Stanford University December 7, 1998 Boosting: 1 Stanford University December 7, 1998 Boosting: 2

fAdditive Logistic Regression\ / Classification Problem' \

a Statistical View of Boosting

Jerome Friedman, Trevor Hastie, Rob Tibshirani

Stanford University

Thanks to Bogdan Popescu for helpful and
discussions on the history of boosting, and for help in

1 that t of this talk
preparing that part of this ta Data (X,Y) € RP x {0,1}.

X is predictor, feature; Y is class label, response.

(X,Y) have joint probability distribution D.

Email: trevor@stat.stanford.edu

Ftp: stat.stanford.edu: pub/hastie Goal: Based on N training pairs (X;, Y;) drawn
WWW: http://www-stat.stanford.edu/ trevor from D produce a C(X) € {0,1}
Goal: choose C to have low error

7y = Pp(C(X)#Y
These transparencies are available via ftp: R(C) p(C(X) #Y)

C:p://stat.stanford.edu/pub/hastie/boost98.ps/ K - ED[l(é(X);éY)] /

Stanford University December 7, 1998

Boosting: 3

K Deterministic Concepts I

X € RP has distribution D.
C(X) is

function €

Goal: Based on N training pairs
(X;, Y; = C(X;)) drawn from D produce a

A~

C(X) €{0,1}
Goal: choose C' to have low

R(C) = Pp(C(X)#C(X))

€error

K = Erllepozom)

~

/

Stanford Unive

—

2/91
x.2<-0.823968
Y x.2>-0.823968

3 Lo | [o]

012 5/14 2/8 0/83
x.1<-1.07831
x.1>-1.07831

X.1<-1.16¢

Boosting: 4

Stanford University December 7, 1998 Boosting: 5

-

Decision Boundary: Tree'

When the nested spheres are in R'°, CART™
produces a rather noisy and inaccurate rule
C(X), with error rates around 40%.

o

~

/

Stanford University December 7, 1998 Boosting: 6

Bagging and Boosting'

Classification trees can be simple, but often

produce noisy (bushy) or weak (stunted)
classifiers.

e Bagging (Breiman, 1996): Fit many large
trees to bootstrap-resampled versions of the
training data, and classify by majority vote.

e Boosting (Freund & Shapire, 1996): Fit many
large or small trees to reweighted versions of
the training data. Classify by weighted

majority vote.

In general Boosting > Bagging > Single Tree.
() OO (o) le)

“AdaBoost - - - best off-the-shelf classifier in the
world” — Leo Breiman, NIPS workshop, 1996.

- /

Stanford University December 7, 1998 Boosting: 7 Stanford University December 7, 1998 Boosting: 8

4 N 4 N

Final classifier Bagglng and BOOStlngI
si gn[Zowf p(x)]
h
o .
)
0]
O —
e (%) 2000 points from Nested Spheres in R'0; Bayes
error rate is 0%.
Trees are grown without pruning.

k / Qeftmost iteration is a single tree. /

Stanford University December 7, 1998

Boosting: 9

-

Decision Boundary: Boosting'

1,
1 1 .

14 1 i
1 1a 11 4

g 1

1 1 ;
. 1 1
1 1139
1 0 1
- 14D l,a!
11 0
07
L
W,
a 1 o1l g
1 Iy
i 19 b
1
L1 4 1

Bagging and Boosting average many trees, and

produce smoother decision boundaries.

o

~

Stanford University December 7, 1998

Boosting: 10

-~

AdaBoost (Freund & Schapire, 1996)

1. Start with weights w; =1/N Vi=1,...,N.
y; € {—1,1}.

2. Repeat form=1,2,..., M:

(a) Estimate the weak learner f,,(z) € {—1,1}
from the training data with weights w;.
(b) Compute ey, = Ey[1(y # fin(z)],
cm =10g((1 —em)/em).

(¢) Set w; < w;expley - Wy; # fm(xs)], i =
1,2,... N, and renormalize so that

3. Output the majority weight classifier
C(x) = sign[Yp,_y Cm fn ()]

/

- /

Stanford University December 7, 1998 Boosting: 11 Stanford University December 7, 1998 Boosting: 12

4 N 4 N

g 7T, o>%8 PAC Learning Model'
- T oo B c < é) %_] 3
83 ga® = - <s5E X ~ D: Instance Space
£ %;g g C: X +— {0,1} Concept € C c)
o0 g5\ g @2 h: X + {0,1} Hypothesis € H
4 < gg
pE g |58 error(h) = Pp[C(X) # h(X)] X
S g Bl R —
ﬁg E — =\ s % g Definition: Consider a concept class C defined
E S ERRE .
18 5 > & 2 3 é over a set X of length N. L is a learner
o = % é R E (algorithm) using hypothesis space H. C is PAC
N Bk : AN NARE: learn-able by £ using H if for all C € C, all
~= O] o = 5 . . .
R = s g — 815 distributions D over X and all €,d € (0, 1),
g 8 g | |))
T : | g 5 LJ learner L will, with Pr > (1 — J), output an
3 g, . h € H s.t. errorp(h) < € in time polynomial in
: E .
3 i 1/€,1/§, N and size(C).
3 5
i

Such an L is called a strong Learner.

- / - /

Stanford University December 7, 1998 Boosting: 13 Stanford University December 7, 1998 Boosting: 14

Boosting a Weak Learner' Boosting & Training Error'

Weak learner L produces an h with error rate . .
8= (%)< %’ with Pr > (1 —) for any D. Nested spheres in R'® — Bayes error is 0%.

L has access to continuous stream of training

data and a class

1. L learns h; on first N training points.

2. L randomly filters the next batch of training
points, extracting N/2 points correctly
classified by hi, N/2 incorrectly classified,
and produces hs.

3. L builds a third training set of N points for .
which h; and hsy disagree, and produces hg.

4. L outputs h = Magority Vote(hy, ha, h3)

Boosting drives the training error to zero. Further

iterations continue to improve test error in many
errorp(h) < 38% —23° < 3 examples.

- / N /

Stanford University December 7, 1998 Boosting: 15 Stanford University December 7, 1998 Boosting: 16

- - Bagging and Boosting Smaller Trees'
Boosting Noisy Problems'

Nested Gaussians in R'® — Bayes error is 25%.

2000 points in R'?; Bayes error rate is 0%.

) . Each tree has 10 terminal nodes, grown best-first.
Here the test error does increase, but quite slowly.

Bagging-Boosting gap is wider

- / - /

Stanford University December 7, 1998 Boosting: 17 Stanford University December 7, 1998 Boosting: 18

Bagging and Boosting Stumps' Prediction gamesl

Results of Freund and Schapire (1996) and
Breiman (1998).

e Start with learners

fi(x), fa(@) .. far ().

e Play a two person game: player 1 picks
observation weights w;; player 2 picks learner
weights ¢, (i.e. he will use learner f,,(z)
with probability ¢,,).

e Player 1 tries to make the prediction problem
as hard as possible, while Player 2 does the

2000 points in R'?; Bayes error rate is 0%. best he can on the weighted problem. We

judge difficulty by the approximate “margin”,

Each tree has 2 terminal nodes, grown best-first.
a smooth version of misclassification loss.

/ - /

Bagging fails — boosting does best ever!

Stanford University December 7, 1998 Boosting: 19 Stanford University December 7, 1998 Boosting: 20

- I - Stage-wise Additive Modeling' N

Boosting builds an additive model
F(z) = 2%21 fm(z) and then C(z) = sign[F'(z)].

: this is a zero-sum game, and the
minimax theorem gives the best strategy for We do things like that in statistics!

each player. Furthermore, AdaBoost
prayer. TUThert o GAMs: F(z) =Y, fi(x;)

converges to this optimal strategy!

e Basis expansions: F(z) = X . 0,k (2)

link with statistical properties of m=1nm

actual AdaBoost is tenuous: Traditionally each of the terms f,,(x) is

, and they are fit i.e. least
1. why minimize hardest weighted problem Y (

squares, maximum likelihood
(makes test error smaller?); q ’)

With Boosting, each term is
2. actual AdaBoost does not use a random

) and they are fit in a fashion.
choice of learner,

Simple example: stagewise least-squares? Fix the
3. actual AdaBoost finds the learners f,,(x).

past M — 1 functions, and update the Mth using
a tree:

min E(Y — Z fm(z) = fur(@))?

fum€E€Tree(x)

o / o /

Stanford University December 7, 1998 Boosting: 21 Stanford University December 7, 1998 Boosting: 22

K Boosting and Additive Models' \ / \

e Discrete AdaBoost builds an YR
M - 2
fu(x)=arg min E,(y—g(z
)= cufule)) =arg iy) Pely = o)
m=1
with w(z,y) = e VFm-1(x),
by of (z,9)
CM:
J(F(z)) = Be v(F@) M
¢y = argmin Eye fm(@)
e Given an imperfect Fj;_1(x), the updates in . Cl
Discrete AdaBoost correspond to a Newton = 3 log ¢
e

step towards minimizing]
with e = Ew[l[y?ng(x)]].
J(Fri—1(z) e fu () = Be v(Fm—1(@)tem fu (@)
e Empirical version: at each stage, fy/(x) is

over fu(z) € {—1,1}, with step length cy,. estimated by the classification at the terminal
o FeoY(F(®) iy minimized at nodes of a tree, grown to appropriately
Fla) = llog Py = 1|z) weighted versions of the training data.
2 Py = —1|z) e At the Mth stage of the Discrete AdaBoost

iterations, the weights are such that fy;_1

k / k has weighted training error = 50%. /

Stanford University December 7, 1998 Boosting: 23

Real AdaBoost I

Y; € {—1,1}.
2. Repeat form=1,2,..., M:

(a) Fit the

w; on the training data.
1 P (T)
(b) Set fm(z) < 5log @y € 1t
(c) Set
w; < w; exp[—y; fm(z;)], i=1,2,... N,

and renormalize so that). w; = 1.

3. Output the classifier sign[zgzl fm ()]

- /

Stanford University December 7, 1998 Boosting: 24

4 N GealAdamossy)

1. Start with weights w; =1/N,i=1,2,...,N.

! e Given an imperfect Fj;_1(x), Real AdaBoost
pm(x) = Py(y = 1|x) € [0,1] using weights

e Empirical version: at each stage, P, (-|z) is

k versions of the training data. /

e Real AdaBoost also builds an

J(F(z)) = Ee ¥(F(@),

minimizes
J(Fa—1(z) + fu(x)) = Bemv(Fv1(@)+fu (@)
over fur(x) € R, with solution

1 P,(y=1)
pu— —1 R
Sulw) = 3log 5 0 =)
where the w(z,y) = e~ ¥Fm-1(2)

estimated by averages at the terminal nodes

of a tree, grown to appropriately weighted

Stanford University December 7, 1998

Boosting: 25

-

K works as least as well. /

Why J(F(z)) = Ee vF@? \
i \\\\ :
N\

e ¢ ¥F(*) ig a monotone, smooth upper bound

on misclassification loss at x.

e J(F) is an expected x statistic at its
minimum, and equivalent to the binomial

log-likelihood to second order.

e Stage-wise
estimation of additive models based on trees

Stanford University December 7, 1998

Boosting: 26

/ Stagewise Maximum Likelihood I\

Consider the model

or

Py" = 1|z) = p(x) =

The binomial log-likelihood is

((F(z)) = E[y"log(p(z)) + (1 —y")log(l—p(z))]
= E[y*F(z) —log(1+ ef(x))

Given an
imperfect Fj;_1(x), maximize
UFr—1(z) + fu(x)) over far(z) € R

The algorithm takes a single

Qewton—Step at each stage. /

Stanford University December 7, 1998 Boosting: 27 Stanford University December 7, 1998 Boosting: 28

/ LogitBoost I \ / Additive Logistic Trees' \

1. Start with weights w; =1/N i=1,2,..., N, tree growing allows us to limit the size
F(z) = 0 and probability estimates p(z;) = 1. of each tree, and hence the
2. Repeat for m =1,2,..., M: By collecting terms, we get
(a) Compute the working response and F(z) = Z filz;) + Z Fir(zj, x)
weights j I
L y; —p(@i) +ijkl(l’j,1’k,$l)+---
Z p(wi)(1 — p(z:)) gokl
wi = plzi)(1 - p(z:))

weights w;.

(b) Fit the function f,,(z) by a weighted ﬂﬂﬂmﬂ
least-squares regression of z; to x; using

(c) Update F(z) < F(x) + fm(x) and p(x)

3. Output the classiﬁerM Coordinate functions for
sign|F'(xz)| = sign _ T
gn[F(z)] 8> =1 fm(z)] Boosting uses optimization, as opposed
We also have a natural generalization of to optimization (full least squares,

QogitBoost for / Qackﬁtting,-). /

Stanford University December 7, 1998 Boosting: 29 Stanford University December 7, 1998 Boosting: 30

4) 4 N

Boosting: 32

Stanford University December 7, 1998

Boosting: 31

Stanford University December 7, 1998

o

sosse[d 9g ‘soanyeay 91 ‘1593)00F

Q

‘sururer} 00091

€0’ 6c0° G€0° G¥0° 080" 8 1s00gRepy 93910810
€0’ 8¢0" 0€0° 0O¥P0° 890" 8 1800gEpY °[uen)
€0’ ¢eo” €e0” I¥0T 890" 8 soogepy [edYy
€0° €€0° 9€0° L¥V0° G0 8 1s00g9130]
8T" g8T" 961" 9¢¢ 01 ¢ 1s00gepY 93191081
48 SPTT LSTT L8T° 9%C ¢ 1S00dRPY o[HueH
[aN 0sT” 091" I8T" 1444 4 1800depyV [e9Y
90" SyvT 6GT" ¢8T" 0sc 4 3800 31807]

YC¢I™ = 101 THVD 191397

00¢ 00T 0¢ 0¢ S9pPON

uorjoeiq suorye1al] [eurmiag, POYIRIA

193130 :odwexs] [eo} o81er]

/

%

SOSSB[D g ‘seanjea] g¢ ‘1891 ()00 ‘Sururer) Geyy

(

660° 00T LOT" 44N 8 3S00gepy 932I0SI(J
680° 960’ eoT” 90T 8 }soogepy oljusn)
160° ¢60° coT” qoT” 8 3soogepyVy [eay
880" T60° S60° 960" 8 18001807
82T OFT 99T FLT° T 1S00gRPY 93010SI(]
61T 61T 6GT" ST 4 1sooqepy 9[jusp)
61T LIT° 921" S8¥T° ¢ 1S00gepY [29Y
GOT” ¢IT 0cT” lian 4 18003180
8Y1" = 10110 THVD o8eutqeg

00z 00T 0% 0T sepoN
suorje1al] [euruiag, POYISIN

o3euwrjeg :a[dwexy [eay aster|

/

Stanford University December 7, 1998

-

Weight Trimming I \

e At each iteration, observations with w; < t(3) are

not used for training. ¢(3) is fth quantile of
weight distribution, and 8 € [0.01,0.1]. Works
better for LogitBoost:

— LogitBoost has weights w; = p;(1 — p;) which
are large near the decision boundary.

— AdaBoost has weights w; = e~ ¥if™(®) (recall

yi € {—1,1}). Large for misclassified points.

e For multiple-class procedures, if the class-k logit

K Frie > 15 + log(N), training stops for that class/

Boosting: 33

Stanford University December 7, 1998

-~

~

Summary and Closing Comments'

The introduction of by Schapire,
Freund, and colleagues has brought us an

exciting and important set of new ideas.

Boosting fits additive logistic models, where
each component (base learner) is simple. The
complexity needed for the base learner

depends on the target function.

Little connection between weighted boosting
and bagging; boosting is primarily a bias
reduction procedure, while the goal of

bagging is variance reduction.

The distinction becomes blurred when
weighting is achieved (in boosting) by

importance sampling.

Boosting: 34

Stanford University December 7, 1998 Boosting: 35

4 Margins I \

margin(X) = M(X) = 2Py (x) — 1

Freund & Schapire (1997): Boosting generalizes
because it well above

zero, while keeping the VC dimension under
control (also Vapnik, 1996). With Pr > (1 —)

Pregt(M(X) <0) < Prrain(M(X) <0)

1
2
40 1 (logNlog|H|
VN \ 0% +1ogl/d

o /

Stanford University December 7, 1998 Boosting: 36

4 N

How does Boosting avoid overfitting?

e As iterations proceed, impact of change is
localized.

e Parameters are not jointly optimized — stagewise
estimation the learning process.

e Classifiers are hurt less by overfitting (Cover and
Hart, 1967).

e Margin theory of Schapire and Freund, Vapnik?
Disputed by Breiman (1997).

K. Jury is still out! /

