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General information

Webpage with information and resources:

https://perso.ens-lyon.fr/aurelien.garivier/www.math.univ-

toulouse.fr/ agarivie/concentration.html

References for this lecture:

Probability Essentials / L’essentiel des probabilités

by J. Jacod and P. Protter

Probability and Computing

by M. Mitzenmacher and E. Upfal
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Motivation

Strategic betting: if X1, . . . ,Xn ∼ U{−1, 1} and Sn =
∑n

i=1 Xi , then

E[Sn] = 0 and P(|Sn| ≥ x
√
n) ≤ exp(−x2/2).

But what if you can choose Hi = φi (X1, . . . ,Xi−1) and Zn =
∑n

i=1 HiXi?

Pattern matching: in DNA sequences over X = {A,C ,T ,G}, find

”patterns” = abnormally frequent subsequences.

If X1, . . . ,Xn
iid∼ U(X ), if p ∈ X k and Fn =

∑n−k
i=0 1

{
∩k

j=1 Xi+j = pj} then

E[Fn] = (n − k + 1)/4n, but P
(
Fn > E[Fn] + x

)
≤ ?

Estimating the unseen: what is the probability that the next item is

not in my sample?

X random variable on N, sample X1, . . . ,Xn. Histogram On(x) =
∑n

i=1 1
{
Xi = x

}
. The mass of

the unseen Mn =
∑∞

x=0 P(X = x)1 {On(x) = 0} can be estimated by the Good-Turing estimator

M̂n = n−1∑
x∈N 1

{
On(x) = 1

}
since

∣∣E[Mn]− E[M̂n]
∣∣ ≤ 1/n. But how close are they whp?

=⇒ need concentration not only the the mean of independent variables,

but also for means of dependent variables, and for other functions of

independent variables.
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Probability measures

Universe X = set typically discrete or ⊂ Rd

Sigma-field A of the events

– ∅ ∈ A (and X ∈ A),

– A ∈ A =⇒ Ā ∈ A

– if ∀i ≥ 1,Ai ∈ A then
∞⋃
i=1

Ai ∈ A (and
∞⋂
i=1

Ai ∈ A)

(X ,A) is called a measurable space

Probability P : A → [0, 1]

– P(X ) = 1

– whenever ∀i,Ai ∈ A and ∀i 6= j,Ai ∩ Aj = ∅, P
(∞⋃

i=1

Ai

)
=
∞∑
i=1

P(Ai )

Ex 1: X = {0, 1}n,A = P
(
X
)
,P(x) = 2−n for all x ∈ X .

Ex 2: X = [0, 1],A = B([0, 1]) the smallest sigma-field containing all

open subsets (or all sub-intervals) of X , P = U [0, 1]: P([a, b]) = b − a

whenever 0 ≤ a ≤ b ≤ 1.
Ex 3: X = R,A = B(R), P = standard gaussian distribution:

P
(

[a, b[
)

=

∫ b

a

exp
(
− x2

2

)
√

2π
dx
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Random variables

Let (X ,A,P) be a probability space and (Y,B) be a measurable space.

Random variable X : X → Y such that ∀B ∈ B,X−1(B) ∈ A.
If Y = R, most often B = B(R) and X is called a real random variable.

Composition properties: the sum, product, composition, inf, sup etc. of random variables are

random variables

Law of X = pushforward measure PX : B → [0, 1] defined by

PX (B) = P
(
X−1(B)

)
is a probability on (Y,B)

Generated sigma-field σ(X ) =
{
X−1(B) : B ∈ B

}
Ex 1: X = [0, 1[

(
and A = B([0, 1]

)
, P = U [0, 1[,X = 1[0,1/2[

=⇒ σ(X ) =
{
∅, [0, 1[, [0, 1/2[, [1/2, 1[

}
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Expectation

Let (X ,A,P) be a probability space

– for a simple rv X =
∑n

i=1 ai1Ai , E[X ] =
∑

aiP(Ai )

– for a positive function E[X ] = sup
{
E [Y ] : 0 ≤ Y ≤ X , Y simple

}
– for a real rv X = X+ − X− where X+ = max(X , 0) and X− = −min(X , 0), if

E[X+] <∞ and E[X−] <∞ then E[X ] = E[X+]− E[X−]

L1 = set of integrable rv = vector space on which E is a positive linear

form

L1 = L1 quotiented by P-almost-sure equality, X ∈ Lp if |X |p ∈ L1

Prop: Fatou, Monotone convergence, dominated convergence

Prop: L2 with scalar product 〈X ,Y 〉 = E[XY ] is an Hilbert space

Prop: Expectation = best constant guess if X ∈ L2,

E [X ] = arg min
x∈R

E
[
(X − x)2

]
=⇒ orthogonal projection onto R ⊂ L2

Characterization: X : Ω→ Rd has law Q iff ∀f ∈ Cc(Rd),E
[
f (X )

]
=
∫
fdQ.
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Conditional expectation

Example: H = height, S = sex, W = weight of cats.

What is the best guess if we have side information Y = another rv?

min
φ:Y→Xmeas

E
[(
X − φ(Y )

)2
]

= min
Z σ(Y )−meas

E
[(
X − Z

)2
]

Prop:
{
φ(Y ) : φ : R→ R measurable

}
=
{
Z : R→ R which are σ(Y )− measurable

}
Orthogonal projection onto L2

(
Ω, σ(Y ),P

)
Conditional expectation of X ∈ L2 given a rv Y : the unique rv

E[X |Y ] ∈ L2(Ω, σ(Y ),P) such that

∀Z ∈ L2(Ω, σ(Y ),P), E
[
E[X |Y ]Z

]
= E[XZ ]

Explicit formula in discrete case, depends only on σ(Y ), extended to X ∈ L1 by density

Prop: positive, linear, E
[
E[X |Y ]

]
= E[X ], monotone cv, Fatou,

dominated cv

Jensen’s inequality: if φ : R→ R is convex, if X , φ(X ) ∈ L1 then

φ
(
E[X |Y ]) ≤ E

[
φ(X )|Y

]
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Definition

Filtration (Fn)n= increasing sequence of sigma-fields: ∀n ≥ 0,Fn ⊂ Fn+1 ⊂ A

Martingale (Xn)n such that ∀n ≥ 0,Xn ∈ L1, Xn is Fn-measurable and

∀m ≤ n, E[Xn|Fm] = Xm a.s.

Ex 1: (Zi ) independent, integrable, centered variables, Fn = σ
(
(Xm)m≤n

)
with F0 =

{
∅,Ω

}
=⇒ Xn =

∑n
i=1 Zi is a (Fn)n-martingale

Ex 1’: Martingale transform: if for all i ≥ 1,Hi is Fi−1− measurable,

Xn =
∑n

i=1 HiZi is a (Fn)n-martingale

Ex 2: for any filtration (Fn)n and X ∈ L1, Xn = E[X |Fn] is a martingale

For example Ω = [0, 1[, for all n ≥ 0 and 0 ≤ k ≤ n let Ik,n =
[
(k − 1)2−n, k2−n

[
and

Fn \ Fn−1 =
{
1Ik,n

, 1 ≤ k ≤ 2n
}

. Then Xn =
∑n

k=1

(
2n
∫
Ik,n

f
)
1Ik,n

.
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Stopping times

Stopping time wrt filtration (Fn)n: rv T : Ω→ N∪{+∞} such that

∀n, {T ≤ n} ∈ Fn

Examples: if Xn is Fn-measurable, T = inf
{
n : Xn ≥ 10

}
Generated sigma-field FT =

{
A ∈ A : ∀n,A ∩ {T ≤ n} ∈ Fn}

Martingale Stopping Theorem: E[XT ] = E[X0] and XT is

FT -measurable if either:

– T is bounded

– ∃c such that ∀n, |Xn| ≤ c a.s.

– E[T ] <∞ and ∃c such that ∀n,E
[
|Xn+1 − Xn|

∣∣Fn

]
≤ c a.s.

Doob’s optional stopping: if S and T are two bounded stopping times

such that S ≤ T a.s., then E
[
XT |FS

]
= XS

Doob’s maximal inequality for every x > 0,

P
(

max
1≤j≤n

|Xj | ≥ x
)
≤

E
[
|Xn|

]
x
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Example: ballot theorem

In an election, candidate A obtained a votes and candidate B obtained b < a

votes. Votes where counted one after another. What is the probability that,

during the counting, candidate A was always ahead?

Let n = a + b and for every 1 ≤ k ≤ n, let Sk be the (positive or negative)

number of votes by which A is leading after k votes are counted: Sn = a− b.

Prop: for all 0 ≤ k < n, Xk :=
Sn−k

n−k
is a martingale.

Let T = inf
{
k ∈ {0, . . . , n} : Xk = 0

}
if this set is not empty, or T = n − 1

otherwise (if A is always ahead). T is a bounded stopping time. In the first

case, XT = 0, while in the second case XT = S1 = 1. Hence,

E[XT ] = E[X0] =
E[Sn]

n
=

a− b

a + b

= P(T < n − 1)× 0 + P(T = n − 1)× 1

=⇒ P(T = n − 1) =
a− b

a + b

Ex: gambler’s ruin problem.
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Wald’s equation

Th: Let X1,X2, . . . be nonnegative iid random variables, and let T be a

stopping time. If E[T ] <∞ and E[X ] <∞, then

E

[
T∑
i=1

Xi

]
= E[T ]E[X1] .

Ex: strategic betting (see St Petersburg lottery)
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Azuma-Hoeffding inequality

Th: Let X0, . . . ,Xn be a martingale such that

∀1 ≤ k ≤ n, |Xk − Xk−1| ≤ ck . Then for all x > 0,

P
(
|Xn − X0| > x

)
≤ 2 exp

(
− x2

2
∑n

k=1 c
2
k

)

Application: dynamic betting
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Mc-Diarmid’s inequality

McDiarmid’s inequality: If X1, . . .Xn are independent random variables

on X and f : X n → R is such that ∀1 ≤ i ≤ n,∀x1, . . . , xn, x
′
i ,∣∣f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x

′
i , xi+1, . . . , xn)

∣∣ ≤ ci ,

then

P
(∣∣f (X1, . . . ,Xn)− E

[
f (X1, . . . ,Xn)

]∣∣ ≥ x
)
≤ exp

(
−2x2∑n
i=1 c

2
i

)
.

Sanity check: f (x) =
∑

xi

Example: balls and bins, pattern-matching
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Missing mass estimation: Good-Turing Estimator

X random variable on N, sample X1, . . . ,Xn.

Histogram On(x) =
∑n

i=1 1
{
Xi = x

}
.

Mass of the unseen: Mn =
∑∞

x=0 P(X = x)1 {On(x) = 0}

Good-Turing estimator: M̂n = n−1
∑

x∈N 1
{
On(x) = 1

}
Prop: 0 ≤ E

[
M̂n

]
− E

[
Mn

]
≤ 1/n

Prop: Concentration of M̂n: Mc-Diarmid’s inequality!

Concentration of Mn: see negative association
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