Concentration: Martingales

Master 2 Mathematics and Computer Science

Guillaume Aubrun, Aurélien Garivier, Rémi Gribonval
2020-2021
Table of contents

1. Conditional expectation

2. Martingales
General information

Webpage with information and resources:

References for this lecture:

Probability Essentials / L’essentiel des probabilités
by J. Jacod and P. Protter

Probability and Computing
by M. Mitzenmacher and E. Upfal
Motivation

Strategic betting: if $X_1, \ldots, X_n \sim U\{-1, 1\}$ and $S_n = \sum_{i=1}^{n} X_i$, then $\mathbb{E}[S_n] = 0$ and $\mathbb{P}(|S_n| \geq x\sqrt{n}) \leq \exp(-x^2/2)$.

But what if you can choose $H_i = \phi_i(X_1, \ldots, X_{i-1})$ and $Z_n = \sum_{i=1}^{n} H_i X_i$?

Pattern matching: in DNA sequences over $\mathcal{X} = \{A, C, T, G\}$, find ”patterns” = abnormally frequent subsequences.

If $X_1, \ldots, X_n \overset{iid}{\sim} U(\mathcal{X})$, if $p \in \mathcal{X}^k$ and $F_n = \sum_{i=0}^{n-k} 1\{ \cap_{j=1}^{k} X_{i+j} = p_j \}$ then $\mathbb{E}[F_n] = (n - k + 1)/4^n$, but $\mathbb{P}(F_n > \mathbb{E}[F_n] + x) \leq ?$

Estimating the unseen: what is the probability that the next item is not in my sample?

X random variable on \mathbb{N}, sample X_1, \ldots, X_n. Histogram $O_n(x) = \sum_{i=1}^{n} 1\{X_i = x\}$. The mass of the unseen $M_n = \sum_{x=0}^{\infty} \mathbb{P}(X = x) 1\{O_n(x) = 0\}$ can be estimated by the *Good-Turing estimator* $\hat{M}_n = n^{-1} \sum_{x \in \mathbb{N}} 1\{O_n(x) = 1\}$ since $|\mathbb{E}[M_n] - \mathbb{E}[\hat{M}_n]| \leq 1/n$. But how close are they whp?

\implies need concentration not only the the mean of independent variables, but also for means of dependent variables, and for other functions of independent variables.
Conditional expectation
Probability measures

Universe \(\mathcal{X} = \) set typically discrete or \(\subset \mathbb{R}^d \)

Sigma-field \(\mathcal{A} \) of the events

- \(\emptyset \in \mathcal{A} \) (and \(\mathcal{X} \in \mathcal{A} \)),
- \(A \in \mathcal{A} \implies \overline{A} \in \mathcal{A} \)
- if \(\forall i \geq 1, A_i \in \mathcal{A} \) then \(\bigcup_{i=1}^{\infty} A_i \in \mathcal{A} \) (and \(\bigcap_{i=1}^{\infty} A_i \in \mathcal{A} \))

\((\mathcal{X}, \mathcal{A})\) is called a **measurable space**

Probability \(\mathbb{P} : \mathcal{A} \rightarrow [0, 1] \)

- \(\mathbb{P}(\mathcal{X}) = 1 \)
- whenever \(\forall i, A_i \in \mathcal{A} \) and \(\forall i \neq j, A_i \cap A_j = \emptyset \), \(\mathbb{P} \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) \)

Ex 1: \(\mathcal{X} = \{0, 1\}^n, \mathcal{A} = \mathcal{P}(\mathcal{X}), \mathbb{P}(x) = 2^{-n} \) for all \(x \in \mathcal{X} \).

Ex 2: \(\mathcal{X} = [0, 1], \mathcal{A} = \mathcal{B}([0, 1]) \) the smallest sigma-field containing all open subsets (or all sub-intervals) of \(\mathcal{X} \), \(\mathbb{P} = \mathcal{U}[0, 1]: \mathbb{P}([a, b]) = b - a \) whenever \(0 \leq a \leq b \leq 1 \).

Ex 3: \(\mathcal{X} = \mathbb{R}, \mathcal{A} = \mathcal{B}(\mathbb{R}), \mathbb{P} = \) standard gaussian distribution:

\[
\mathbb{P}([a, b]) = \int_a^b \frac{\exp \left(-\frac{x^2}{2} \right) }{\sqrt{2\pi}} \, dx
\]
Let $(\mathcal{X}, \mathcal{A}, \mathbb{P})$ be a probability space and $(\mathcal{Y}, \mathcal{B})$ be a measurable space.

Random variable $X : \mathcal{X} \to \mathcal{Y}$ such that $\forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$.

If $\mathcal{Y} = \mathbb{R}$, most often $\mathcal{B} = \mathcal{B}(\mathbb{R})$ and X is called a *real random variable*.

Composition properties: the sum, product, composition, inf, sup etc. of random variables are random variables.

Law of $X = \text{pushforward measure}$ $P_X : \mathcal{B} \to [0, 1]$ defined by $P_X(B) = \mathbb{P}(X^{-1}(B))$ is a probability on $(\mathcal{Y}, \mathcal{B})$.

Generated sigma-field $\sigma(X) = \left\{ X^{-1}(B) : B \in \mathcal{B} \right\}$

Ex 1: $\mathcal{X} = [0, 1]$ (and $\mathcal{A} = \mathcal{B}([0, 1])$, $\mathbb{P} = \mathcal{U}[0, 1]$, $X = \mathbb{1}_{[0,1/2]}$ => $\sigma(X) = \left\{ \emptyset, [0,1[, [0,1/2[, [1/2,1] \right\}$

Expectation

Let \((\mathcal{X}, \mathcal{A}, \mathbb{P})\) be a probability space

- for a simple rv \(X = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}\), \(\mathbb{E}[X] = \sum a_i \mathbb{P}(A_i)\)
- for a positive function \(\mathbb{E}[X] = \sup \{\mathbb{E}[Y] : 0 \leq Y \leq X, \ Y \text{ simple}\}\)
- for a real rv \(X = X_+ - X_-\) where \(X_+ = \max(X, 0)\) and \(X_- = -\min(X, 0)\), if \(\mathbb{E}[X_+] < \infty\) and \(\mathbb{E}[X_-] < \infty\) then \(\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-]\)

\(L^1\) = set of integrable rv = vector space on which \(\mathbb{E}\) is a positive linear form

\(L^1 = L^1\) quotiented by \(\mathbb{P}\)-almost-sure equality, \(X \in L^p\) if \(|X|^p \in L^1\)

Prop: Fatou, Monotone convergence, dominated convergence

Prop: \(L^2\) with scalar product \(\langle X, Y \rangle = \mathbb{E}[XY]\) is an Hilbert space

Prop: Expectation = best constant guess if \(X \in L^2\),
\[E[X] = \arg \min_{x \in \mathbb{R}} \mathbb{E}[(X - x)^2] \implies \text{orthogonal projection onto } \mathbb{R} \subset L^2 \]

Characterization: \(X : \Omega \to \mathbb{R}^d\) has law \(Q\) iff \(\forall f \in C_c(\mathbb{R}^d), \mathbb{E}[f(X)] = \int f dQ\).
Conditional expectation

Example: $H =$ height, $S =$ sex, $W =$ weight of cats.

What is the best guess if we have side information $Y =$ another rv?

$$
\min_{\phi: \mathbb{R} \to \mathbb{R}} \mathbb{E}[(X - \phi(Y))^2] = \min_{Z \in \sigma(Y) - \text{measurable}} \mathbb{E}[(X - Z)^2]
$$

Prop: $\{ \phi(Y) : \phi : \mathbb{R} \to \mathbb{R} \text{ measurable} \} = \{ Z : X \to \mathbb{R} \text{ which are } \sigma(Y) - \text{measurable} \}$

Orthogonal projection onto $L^2(\Omega, \sigma(Y), \mathbb{P})$

Conditional expectation of $X \in L^2$ given a rv Y: the unique rv $\mathbb{E}[X|Y] \in L^2(\Omega, \sigma(Y), \mathbb{P})$ such that

$$
\forall Z \in L^2(\Omega, \sigma(Y), \mathbb{P}), \mathbb{E}[\mathbb{E}[X|Y]Z] = \mathbb{E}[XZ]
$$

Explicit formula in discrete case, depends only on $\sigma(Y)$, extended to $X \in L^1$ by density

Prop: positive, linear, $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$, monotone cv, Fatou, dominated cv

Jensen’s inequality: if $\phi : \mathbb{R} \to \mathbb{R}$ is convex, if $X, \phi(X) \in L^1$ then

$$
\phi(\mathbb{E}[X|Y]) \leq \mathbb{E}[\phi(X)|Y]
$$
Martingales
Filtration \((\mathcal{F}_n)_n\) — increasing sequence of sigma-fields: \(\forall n \geq 0, \mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{A}\)

Martingale \((X_n)_n\) such that \(\forall n \geq 0, X_n \in L^1\), \(X_n\) is \(\mathcal{F}_n\)-measurable and \(\forall m \leq n, \mathbb{E}[X_n|\mathcal{F}_m] = X_m\) a.s.

Ex 1: \((Z_i)\) independent, integrable, centered variables, \(\mathcal{F}_n = \sigma((X_m)_{m \leq n})\) with \(\mathcal{F}_0 = \{\emptyset, \Omega\} \implies X_n = \sum_{i=1}^{n} Z_i\) is a \((\mathcal{F}_n)_n\)-martingale

Ex 1’: Martingale transform: if for all \(i \geq 1\), \(H_i\) is \(\mathcal{F}_{i-1}\) measurable, \(X_n = \sum_{i=1}^{n} H_i Z_i\) is a \((\mathcal{F}_n)_n\)-martingale

Ex 2: for any filtration \((\mathcal{F}_n)_n\) and \(X \in L^1\), \(X_n = \mathbb{E}[X|\mathcal{F}_n]\) is a martingale

For example \(\Omega = [0, 1]\), for all \(n \geq 0\) and \(0 \leq k \leq n\) let \(l_{k,n} = \left[(k - 1)2^{-n}, k2^{-n}\right]\) and \(\mathcal{F}_n \setminus \mathcal{F}_{n-1} = \{1_{l_{k,n}}, 1 \leq k \leq 2^n\}\). Then \(X_n = \sum_{k=1}^{n} \left(2^n \int_{l_{k,n}} f\right) 1_{l_{k,n}}\).
Stopping times

Stopping time wrt filtration \((\mathcal{F}_n)_n\): rv \(T : \Omega \to \mathbb{N} \cup \{+\infty\}\) such that
\[
\forall n, \{T \leq n\} \in \mathcal{F}_n
\]

Examples: if \(X_n\) is \(\mathcal{F}_n\)-measurable, \(T = \inf \{n : X_n \geq 10\}\)

Generated sigma-field \(\mathcal{F}_T = \{A \in \mathcal{A} : \forall n, A \cap \{T \leq n\} \in \mathcal{F}_n\}\)

Martingale Stopping Theorem: \(\mathbb{E}[X_T] = \mathbb{E}[X_0]\) and \(X_T\) is \(\mathcal{F}_T\)-measurable if either:

1. \(T\) is bounded
2. \(\exists c\) such that \(\forall n, |X_n| \leq c\) a.s.
3. \(\mathbb{E}[T] < \infty\) and \(\exists c\) such that \(\forall n, \mathbb{E}[|X_{n+1} - X_n| |\mathcal{F}_n] \leq c\) a.s.

Doob’s optional stopping: if \(S\) and \(T\) are two bounded stopping times such that \(S \leq T\) a.s., then \(\mathbb{E}[X_T | \mathcal{F}_S] = X_S\)

Doob’s maximal inequality for every \(x > 0\),
\[
\mathbb{P}\left(\max_{1 \leq j \leq n} |M_j| \geq x\right) \leq \frac{\mathbb{E}[|M_n|]}{x}
\]
Example: ballot theorem

In an election, candidate A obtained a votes and candidate B obtained $b < a$ votes. Votes were counted one after another. What is the probability that, during the counting, candidate A was always ahead?

Let $n = a + b$ and for every $1 \leq k \leq n$, let S_k be the (positive or negative) number of votes by which A is leading after k votes are counted: $S_n = a - b$.

Prop: for all $0 \leq k < n$, $X_k := \frac{S_{n-k}}{n-k}$ is a martingale.

Let $T = \inf \{k \in \{0, \ldots, n\} : X_k = 0\}$ if this set is not empty, or $T = n - 1$ otherwise (if A is always ahead). T is a bounded stopping time. In the first case, $X_T = 0$, while in the second case $X_T = S_1 = 1$. Hence,

$$
\mathbb{E}[X_T] = \mathbb{E}[X_0] = \frac{\mathbb{E}[S_n]}{n} = \frac{a-b}{a+b}
$$

$$
= \mathbb{P}(T < n - 1) \times 0 + \mathbb{P}(T = n - 1) \times 1
$$

$$
\implies \mathbb{P}(T = n - 1) = \frac{a-b}{a+b}
$$

Ex: gambler’s ruin problem.
Wald’s equation

Th: Let X_1, X_2, \ldots be nonnegative iid random variables, and let T be a stopping time. If $\mathbb{E}[T] < \infty$ and $\mathbb{E}[X] < \infty$, then

$$
\mathbb{E} \left[\sum_{i=1}^{T} X_i \right] = \mathbb{E}[T] \mathbb{E}[X_1].
$$

Ex: strategic betting (see St Petersburg lottery)
Th: Let X_0, \ldots, X_n be a martingale such that
\[\forall 1 \leq k \leq n, |X_k - X_{k-1}| \leq c_k. \]
Then for all $x > 0$,
\[\mathbb{P}(|X_n - X_0| > x) \leq 2 \exp \left(-\frac{x^2}{2 \sum_{k=1}^{n} c_k^2} \right) \]

Application: dynamic betting
Mc-Diarmid’s inequality: If X_1, \ldots, X_n are independent random variables on \mathcal{X} and $f : \mathcal{X}^n \rightarrow \mathbb{R}$ is such that $\forall 1 \leq i \leq n, \forall x_1, \ldots, x_n, x_i'$,

$$|f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x_i', x_{i+1}, \ldots, x_n)| \leq c_i,$$

then

$$\mathbb{P}\left(|f(X_1, \ldots, X_n) - \mathbb{E}[f(X_1, \ldots, X_n)]| \geq x\right) \leq \exp\left(\frac{-2x^2}{\sum_{i=1}^{n} c_i^2}\right).$$

Sanity check: $f(x) = \sum x_i$

Example: balls and bins, pattern-matching
X random variable on \mathbb{N}, sample X_1, \ldots, X_n.

Histogram $O_n(x) = \sum_{i=1}^{n} \mathbb{1}\{X_i = x\}$.

Mass of the unseen: $M_n = \sum_{x=0}^{\infty} \mathbb{P}(X = x) \mathbb{1}\{O_n(x) = 0\}$

Good-Turing estimator: $\hat{M}_n = n^{-1} \sum_{x \in \mathbb{N}} \mathbb{1}\{O_n(x) = 1\}$

Prop: $0 \leq \mathbb{E}[\hat{M}_n] - \mathbb{E}[M_n] \leq 1/n$

Prop: Concentration of \hat{M}_n: Mc-Diarmid’s inequality!

Concentration of M_n: see negative association