 4
Don't Play 3 Don't Play 0 Don't Play 2
'HUMIDITY ?
<70 / =170 TRUE
Play 2 Play 0 Play 0 y 3
Don't Play 0 Don't Play 3 Don't Play 2 Don't Play 0

[m]

[l Q>



Validation

@ When data are not expensive: cross-validation

Training - Test - Validation
@ Bootstrap (the plug-in principle): estimate the distribution of
E*[I{(X) # Y}]

where E*[.] is the expectation w.r.t. the empirical df of the (X, Y;)’s



