

Concentration of measure in probability and high-dimensional statistical learning

Guillaume Aubrun, Aurélien Garivier, Rémi Gribonval

remi.gribonval@inria.fr

http://perso.ens-lyon.fr/remi.gribonval

This week

- Bounded difference (McDiarmid's) inequality
- The PAC framework for statistical learning
- Agnostic PAC bounds for ERM
- Sub-Gaussianity / sub-exponential variables

Agnostic PAC bounds for empirical risk minimization

Probably Approximately Correct guarantees

- Goal: establish PAC bounds: $P(\Delta \mathcal{R}(\hat{h}_n) \le \epsilon) \ge 1 \delta$
 - ✓ given a task (=loss+hypothesis class), bounds depend on
 - algorithm/principle
 - and data distribution
- Agnostic PAC bounds: when no assumption needed on data distribution

Probably Approximately Correct guarantees

- Goal: establish PAC bounds: $P(\Delta \mathcal{R}(\hat{h}_n) \le \epsilon) \ge 1 \delta$
 - √ given a task (=loss+hypothesis class), bounds depend on
 - algorithm/principle
 - and data distribution
- Agnostic PAC bounds: when no assumption needed on data distribution
- ullet Notion of sample complexity (sharp or not) $n(\epsilon,\delta)$

Case study / exercice

« Application » scenario

- √ several vendors provide a spam detection tool
- √ training set: mails correctly labeled as spam / non-spam
- ✓ approach: select the tool with the least error
- ✓ goal: predict how accurate it will be

Exercice

- √ formalize the problem
- √ propose PAC bounds

``Formalization" (last time)

- Sample space: {all possible mails}
- Hypothesis class: finite set of binary (SPAM / NOT SPAM) classifiers provided by all vendors
- Loss: binary (0 if correct, 1 if erroneous)
- Training set: some collection of labeled mails
- Learning algorithm: select spam detector with smallest (empirical) average loss
 - ✓ average loss= empirical risk
 - √ empirical risk minimization

Reminders and hints

ullet Empirical risk minimization $_{\gamma}$

$$\hat{\mathcal{R}}_{n}(h) := \frac{1}{n} \sum_{i=1}^{n} \ell(z_{i}, h).$$

$$\hat{h}_{n} = \arg\min_{h \in \mathcal{H}} \hat{\mathcal{R}}_{n}(h)$$

Use Hoeffding's inequality and the union bound

Behaviour of the empirical risk

Given a fixed hypothesis h

- otag **Empirical risk = empirical average** over n (i.i.d.) samples $X_i = \ell((x_i, y_i), h)$
- ✓ Expectation = true risk

$$\mu := \mathbb{E}[X_i] = \mathcal{R}(h)$$

√ Bounded (binary) loss: can use Hoeffding's inequality

$$P(|\bar{X}_n - \mu| > t) \le 2e^{-\frac{2nt^2}{(b-a)^2}}$$

How to handle multiple hypotheses?

If I know that h1 is best:

 \checkmark except with probability at most $e^{-2n\epsilon^2}$ it holds that

$$\mathcal{R}(h^*) = \mathcal{R}(h_1) \le \hat{\mathcal{R}}_n(h_1) + \epsilon$$

If I don't know which is best

 \checkmark except with probability at most $2e^{-2n\epsilon^2}$ it holds that

$$\hat{\mathcal{R}}_n(h_1) - \epsilon \le \mathcal{R}(h_1) \le \hat{\mathcal{R}}_n(h_1) + \epsilon$$

 \checkmark except with probability at most $2e^{-2n\epsilon^2}$ it holds that

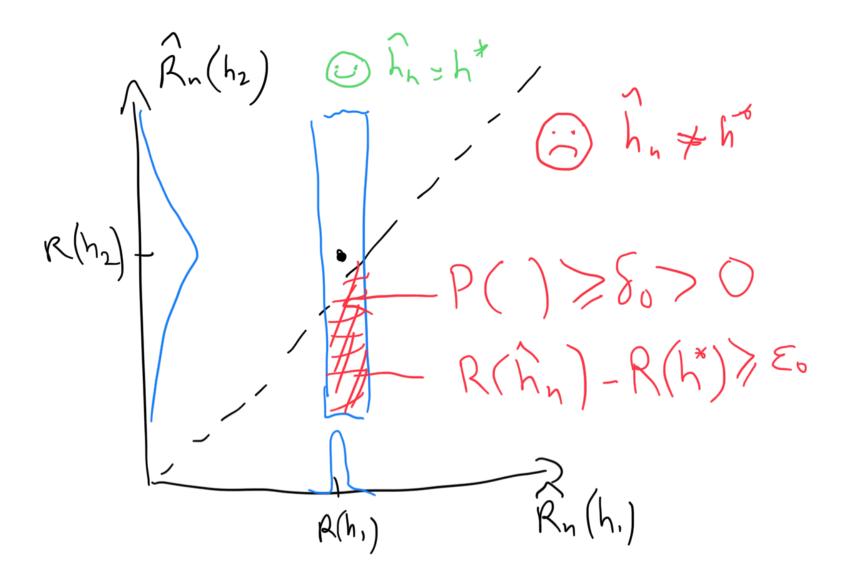
$$\hat{\mathcal{R}}_n(h_2) - \epsilon \le \mathcal{R}(h_2) \le \hat{\mathcal{R}}_n(h_2) + \epsilon$$

√ ...

 \checkmark except with probability at most $2Ke^{-2n\epsilon^2}$ it holds that

$$\hat{\mathcal{R}}_n(h_i) - \epsilon \leq \mathcal{R}(h_i) \leq \hat{\mathcal{R}}_n(h_i) + \epsilon \ \ ext{for all} \ \ 1 \leq i \leq K$$

WHITEBOARD



П

Agnostic PAC bounds for ERM learning with finite bounded class

Summary: ERM with bounded loss $0 \le \ell(z, h) \le B$ and finite hypothesis class

• Agnostic **uniform convergence**: for any n, t > 0 and \mathbb{P}

$$P(\max_{h\in\mathcal{H}}|\hat{\mathcal{R}}_n(h) - \mathcal{R}(h)| \ge t) \le 2|\mathcal{H}| \cdot e^{-2nt^2/B^2}.$$

• Agnostic **PAC** bound: for any $n, \epsilon > 0$ and \mathbb{P}

$$P(\mathcal{R}(\hat{h}_n) - \mathcal{R}(h^*) \ge \epsilon) \le 2|\mathcal{H}| \cdot e^{-\frac{n\epsilon^2}{2B^2}}$$

• Agnostic (*upper* bound on) sample complexity: precision ϵ , probability level δ , as soon as

$$n \ge \frac{2B^2}{\epsilon^2} \cdot (\log 2|\mathcal{H}| + \log 2/\delta).$$

Agnostic PAC bounds for ERM learning with finite bounded class

Summary: ERM with bounded loss $0 \le \ell(z, h) \le B$ and finite hypothesis class

• Agnostic **uniform convergence**: for any n, t > 0 and \mathbb{P}

$$P(\max_{h\in\mathcal{H}}|\hat{\mathcal{R}}_n(h) - \mathcal{R}(h)| \ge t) \le 2|\mathcal{H}| \cdot e^{-2nt^2/B^2}.$$

• Agnostic **PAC** bound: for any $n, \epsilon > 0$ and \mathbb{P}

$$P(\mathcal{R}(\hat{h}_n) - \mathcal{R}(h^*) \ge \epsilon) \le 2|\mathcal{H}| \cdot e^{-\frac{n\epsilon^2}{2B^2}}$$

• Agnostic (upper bound on) sample complexity: precision ϵ , probability level δ , as soon as

$$n \ge \frac{2B^2}{\epsilon^2} \cdot (\log 2|\mathcal{H}| + \log 2/\delta).$$

sharpness? Iower-bounds, information theory (with A. Garivier) **unbounded loss?** sub-gaussiannity **(next) infinite hypothesis class?** VC-dim (with A. Garivier)

Sub-gaussian random variables

Reminders of Lecture 1

Markov's inequality

if
$$Z \ge 0$$
 then : $\mathbb{P}(Z > t) \le \frac{\mathbb{E}[Z]}{t}$, $\forall t > 0$

Chebyshev's inequality

$$\mathbb{P}(|Z - \mathbb{E}[Z]| > t) \le \frac{\operatorname{Var}[Z]}{t^2}, \ \forall t > 0$$

Chernoff's bound

$$\mathbb{P}(Z > t) \le \frac{\mathbb{E}[e^{\lambda Z}]}{e^{\lambda t}}, \ \forall t, \lambda > 0$$

Reminders of Lecture 1

Markov's inequality

if
$$Z \ge 0$$
 then : $\mathbb{P}(Z > t) \le \frac{\mathbb{E}[Z]}{t}$, $\forall t > 0$

Chebyshev's inequality

$$\mathbb{P}(|Z - \mathbb{E}[Z]| > t) \le \frac{\operatorname{Var}[Z]}{t^2}, \ \forall t > 0$$

Chernoff's bound

Moment generating function

$$\mathbb{P}(Z > t) \leq \frac{\mathbb{E}[e^{\lambda Z}]}{e^{\lambda t}}, \ \forall t, \lambda > 0$$

Bounding the moment generating function

- Case of bounded variables
 - ✓ Hoeffding's lemma, assuming $a \le Z \le b, \, \mu := \mathbb{E}(Z)$

$$\mathbb{E}(e^{\lambda(Z-\mu)}) \le e^{\lambda^2(b-a)^2/8}, \quad \forall \lambda > 0$$

- ✓ worst-case over all bounded variables
- √ what if
 - we have more information (e.g. controlled variance) ?
 - unbounded variables?
- Observation: controlling the moment generating function is enough to get *Hoeffding's inequality*

Beyond bounded variables: sub-Gaussianity (scalar variables)

Definition:

 \checkmark a **centered** random variable Z is **sub-Gaussian** with parameter $\sigma>0$ if

$$\mathbb{E}[e^{\lambda Z}] \le e^{\lambda^2 \sigma^2/2}, \ \forall \lambda \in \mathbb{R}$$

- \checkmark a random variable X that admits an expectation is sub-Gaussian if $X-\mathbb{E}[X]$ is sub-Gaussian
- **Property:** if X is sub-Gaussian with parameter $\sigma > 0$ then for each t>0 $P(X \mathbb{E}[X] > t) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right)$

Proof: HOMEWORK

• Gaussian variables: if $Z \sim \mathcal{N}(\mu, \sigma^2)$ then $\mathbb{E}(e^{\lambda Z}) = e^{\lambda \mu + \lambda^2 \sigma^2/2}$.

- Gaussian variables: if $Z \sim \mathcal{N}(\mu, \sigma^2)$ then $\mathbb{E}(e^{\lambda Z}) = e^{\lambda \mu + \lambda^2 \sigma^2/2}$.
- Bounded variables: why ?

- Gaussian variables: if $Z \sim \mathcal{N}(\mu, \sigma^2)$ then $\mathbb{E}(e^{\lambda Z}) = e^{\lambda \mu + \lambda^2 \sigma^2/2}$.
- Bounded variables: why ?
- Weighted sums of independent subG. variables

Additivity property of sub-Gaussian random variables: if X_i are independent sub-Gaussian with parameters σ_i and $\lambda_i \in \mathbb{R}$ then $\sum_{i=1}^n \lambda_i X_i$ is sub-Gaussian with parameter $\sqrt{\sum_i \lambda_i^2 \sigma_i^2}$.

✓ Proof: HOMEWORK

- Gaussian variables: if $Z \sim \mathcal{N}(\mu, \sigma^2)$ then $\mathbb{E}(e^{\lambda Z}) = e^{\lambda \mu + \lambda^2 \sigma^2/2}$.
- Bounded variables: why ?
- Weighted sums of independent subG. variables

Additivity property of sub-Gaussian random variables: if X_i are independent sub-Gaussian with parameters σ_i and $\lambda_i \in \mathbb{R}$ then $\sum_{i=1}^n \lambda_i X_i$ is sub-Gaussian with parameter $\sqrt{\sum_i \lambda_i^2 \sigma_i^2}$.

- ✓ Proof: HOMEWORK
- Rademacher variables P(Z=+1) = P(Z=-1) = 1/2

$$P(Z = +1) = P(Z = -1) = 1/2$$

- \checkmark why? which $\sigma > 0$
- ✓ EXERCISE: direct proof?

EXERCISE: Rademacher variables

EXERCISE: Rademacher variables

Hints:

- ✓ develop moment generating function into power series
- \checkmark use that $(2k)! \ge 2^k k!$

$$\mathbb{E}[e^{\lambda Z}] = \frac{1}{2} \left(e^{\lambda} + e^{-\lambda} \right) = \cosh \lambda = \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!}$$

$$\leq \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{2^k k!}$$

$$= e^{\lambda^2/2}$$

$$\sigma^2 = 1$$

ullet Chi-square variables $X \sim \mathcal{N}(0,1), \ Z = X^2$

$$\mathbb{E}[e^{\lambda(Z-1)}] = \begin{cases} \frac{1}{\sqrt{1-2\lambda}} & \lambda \in [0, 1/2) \\ +\infty & \lambda \ge 1/2 \end{cases}$$

- ◆ see e.g. Foundations of Machine Learning (C.14)
- Do we loose all concentration properties ?
 - ✓ upcoming: notion of sub-exponential random variables
 - ✓ application: Johnson-Lindenstrauss lemma

Sub-exponential random variables

sub-Gaussian vs sub-exponential

Definition:

 \checkmark a **centered** random variable Z is **sub-Gaussian** with parameter $\sigma>0$ if

$$\mathbb{E}[e^{\lambda Z}] \le e^{\lambda^2 \sigma^2/2}, \ \forall \lambda \in \mathbb{R}$$

 \checkmark a random variable X that admits an expectation is sub-Gaussian if $X-\mathbb{E}[X]$ is sub-Gaussian

sub-Gaussian vs sub-exponential

Definition:

✓ a *centered* random variable Z is sub-Gaussian with parameter $\sigma>0$ if parameters $\nu,b>0$

$$\mathbb{E}[e^{\lambda Z}] \le e^{\lambda^2 \nu^2/2}, \ \forall \lambda \in \mathbb{R}$$

$$\in [-1/b, 1/b]$$

 \checkmark a random variable X that admits an expectation is sub-Gaussian if $X-\mathbb{E}[X]$ is sub-Gaussian exponential sub-exponential

Properties of sub-exponential variables

Concentration: if Z is sub-exponential then

$$\mathbb{P}(Z \ge \mu + t) \le \begin{cases} e^{-t^2/2\nu^2}, & \text{if } 0 \le t \le \nu^2/b \\ e^{-t/2b}, & \text{for } t > \nu^2/b \end{cases}$$

- ✓ Hence the name-subexponential
- ✓ Proof: EXERCISE

Additivity

Additivity property of sub-exponential random variables: if X_i are sub-exponential with parameters ν_i , b_i and $\lambda_i \in \mathbb{R}$ then $\sum_{i=1}^n \lambda_i X_i$ is sub-exponential with parameter $\nu \leq ??$ and $b \geq ??$.

√ Proof: Home practice

Characterizations

Theorem 1 (Characterizing sub-Exponential variables, cf Vershynin, Prop 2.7.1). Assume Z is zero mean. Then the following properties are equivalent:

- (1) there are ν, b such that $\mathbb{E}(e^{\lambda Z}) \leq e^{\lambda^2 \nu^2/2}$ for all $|\lambda| < 1/b$.
- (2) sub-exponential tails: there are $c_0, c_1 > 0$ such that

$$\mathbb{P}(|Z| \ge t) \le c_0 e^{-c_1 t}, \quad \forall t > 0$$

(3) moment growth: there is $c_2 > 0$ such that

$$\left[\mathbb{E}(|Z|^k) \right]^{1/k} \le c_2 k, \quad \forall k \ge 1$$

- (4) there is $c_3 > 0$ such that $\mathbb{E}(e^{\lambda |Z|}) \leq e^{c_3 \lambda}$ for $0 \leq \lambda \leq 1/c_3$.
- (5) there is $c_4 > 0$ such that $\mathbb{E}(e^{c_4|Z|}) < \infty$.

Characterizations

Theorem 1 (Characterizing sub-Exponential variables, cf Vershynin, Prop 2.7.1). Assume Z is zero mean. Then the following properties are equivalent:

- (1) there are ν, b such that $\mathbb{E}(e^{\lambda Z}) \leq e^{\lambda^2 \nu^2/2}$ for all $|\lambda| < 1/b$.
- (2) sub-exponential tails: there are $c_0, c_1 > 0$ such that

$$\mathbb{P}(|Z| \ge t) \le c_0 e^{-c_1 t}, \quad \forall t > 0$$

(3) **moment growth**: there is $c_2 > 0$ such that

$$\left[\mathbb{E}(|Z|^k) \right]^{1/k} \le c_2 k, \quad \forall k \ge 1$$

- (4) there is $c_3 > 0$ such that $\mathbb{E}(e^{\lambda |Z|}) \leq e^{c_3 \lambda}$ for $0 \leq \lambda \leq 1/c_3$.
- (5) there is $c_4 > 0$ such that $\mathbb{E}(e^{c_4|Z|}) < \infty$.

Theorem 2 (Characterizing sub-Gaussian variables, cf Vershynin, Prop 2.5.2). Assume Z is zero mean. Then the following properties are equivalent:

- (1) there is σ such that $\mathbb{E}(e^{\lambda Z}) \leq e^{\lambda^2 \sigma^2/2}$ for all $\lambda \in \mathbb{R}$.
- (2) sub-gaussian tails: there are $c_0, c_1 > 0$ such that

$$\mathbb{P}(|Z| \ge t) \le c_0 P(|X| \ge t), \quad \forall t > 0, \text{ with } X \sim N(0, c_1)$$

(3) moment growth

$$\left[\mathbb{E}(|Z|^k) \right]^{1/k} \le c_2 \sqrt{k}, \quad \forall k \ge 1$$

- (4) there is c_3 such that $\mathbb{E}(e^{\lambda^2 Z^2}) \leq e^{c_3^2 \lambda^2}$ for $|\lambda| \leq 1/c_3$.
- (5) there is c_4 such that $\mathbb{E}(e^{c_4Z^2}) < \infty$.

Bernstein's condition

Theorem

- \checkmark denote $\mu = \mathbb{E}(Z)$ and V = Var(Z)
- \checkmark assume $\mathbb{E}(|Z-\mu|^k) \leq \frac{1}{2}k!Vb^{k-2}$, for $k = 3, 4, \dots$
- √ then
- $\mathbb{E}(e^{\lambda(Z-\mu)}) \le e^{\frac{\lambda^2 V}{2(1-|\lambda|b)}}$ for all $|\lambda| < 1/b$
- Z is sub-exponential with parameters $\nu = \sqrt{2}\sqrt{V}$ and 2b.

Proof sketch:

◆ Develop into power series and use moments and definition

• Exercice:

- ✓ assume $|Z \mu| \le b \text{ and } V = \text{Var}(Z) \le b^2$
- √ check Bernstein's condition
- √ compare to Hoeffding's inequality
- Home practice (to go further): compare to Bennett's inequality

That's all folks!

Exploiting variance information via Bennett's inequality

Assumptions & notations

🗸 n independent random variables X_1, \dots, X_n satisfy

$$\mathbb{E}[X_i] = 0$$
 $X_i \le c$ $\sigma^2 := \frac{1}{n} \sum_{i=1}^n \mathrm{Var}(X_i)$

√ Then for each t>0

$$P\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}>t\right)\leq\exp\left(-\frac{n\sigma^{2}}{c^{2}}\theta(tc/\sigma^{2})\right)$$

where
$$\theta(u) := (1+u)\log(1+u) - u$$

Home practice

- proof
- ullet comparison to Hoeffding's inequality in the small and large deviation regimes to be expressed e.g. as $t \ll t_0$

Hints

• Show that for any t>0, $\mathbb{E}[e^{tX_i}] \leq e^{f(\operatorname{Var}(X_i)/c^2)}$

$$f(x) = \log\left(\frac{1}{1+x}e^{-ctx} + \frac{x}{1+x}e^{ct}\right), \ \forall x \ge 0$$

Show that f is concave

Use Chernoff's bounding technique

