Concentration: Martingales

Master 2 Mathematics and Computer Science

Guillaume Aubrun, <u>Aurélien Garivier</u>, Rémi Gribonval 2020-2021

- 1. Conditional expectation
- 2. Martingales

General information

Webpage with information and resources: https://perso.ens-lyon.fr/aurelien.garivier/www.math.univtoulouse.fr/_agarivie/concentration.html

References for this lecture:

Probability Essentials / L'essentiel des probabilités by J. Jacod and P. Protter

Probability and Computing by M. Mitzenmacher and E. Upfal

Motivation

Strategic betting: if $X_1, \ldots, X_n \sim \mathcal{U}\{-1, 1\}$ and $S_n = \sum_{i=1}^n X_i$, then $\mathbb{E}[S_n] = 0$ and $\mathbb{P}(|S_n| \ge x\sqrt{n}) \le \exp(-x^2/2)$. But what if you can choose $H_i = \phi_i(X_1, \ldots, X_{i-1})$ and $Z_n = \sum_{i=1}^n H_i X_i$? **Pattern matching**: in DNA sequences over $\mathcal{X} = \{A, C, T, G\}$, find

"patterns" = abnormally frequent subsequences.

If
$$X_1, \ldots, X_n \stackrel{\text{\tiny ud}}{\sim} \mathcal{U}(\mathcal{X})$$
, if $p \in \mathcal{X}^k$ and $F_n = \sum_{i=0}^{n-k} \mathbb{1} \{ \bigcap_{j=1}^k X_{i+j} = p_j \}$ then
 $\mathbb{E}[F_n] = (n-k+1)/4^n$, but $\mathbb{P}(F_n > \mathbb{E}[F_n] + x) \leq ?$

Estimating the unseen: what is the probability that the next item is not in my sample?

X random variable on \mathbb{N} , sample X_1, \ldots, X_n . Histogram $O_n(x) = \sum_{i=1}^n \mathbb{1} \{X_i = x\}$. The mass of the unseen $M_n = \sum_{x=0}^{\infty} \mathbb{P}(X = x)\mathbb{1} \{O_n(x) = 0\}$ can be estimated by the *Good-Turing estimator* $\hat{M}_n = n^{-1} \sum_{x \in \mathbb{N}} \mathbb{1} \{O_n(x) = 1\}$ since $|\mathbb{E}[M_n] - \mathbb{E}[\hat{M}_n]| \leq 1/n$. But how close are they whp?

 \implies need concentration not only the the mean of independent variables, but also for means of dependent variables, and for other functions of independent variables.

Conditional expectation

Probability measures

Universe $\mathcal{X} = \text{set typically discrete or } \subset \mathbb{R}^d$ **Sigma-field** \mathcal{A} of the *events*

$$\begin{array}{l} - \quad \emptyset \in \mathcal{A} \text{ (and } \mathcal{X} \in \mathcal{A}), \\ - \quad A \in \mathcal{A} \implies \bar{A} \in \mathcal{A} \\ - \quad \text{if } \forall i \geq 1, A_i \in \mathcal{A} \text{ then } \bigcup_{i=1}^{\infty} A_i \in \mathcal{A} \text{ (and } \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}) \end{array}$$

 $(\mathcal{X}, \mathcal{A})$ is called a measurable space

Probability $\mathbb{P}: \mathcal{A} \to [0, 1]$

 $- \mathbb{P}(\mathcal{X}) = 1$

$$- \text{ whenever } \forall i, A_i \in \mathcal{A} \text{ and } \forall i \neq j, A_i \cap A_j = \emptyset, \ \mathbb{P}\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty \mathbb{P}(A_i)$$

<u>Ex 1</u>: $\mathcal{X} = \{0, 1\}^n$, $\mathcal{A} = \mathcal{P}(\mathcal{X})$, $\mathbb{P}(x) = 2^{-n}$ for all $x \in \mathcal{X}$. <u>Ex 2</u>: $\mathcal{X} = [0, 1]$, $\mathcal{A} = \mathcal{B}([0, 1])$ the smallest sigma-field containing all open subsets (or all sub-intervals) of \mathcal{X} , $\mathbb{P} = \mathcal{U}[0, 1]$: $\mathbb{P}([a, b]) = b - a$ whenever $0 \le a \le b \le 1$. <u>Ex 3</u>: $\mathcal{X} = \mathbb{R}$, $\mathcal{A} = \mathcal{B}(\mathbb{R})$, \mathbb{P} = standard gaussian distribution:

$$\mathbb{P}([a, b[) = \int_a^b \frac{\exp\left(-\frac{x^2}{2}\right)}{\sqrt{2\pi}} dx$$

Let $(\mathcal{X}, \mathcal{A}, \mathbb{P})$ be a probability space and $(\mathcal{Y}, \mathcal{B})$ be a measurable space.

Random variable $X : \mathcal{X} \to \mathcal{Y}$ such that $\forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$. If $\mathcal{Y} = \mathbb{R}$, most often $\mathcal{B} = \mathcal{B}(\mathbb{R})$ and X is called a *real random variable*.

Composition properties: the sum, product, composition, inf, sup etc. of random variables are random variables

Law of X = pushforward measure $P_X : \mathcal{B} \to [0,1]$ defined by $P_X(\mathcal{B}) = \mathbb{P}(X^{-1}(\mathcal{B}))$ is a probability on $(\mathcal{Y}, \mathcal{B})$

Generated sigma-field $\sigma(X) = \left\{ X^{-1}(B) : B \in \mathcal{B} \right\}$

$$\underline{\text{Ex 1}}: \ \mathcal{X} = [0,1[\text{ (and } A = \mathcal{B}([0,1]), \ \mathbb{P} = \mathcal{U}[0,1[,X = \mathbb{1}_{[0,1/2[}])] \\ \implies \sigma(X) = \left\{ \emptyset, [0,1[,[0,1/2[,[1/2,1[]]]) \right\}$$

Expectation

Let $(\mathcal{X},\mathcal{A},\mathbb{P})$ be a probability space

- for a simple rv $X = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}$, $\mathbb{E}[X] = \sum a_i \mathbb{P}(A_i)$
- for a positive function $\mathbb{E}[X] = \sup \left\{ E[Y] : 0 \le Y \le X \text{ , } Y \text{ simple} \right\}$
- for a real rv $X = X_+ X_-$ where $X_+ = \max(X, 0)$ and $X_- = -\min(X, 0)$, if $\mathbb{E}[X_+] < \infty$ and $\mathbb{E}[X_-] < \infty$ then $\mathbb{E}[X] = \mathbb{E}[X_+] \mathbb{E}[X_-]$

 $\mathcal{L}^1=\mathsf{set}$ of integrable $\mathsf{rv}=\mathsf{vector}$ space on which $\mathbb E$ is a positive linear form

 $L^1 = \mathcal{L}^1$ quotiented by \mathbb{P} -almost-sure equality, $X \in L^p$ if $|X|^p \in L^1$ **Prop**: Fatou, Monotone convergence, dominated convergence **Prop**: L^2 with scalar product $\langle X, Y \rangle = \mathbb{E}[XY]$ is an Hilbert space **Prop: Expectation = best constant guess** if $X \in L^2$, $E[X] = \underset{x \in \mathbb{R}}{\operatorname{arg\,min}} \mathbb{E}[(X - x)^2] \implies \text{orthogonal projection onto } \mathbb{R} \subset L^2$

Characterization: $X : \Omega \to \mathbb{R}^d$ has law Q iff $\forall f \in \mathcal{C}_c(\mathbb{R}^d), \mathbb{E}[f(X)] = \int f dQ$.

Conditional expectation

Example: H = height, S = sex, W = weight of cats.

What is the best guess if we have side information Y = another rv?

$$\min_{\phi:\mathcal{Y}\to\mathcal{X}\mathrm{meas}} \mathbb{E}\Big[\big(X-\phi(Y)\big)^2\Big] = \min_{Z \ \sigma(Y)-\mathrm{meas}} \mathbb{E}\Big[\big(X-Z\big)^2\Big]$$

 $\mathsf{Prop:}\ \left\{\phi(Y):\phi:\mathbb{R}\to\mathbb{R}\ \mathsf{measurable}\right\}=\left\{Z:\mathbb{R}\to\mathbb{R}\ \mathsf{which}\ \mathsf{are}\ \sigma(Y)-\mathsf{measurable}\right\}$

Orthogonal projection onto $L^2(\Omega, \sigma(Y), \mathbb{P})$

Conditional expectation of $X \in L^2$ given a rv Y: the unique rv $\mathbb{E}[X|Y] \in L^2(\Omega, \sigma(Y), \mathbb{P})$ such that

$$orall Z \in L^2(\Omega, \sigma(Y), \mathbb{P}), \ \mathbb{E}ig[\mathbb{E}[X|Y]Zig] = \mathbb{E}[XZ]$$

Explicit formula in discrete case, depends only on $\sigma(Y)$, extended to $X \in L^1$ by density

Prop: positive, linear, $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$, monotone cv, Fatou, dominated cv

Jensen's inequality: if $\phi : \mathbb{R} \to \mathbb{R}$ is convex, if $X, \phi(X) \in L^1$ then $\phi(\mathbb{E}[X|Y]) \leq \mathbb{E}[\phi(X)|Y]$

Martingales

Filtration $(\mathcal{F}_n)_n$ = increasing sequence of sigma-fields: $\forall n \ge 0, \mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{A}$ **Martingale** $(X_n)_n$ such that $\forall n \ge 0, X_n \in L^1$, X_n is \mathcal{F}_n -measurable and $\forall m \le n, \mathbb{E}[X_n|\mathcal{F}_m] = X_m$ a.s.

<u>Ex 1</u>: (*Z_i*) independent, integrable, centered variables, $\mathcal{F}_n = \sigma((X_m)_{m \le n})$ with $\mathcal{F}_0 = \{\emptyset, \Omega\} \implies X_n = \sum_{i=1}^n Z_i$ is a $(\mathcal{F}_n)_n$ -martingale

<u>Ex 1'</u>: Martingale transform: if for all $i \ge 1, H_i$ is \mathcal{F}_{i-1} - measurable, $X_n = \sum_{i=1}^n H_i Z_i$ is a $(\mathcal{F}_n)_n$ -martingale

Ex 2: for any filtration $(\mathcal{F}_n)_n$ and $X \in L^1$, $X_n = \mathbb{E}[X|\mathcal{F}_n]$ is a martingale For example $\Omega = [0, 1[$, for all $n \ge 0$ and $0 \le k \le n$ let $I_{k,n} = [(k - 1)2^{-n}, k2^{-n}[$ and $\mathcal{F}_n \setminus \mathcal{F}_{n-1} = \{\mathbb{1}_{I_{k,n}}, 1 \le k \le 2^n\}$. Then $X_n = \sum_{k=1}^n (2^n \int_{I_{k,n}} f) \mathbb{1}_{I_{k,n}}$.

Stopping times

Stopping time wrt filtration $(\mathcal{F}_n)_n$: rv $T : \Omega \to \mathbb{N} \cup \{+\infty\}$ such that $\forall n, \{T \leq n\} \in \mathcal{F}_n$

Examples: if X_n is \mathcal{F}_n -measurable, $T = \inf \{n : X_n \ge 10\}$

Generated sigma-field $\mathcal{F}_{\mathcal{T}} = \left\{ A \in \mathcal{A} : \forall n, A \cap \{ \mathcal{T} \leq n \} \in \mathcal{F}_n \right\}$

Martingale Stopping Theorem: $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ and X_T is \mathcal{F}_T -measurable if either:

- T is bounded
- $\exists c \text{ such that } \forall n, |X_n| \leq c \text{ a.s.}$
- $\ \mathbb{E}[\mathcal{T}] < \infty \ \text{and} \ \exists c \ \text{such that} \ \forall n, \mathbb{E} \left| |X_{n+1} X_n| \big| \mathcal{F}_n \right| \leq c \ \text{a.s.}$

Doob's optional stopping: if *S* and *T* are two bounded stopping times such that $S \leq T$ a.s., then $\mathbb{E}[X_T | \mathcal{F}_S] = X_S$

Doob's maximal inequality for every x > 0,

$$\mathbb{P}\Big(\max_{1\leq j\leq n}|X_j|\geq x\Big)\leq \frac{\mathbb{E}\big[|X_n|\big]}{x}$$

Example: ballot theorem

In an election, candidate A obtained a votes and candidate B obtained b < a votes. Votes where counted one after another. What is the probability that, during the counting, candidate A was always ahead?

Let n = a + b and for every $1 \le k \le n$, let S_k be the (positive or negative) number of votes by which A is leading after k votes are counted: $S_n = a - b$.

Prop: for all $0 \le k < n$, $X_k := \frac{S_{n-k}}{n-k}$ is a martingale.

Let $T = \inf \{k \in \{0, ..., n\} : X_k = 0\}$ if this set is not empty, or T = n - 1 otherwise (if A is always ahead). T is a bounded stopping time. In the first case, $X_T = 0$, while in the second case $X_T = S_1 = 1$. Hence,

$$\mathbb{E}[X_T] = \mathbb{E}[X_0] = \frac{\mathbb{E}[S_n]}{n} = \frac{a-b}{a+b}$$
$$= \mathbb{P}(T < n-1) \times 0 + \mathbb{P}(T = n-1) \times 1$$
$$\implies \mathbb{P}(T = n-1) = \frac{a-b}{a+b}$$

Ex: gambler's ruin problem.

Th: Let X_1, X_2, \ldots be nonnegative iid random variables, and let T be a stopping time. If $\mathbb{E}[T] < \infty$ and $\mathbb{E}[X] < \infty$, then

$$\mathbb{E}\left[\sum_{i=1}^{T} X_i\right] = \mathbb{E}[T] \mathbb{E}[X_1]$$

Ex: strategic betting (see St Petersburg lottery)

Th: Let
$$X_0, \ldots, X_n$$
 be a martingale such that
 $\forall 1 \le k \le n, |X_k - X_{k-1}| \le c_k$. Then for all $x > 0$,
 $\mathbb{P}(|X_n - X_0| > x) \le 2 \exp\left(-\frac{x^2}{2\sum_{k=1}^n c_k^2}\right)$

.

Application: dynamic betting

~

-

McDiarmid's inequality: If X_1, \ldots, X_n are independent random variables on \mathcal{X} and $f : \mathcal{X}^n \to \mathbb{R}$ is such that $\forall 1 \leq i \leq n, \forall x_1, \ldots, x_n, x'_i$,

$$f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) \Big| \leq c_i$$

then

$$\mathbb{P}\Big(\Big|f(X_1,\ldots,X_n)-\mathbb{E}\big[f(X_1,\ldots,X_n)\big]\Big|\geq x\Big)\leq \exp\left(rac{-2x^2}{\sum_{i=1}^n c_i^2}
ight)\;.$$

Sanity check: $f(x) = \sum x_i$

Example: balls and bins, pattern-matching

X random variable on \mathbb{N} , sample X_1, \ldots, X_n . Histogram $O_n(x) = \sum_{i=1}^n \mathbb{1}\{X_i = x\}$. Mass of the unseen: $M_n = \sum_{x=0}^{\infty} \mathbb{P}(X = x)\mathbb{1}\{O_n(x) = 0\}$ Good-Turing estimator: $\hat{M}_n = n^{-1} \sum_{x \in \mathbb{N}} \mathbb{1}\{O_n(x) = 1\}$ **Prop:** $0 \leq \mathbb{E}[\hat{M}_n] - \mathbb{E}[M_n] \leq 1/n$ **Prop:** Concentration of \hat{M}_n : Mc-Diarmid's inequality!

Concentration of M_n : see negative association