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Last week - CS only

® Deviations for the averages of random variables
v Weak law of large numbers
v Central limit theorem
v Markov, Chebyshev, Hoeffding’s inequality
v Chernoff’'s bounding technique

® Conditional expectation and martingales
v Reminders on measure theory
v Martingales and stopping times
v Doob’s maximal inequality
v Azuma-Hoeffding’s inequality

+ application to missing mass estimation: to be continued by A. Garivier
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Last week - CS only

® Deviations for the averages of random variables
v Weak law of large numbers
v Central limit theorem
v Markov, Chebyshev, Hoeffding’s inequality
v Chernoff’'s bounding technique

® Conditional expectation and martingales
v Reminders on measure theory
v Martlngales andstopplng times

M2 Maths Avancées:

“Azuma-Hoeffding’s meqallt . see A. Garivier’s course

+ application to missing mass estimation: to be continued by A. Garivier
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This week

® Bounded difference (McDiarmid’s) inequality

® The PAC framework for statistical learning

® Sub-Gaussianity / sub-exponential variables



McDiarmid’s inequality
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Motivation

® Concentration of the empirical mean
v ni.i.d.samples Xi,...,X,

S I
]

v empirical mean X, := X; = f(X1,...,X,)

1

1

v (under assumptions) concentration around
B[f(X1,...,X,)] = B[X]
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Motivation

® Concentration of the empirical mean
v ni.i.d.samples Xi,...,X,

v empirical mean X, :=1) X;= f(X;,...,X,)
=1
v (under assumptions) concentration around
B[f(X1,...,X,)] = B[X]
® Going further

v What if samples not identically distributed ?
v What about other functions of the samples ?

f(Xq,..., X, ::Sup% h(X;
(Xiseees Xo) = smp &5 AKX

/,'sz,.l
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McDiarmid’s inequality
aka bounded difference inequality

® Theorem (McDiarmid’s inequality)

v Consider independent random variables X1, ..., X,
and f : X" — R
v Assume that V1 <i<n,V(zi,...,z,) € X"

LlyeweyLi—1,Ljy Litly---3Ln) — L1yeeeyLi—1,Lyy Litly---,Ln)| > 6
[/ ) — f( i )| <
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McDiarmid’'s inequality
aka bounded difference inequality

® Theorem (McDiarmid’s inequality)

v Consider independent random variables X1, ..., X,
and f: X" — R

v Assume that V1 <i<n,V(zi,...,z,) € X"

|f<331, co oy Lj—1yLjs Lj414y - - - ,$n> — f(a:l, ce ,xi_l,CE;;,ZEH_l, “e ,$n)| S C;

v Then, for each t>0

2¢2

P(f(X1,...,X) —E[f(X1,....X,)] >t) <e Zitac

_ 2¢2

P(F(X1,..., X)) —E[f(X1,....X,)] < —t) < e S
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Proof sketch & examples

® Proof sketch
v build a martingale 7= f(X) Z; = ElZ|Xy,..., X]

v use Azuma'’s inequality (cf last course by A. Gatrivier)

P b blhtyandC mpun g Foundations of
' Machine Learning eesae

® Details
v Probability & Computing section 12.5

+ (the name « McDiarmid » does not appear)
v Foundations of Machine Learning, Annex D

® Home practice: sanity check
v retrieve Hoeffding’s inequality using ~ f(z) =)

1
v d
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The PAC learning framework
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High dimensional statistical learning
® Goal

+ use training data to infer parameters 0 to achieve a certain task

+ avoid overfitting: ensure generalization to unseen data of similar type

® Training collection = large point cloud X

+ signals, images, ...
+ feature vectors, labels, ...

Pigitrecognition (MINIST) Image classification Sound classification
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High dimensional statistical learning
® Goal

+ use training data to infer parameters 0 to achieve a certain task

+ avoid overfitting: ensure generalization to unseen data of similar type

® Training collection = large point cloud -t
+ signals, images, ...
+ feature vectors, labels, ...

® Examples of tasks & parameters

»g“f% . €electro e cars
* 3 % :
F @ O g
) o
¢
® ¢
planes
B PCA B Clustering B Dictionary learning B Classification
L = principal subspace () = = centroids O = = dictionary atoms m = classifier parameter:

(e.g. support vectors)

W&z'ua,|



Vocabulary - binary classification

® Training samples & labels z, €¢ X
yi €10,1}, 1 <i<n

Z; = (ZEZ,yZ) cZ =4 X {0,1}
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Vocabulary - binary classification

® Training samples & labels z;, € X
yi €10,1}, 1 <i<n

2 — (xz,yz) cZ =4 X {0,1}
® Hypothesis class: family of classifiers
H C {0,1}* ={h: X = {0,1}} oo ,°

v typically a parametric family H = {hg : 0 € ©}
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Vocabulary - binary classification

® Training samples & labels z;, € X
yi €10,1}, 1 <i<n

2 — (QIZ‘Z,yZ) cZ =4 X {0,1}
® Hypothesis class: family of classifiers
H C {0,1}* ={h: X = {0,1}} oo ,°
v typically a parametric family H = {hg : 0 € ©}
® Loss function

{: ZxH—->R

v Scalar f(z, h) = relevance of hypothesis h for sample z (smaller=better)

(]
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Vocabulary - ‘generic/ framework

® Loss function

{: ZxH—->R

v Scalar £ (Z, h) = relevance of hypothesis h for sample z (smaller=better)
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Unsupervised learning examples

® Principal Component Analysis ® K-means clustering

ki ¥
IR )
x)};ﬁ‘ ,’?J‘. ‘ Z‘; o *

B 4
. m@ﬁ};
T L
5 5
3
H 3
x

® Maximum likelihood density fittin . -
parametric density modeling y g ExerC|Se: SUQQESt pOSS|b|e

-sample space
-hypothesis class
-loss function ?
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Unsupervised learning examples

® Principal Component Analysis ® K-means clustering
2 = x; € RY ﬂﬁ?

ki ¥
IR )
x)};ﬁ‘ ,’?J‘. ‘ Z‘; o *

. *%;F"ﬂ "
E ;
P .o
xuf:‘ ﬁ;;, X K
T o e
R 5 .
o £ i S
B R

% A :

* ;'%&

H = {h subsp. of R%, dim(h) =k}

Uz, h) = dist?(z,h) = ||z — Ppz?

e Maximum likelihood density fitting - '
parametric density modeling ExerC|Se. SUQQESt pOSS|bIe

-sample space
-hypothesis class
-loss function ?
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Unsupervised learning examples

® Principal Component Analysis ® K-means clustering
z; = x; € RY s
H = {h subsp. of R%, dim(h) = k} ‘%ﬁw H={h={c1,...,c1},c; € R}
ﬁ%: o i » )
((z,h) = dist?(z,h) = ||z — Pyz|? ((z,h) = dist*(z,h) = min ||z — ¢;||?
J

e Maximum likelihood density fitting - '
parametric density modeling ExerC|Se. SUQQESt pOSS|bIe

-sample space
-hypothesis class
-loss function ?
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Unsupervised learning examples

® Principal Component Analysis ® K-means clustering
2 =x; € RY s
H = {h subsp. of R%, dim(h) = k} gw H={h={c1,...,cu},cj € ]Rd}
x;*iﬁ*’“;ﬁf: o e

((z,h) = dist?(z,h) = ||z — Pyz|? ((z,h) = dist*(z,h) = min ||z — ¢;||?
J

e Maximum likelihood density fitting - '
parametric density modeling ExerC|Se. SUQQESt pOSS|bIe

-sample space
-hypothesis class
{(z,h) = —log pu(2) -loss function ?
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Empirical distribution - empirical risk

® Empirical distribution of the training set

" 1 } :
® Empirical risk
v smaller = better

Rn(h) = %Za,zi,h)

® ... only measures relevance of h for training samples, what
about generalization to other samples ?
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Notion of generalization - « true » risk

® Standard model: training set = n i.i.d. samples
from an unknown but fixed probability distribution

ZiNIP)Z
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Notion of generalization - « true » risk

® Standard model: training set = n i.i.d. samples
from an unknown but fixed probability distribution

z; ~ Py

® True risk = expectation over « future » samples
drawn from the same distribution

R(h) = 4:Z~IP’Z€(Za h)
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Notion of generalization - « true » risk

® Standard model: training set = n i.i.d. samples
from an unknown but fixed probability distribution

ZiNIP)Z

® True risk = expectation over « future » samples
drawn from the same distribution

R(h) = 4:ZNIP>Z€(Z, h)
® Best hypothesis: one that minimizes the true risk

h* in R(h
€ arg min (h)
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Notion of generalization - « true » risk

® Standard model: training set = n i.i.d. samples
from an unknown but fixed probability distribution

z; ~ Py

® True risk = expectation over « future » samples
drawn from the same distribution

R(h) = 4:Z~IP’Z€(Za h)
® Best hypothesis: one that minimizes the true risk

h* in R(h
€ arg min (h)

unreachable in practice !

e



Learning algorithms

v input: a training set Sn — (Zl, c e ey Zn)

v output: an hypothesis iL — A(Sn)
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Learning algorithms

® « Learning algorithm»: A4 : Z" — H

v input: a training set Sn — (Zl, c e ey Zn)

v output: an hypothesis h = A(Sn)

v More precisely
+ Sequence of algorithms  An : 2" = H,n > 1
+ Deterministic or randomized
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Learning algorithms

® « Learning algorithm»: A : Z" — H

v input: a training set Sn — (21, P Zn)

v output: an hypothesis h = A(Sn)

v More precisely
+ Sequence of algorithms ~ An : 2" = H,n > 1
+ Deterministic or randomized

® Comput. tractability ? Statistical guarantees?

&’1»0/0,- |



Examples ?

1 v d
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Learning principle vs learning algorithm

® Empirical risk minimization (ERM)
h, = A(S,) := argmin R
heH

.1
= g 0(z;, h
arg min . 2 (zi, h)

h)

S
VR

v is the minimum achieved ?
v can it be computed in polynomial time ?

‘&zam/-l
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Learning principle vs learning algorithm

® Empirical risk minimization (ERM)
arg min R

hn = A(Sy,) :

v is the minimum achieved ?

v can it be computed in polynomial time ?

heH

arg min
heH

1
n

S

()

® .. rather a learning principle than a learning algorithm here
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Statistical guarantees: objectives

A

® Goal: control the risk R(hn)
v with hypothesis defined by a learning algorithm (or principle)

v d
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Statistical guarantees: objectives

A

® Goal: control the risk R(hn)
v with hypothesis defined by a learning algorithm (or principle)

® Baseline: best possible risk R* := inf R(h)
v notion of excess risk heH

AR(h) = R(h) — R*

Gunta|



Statistical guarantees: objectives

A

® Goal: control the risk R(hn)
v with hypothesis defined by a learning algorithm (or principle)

® Baseline: best possible risk R* := inf R(h)
v notion of excess risk heH

AR(h) = R(h) — R*

® Can we ensure to approximate the true best
hypothesis up to some accuracy ?

A

AR(hy) < €
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Statistical guarantees: objectives

statistical model: random training set.S,, = (Z1,...,Zy)

A

® Goal: control the risk R(hn)
v with hypothesis defined by a learning algorithm or principle

® Baseline: best possible risk R* := inf R(h)
v notion of excess risk heH

AR(h) = R(h) — R*

® Can we ensure to approximate the true best
hypothesis up to some accuracy ?

A

AR(hy) < €
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Statistical guarantees: objectives

statistical model: random training set.S,, = (Zl, s T

* Goal: control the riskCR(~n) > i, = A(S,,)
v with hypothesis defined by a earn/ng algor/thm or principle

® Baseline: best possible risk R* := inf R(h)
v notion of excess risk heH

AR(h) = R(h) — R*

® Can we ensure to approximate the true best
hypothesis up to some accuracy ?

AR(hy) < ¢
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Statistical guarantees: objectives

statistical model: random training set.S,, = (Zl, s T

* Goal: control the riskCR(~n) > i, = A(S,,)
v with hypothesis defined by a earn/ng algor/thm or principle

® Baseline: best possible risk R* := inf R(h)
v notion of excess risk heH

AR(h) = R(h) — R*

® Can we ensure to approximate the true best
hypothesis up to some accuracy with high probability ?

P(AR(,) <€) >1—10
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Probably Approximately Correct guarantees

® PAC bounds: in probability or in expectation

A

P(AR(h,) <€) >1—36 E[AR(h,)] < €
v given a task (=loss+hypothesis class), bounds depend on

+ algorithm/principle
+ and data distribution

v d
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Probably Approximately Correct guarantees

® PAC bounds: in probability or in expectation

A

P(AR(h,) <€) >1-1¢ E[AR(h,)] <€

v given a task (=loss+hypothesis class), bounds depend on
+ algorithm/principle
+ and data distribution

® Agnostic PAC bounds: when no assumption
needed on data distribution
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Probably Approximately Correct guarantees

® PAC bounds: in probability or in expectation

A A

P(AR(h,) <€) >1-6 E[AR(h,)] <€

v given a task (=loss+hypothesis class), bounds depend on
+ algorithm/principle
+ and data distribution

® Agnostic PAC bounds: when no assumption
needed on data distribution

® Notion of sample complexity (sharp or not) n(e, 5)

(]



Agnostic PAC bounds for empirical
risk minimization
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Case study / exercice

® « Application » scenario
v several vendors provide a spam detection tool
v training set: mails correctly labeled as spam / non-spam
v approach: select the tool with the least error
v goal: predict how accurate it will be

® Exercice
v formalize the problem
v propose PAC bounds

v d
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Reminders and hints
® Empirical risk minimization
Ru(h) =23 " 0(z,h).

i=1

A

hy = in 7%, (h
arg min Ry, (1)

® Use Hoeffding’s inequality and the union bound

e
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