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Agenda

Mathematical Formulation - A First Go
I Binary classification - Goal and Probabilistic setup

I The Principle of Empirical Risk Minimization (ERM)

I Concentration Bounds - McDarmid’s Inequality

I Complexity (Combinatorial) - VC Dimension

Some Popular Classifications Methods - Heuristics
I Parametric Approach: Linear Logistic Regression

I The (single layer) Perceptron Algorithm

I K -Nearest Neighbours

I Decision Trees - The CART Algorithm

Assessing the Accuracy of the Results
I Cross Validation

I Bootstrap - The Plug-in Principle



Probabilistic setup for binary classification

Random pair = (X ,Y ) ∼ P unknown

X = observation vector in X (ex: Rd with d >> 1)

Y = binary label in Y = {−1, +1}

Our goal: guess the output Y from the input observation X

Classifier: C : x ∈ X 7→ C (x) ∈ {−1, 1} in a class G

Risk functional (unknown!) = Expected prediction error

L(C ) = E[Y 6= C (X )]

to minimize over C ∈ G.



Theoretical Risk Minimization

Let η(x) = P(Y = +1|X = x) regression function

Let p = P(Y = +1)

Compute C ∗ = arg minC∈G L(C )

Calculations yields the Naive Bayes Classifier

C ∗(x) = 2 · I{η(x) > 1/2} − 1, x ∈ X

⇒ affects the likeliest label given the observation X = x

Minimum theoretical risk: L∗ = L(C ∗) = 1/2− E[|η(X )− 1/2|]

How close η(X ) is to 1/2 governs the difficulty of the problem!



Theoretical Risk Minimization

Theoretical excess of risk:

L(C )− L∗ = E[|η(X )− 1/2|I{X ∈ G ∗∆GC}]

where G ∗, GC denote the subsets of the input space X

G ∗ = {η(X ) > 1/2}
GC = {C (X ) = +1}

and A∆B = (A ∩ B̄) ∪ (Ā ∩ B) the symmetric difference.

Insights: when a little of X ’s mass is concentrated around the
margin {η(x) = 1/2}, the problem gets simpler.



Empirical Risk Minimization (ERM)

Data = Dn = {(X1,Y1), . . . , (Xn,Yn)}

Classifier candidate: C : X → {−1, 1} in a class G

Empirical risk functional = Training (misclassification) error

Ln(C ) =
1

n

n∑
i=1

I{Yi 6= C (Xi)}

to minimize over C ∈ G.

Solution ”empirical risk minimizer”: Ĉn = arg minC∈G Ln(C )

OK for the training data, now for future data (X ,Y )?



Investigating the properties of the ER Minimizer

Don’t forget that Ĉn is random (depending on the data Dn)

Let (X ,Y ) ∼ P be a new random pair, independent from Dn

Will Ĉn performs well as a classifier for this novel pair?

⇒ compute L(Ĉn) = P(Y 6= Ĉn(X ) | Dn)

L(Ĉn) is a random variable! It depends on the data Dn.

Deviation between the r.v. L(Ĉn) and the min. error L∗ (cst)

⇒ Study the excess of risk 0 ≤ E(C ) = L(Ĉn)− L∗

Learning Theory: compute explicit confidence bounds, ∀ε > 0

PDn(L(Ĉn)− L∗ ≥ ε) ≤?



Learning Bounds

Consider C0 = arg minC∈G L(C ) (theoret. minimizer over G)

Check the ”bias-variance” decomposition

L(Ĉn)− L∗ ≤ 2 sup
C∈G
|L(C )− L̂n(C )|+ L(C0)− L∗

The second term depends on the model G solely (bias)

The 1st term (estimation) involves concentration of

Z = {L(C )− L̂n(C )}C∈G

⇒ theory of empirical processes



Empirical processes - Basics

Let X1, . . . , Xn be i.i.d. r.v.’s drawn as P

Let Pn = n−1
∑n

i=1 δXi
the empirical df

Let F be a class of functions f : R→ R

Empirical process {Pnf }f ∈F : Pnf = n−1
∑n

i=1 f (Xi ), f ∈ F

Investigate which conditions on F allow to control

||Z || = sup
f ∈F
|Pnf − Pf |

Ex.: recall Donsker’s theorem, F = {I{. ≤ x}, x ∈ R}
√

n sup
x∈R
|n−1

∑
i≤n

I{Xi ≤ x} − P(]−∞, x ])| ⇒ sup
t∈[0,1]

|B(t)|



Basics inequalities

Finite class: Card(F) = N.

”Union’s bound” combined with Chernoff’s method

P(sup
f ∈F
|Pnf − Pf | ≥ ε) ≤ 2N · e−2nε2

if ∀f ∈ F : 0 ≤ f ≤ 1

Cumulative distribution functions: Dvoretsky-Kiefer-Wolfowitz

P(
√

n sup
x∈R
|1
n

∑
i≤n

I{Xi ≤ x} − P(]−∞, x ])| ≥ ε) ≤ 2e−2ε2

McDarmid (1989)



Measuring Complexity - Combinatorial Approach

Vapnik - Chervonenkis: VC dimension of a class A of subsets
A ⊂ Rd

Let xn
1 = (x1, . . . , xn) be n points in Rd . Define

I Trace:
Tr(A, xn

1 ) = {A ∩ xn
1 ; A ∈ A}

I Shattering coefficient:

SA(n) = max
xn
1

CardTr(A, xn
1 )

I Ex: half-lines of R: SA(n) = n + 1

Other approaches: entropy metric, Rademacher chaos, etc.



Parametric approach - Parametric logistic regression

Explicit modelling of η(x) = P(Y = +1 | X = x) ∈]0, 1[

Logistic transform: f (x) = logit η(x) = log( η(x)
1−η(x)

)

Inverse transform: η(x) = ef (x)

1+ef (x)

Assume f ∈ F = {fθ(x); θ ∈ Θ} with Θ ⊂ Rd

ηθ(x) =
e fθ(x)

1 + e fθ(x)

Ex: linear logistic regression f (x) = α +t β · x , θ = (α, β)

Maximize the log-likelihood

ln(θ; x1, . . . , xn) =
n∑

i=1

{yi log(ηθ(xi)) + (2yi − 1) log(1− ηθ(xi))}



The (single-layer) perceptron algorithm

The output Y is connected to the input X by

y = sign(tw · X − β)

The input space is separated into two regions by a hyperplane

Rosenblatt’s algorithm (1962) for minimizing

−
∑

i

yi (
tw · xi + β)

1 Choose at random (xi , yi ) for ”feeding” the perceptron
2 Gradient descent with rate ρ

(
w
β

)← (
w
β

) + ρ(
yixi

yi
)

3 Converges only when the data are separable in a linear fashion



The (single-layer) perceptron algorithm



A simplistic nonparametric method:
K -nearest neighbours

Let K ≥ 1. On RD , consider a metric d (ex: euclidean distance)

For any input value x , let σ = σx be the permutation of {1, . . . , n}
such that

d(x , xσ(1)) ≤ . . . ≤ d(x , xσ(n))

Consider the K -nearest neighbours

{xσ(1), . . . , xσ(K)}

Majority vote: Ny = Card{k ∈ {1, ...,K}; yσ(k) = y}, y ∈ {−1, 1}

C (x) = arg max
y∈{−1,+1}

Ny ,



A simplistic nonparametric method:
K -nearest neighbours



K -nearest neighbours

Consistency (Stone ’77)

If k = kn →∞ such that kn = o(n), then the K -NN rule is consistent

L(CK−NN)− L∗ → 0, as n→∞

But...

The rate can be arbitrarily slow

Instability: choice of K? metric D?



Decision Trees: the CART Algorithm

Breiman, Friedman, Olshen & Stone (1986)

Recursive Dyadic Partitioning: X = (X (1), . . . ,X (d)) ∈ Rd

”Growing the Tree”: iterate
1 For j = 1 to d , find s (best split value) so as to minimize the impurity

of the regions
{Xj > s} and {Xj ≤ s}

2 Find the best split variable Xj

Measuring impurity:
I misclassification error
I Gini index



Decision Trees: the CART Algorithm



Validation

When data are not expensive: cross-validation

Training - Test - Validation

Bootstrap (the plug-in principle): estimate the distribution of

E∗[I{Ĉ (X ) 6= Y }]

where E∗[.] is the expectation w.r.t. the empirical df of the (Xi ,Yi )
′s


