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This week

® Bounded difference (McDiarmid’s) inequality
® The PAC framework for statistical learning

® Agnostic PAC bounds for ERM

® Sub-Gaussianity / sub-exponential variables
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Agnostic PAC bounds for empirical
risk minimization

R. GRIBONVAL - CONCENTRATION OF MEASURE AND HIGH-DIMENSIONAL LEARNING -



Probably Approximately Correct guarantees

® Goal: establish PAC bounds: P(AR(h,) <€) >1-6

v given a task (=loss+hypothesis class), bounds depend on
+ algorithm/principle
+ and data distribution

® Agnostic PAC bounds: when no assumption
needed on data distribution
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Probably Approximately Correct guarantees

® Goal: establish PAC bounds: P(AR(h,) <€) >1-6

v given a task (=loss+hypothesis class), bounds depend on
+ algorithm/principle
+ and data distribution

® Agnostic PAC bounds: when no assumption
needed on data distribution

® Notion of sample complexity (sharp or not) TZ(G, 5)
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Case study / exercice

® « Application » scenario
v several vendors provide a spam detection tool
v training set: mails correctly labeled as spam / non-spam
v approach: select the tool with the least error
v goal: predict how accurate it will be

® Exercice
v formalize the problem
v propose PAC bounds
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“"Formalization” (last time)

e Sample space: {all possible mails}

® Hypothesis class: finite set of binary (SPAM / NOT
SPAM) classifiers provided by all vendors

® Loss: binary (0 if correct, 1 if erroneous)
® Training set: some collection of labeled mails

® Learning algorithm: select spam detector with

smallest (empirical) average loss
v average loss= empirical risk
v empirical risk minimization
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Reminders and hints

® Empirical risk minimization
A R
Ro(h) ==L " 0(z,h).
1=1

A

hy = in 7%, (h
arg min Ry, (1)

® Use Hoeffding’s inequality and the union bound
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Behaviour of the empirical risk

® Given a fixed hypothesis h
v Empirical risk = empirical average over n (i.i.d.) samples

v Expectation = true risk

u:=E[X;] =R(h)

v Bounded (binary) loss: can use Hoeffding's inequality
2nt2

P(|X,, —pu| >t) <2 ¢-a?
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How to handle multiple hypotheses ?

® If | know that h1 is best: |

v except with probability at most € 2" it holds that
R(W*) = R(hy) < R (hy) + €

® If | don’t know which is best
v except with probability at most 272" it holds that

Ro(h1) — e < R(h1) < Rn(h1) + €
v except with probability at most 22" it holds that
Rn(hz) — € S R(hg) S Rn(hg) + €

vo...
v except with probability at most 2Ke "< it holds that

ﬁn(hz) —e < R(hz) < ﬁn(hz) —+ € forall 1<:i:< K
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WHITEBOARD
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Agnostic PAC bounds for ERM learning with
finite bounded class

Summary: ERM with bounded loss 0 < ¢(z, h) < B and finite hypothesis class

e Agnostic uniform convergence: for any n, t > 0 and P

P(max [R(h) = R(h)| = 1) < 2[#] - 70 /P",
€
e Agnostic PAC bound: for any n,e > 0 and P

2

P(R(hy) — R(h*) > €) < 2[H]| - ¢ 257

e Agnostic (upper bound on) sample complexity: precision €, probability level 4,

as soo1n as 5

2B
n > 3 (log 2|H| + log2/9) .
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Agnostic PAC bounds for ERM learning with
finite bounded class

Summary: ERM with bounded loss 0 < ¢(z, h) < B and finite hypothesis class

e Agnostic uniform convergence: for any n, t > 0 and P

Plmax|R, (h) = R(h)| > 1) < 2] - e 2*/P"
€
e Agnostic PAC bound: for any n,e > 0 and P

2

P(R(hy) — R(h*) > €) < 2[H]| - ¢ 257

e Agnostic (upper bound on) sample complexity: precision €, probability level 4,

as soo1n as 5

2B
n > 3 (log 2|H| + log2/9) .

sharpness? lower-bounds, information theory (with A. Garivier)
unbounded loss? sub-gaussiannity (next)
infinite hypothesis class? VC-dim (with A. Garivier)
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Sub-gaussian random variables
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Reminders of Lecture 1

® Markov’s inequality

E
ifZZOthen:IP(Z>t)§%, Vvt > 0

® Chebyshev’s inequality

Var|Z]

P(Z-ElZ) > 1) < 5

Vi >0

® Chernoff’s bound
7]

P(Z >1t) < Vi, A > 0

9
eAt

e



Reminders of Lecture 1

® Markov’s inequality

E
if Z>0then:P(Z >1t)< %, vVt > 0
® Chebyshev’s inequality
Pz —E[Z] > 1) < 222 s
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Bounding the moment generating function

® Case of bounded variables
v Hoeffding’s lemma, assuming a < Z < b, pu:= E(Z)

E(eM%~1) < N 0= /8 x> 0

v worst-case over all bounded variables

v what if

+ we have more information (e.g. controlled variance) ?
+ unbounded variables ?

® Observation: controlling the moment generating
function is enough to get Hoeffding’s inequality
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Beyond bounded variables:
sub-Gaussianity (scalar variables)

® Definition:
v a centered random variable Z is sub-Gaussian with
parameter 0 > 0 if

T[eM] < eN7/2 WAE R

v arandom variable X that admits an expectation is sub-
Gaussian if X — E[X] is sub-Gaussian

® Property: if X is sub-Gaussian with parameter o > 0
then for each t>0
Proof: HOMEWORK

| Gunta
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Sub-gaussianity
Examples & counter-examples (1)

® Gaussian variables: if Z ~ N (1, 02) then Ee?) =2

v d
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Sub-gaussianity
Examples & counter-examples (1)

® Gaussian variables: if Z ~ N (1, 02) then Ee?) =2
® Bounded variables: why 7

v d
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Sub-gaussianity
Examples & counter-examples (1)

® Gaussian variables: if Z~N(u,0%) then E@E?) = w2
® Bounded variables: why 7
® Weighted sums of independent subG. variables

Additivity property of sub-Gaussian random variables: if X; are
sub-Gaussian with parameters o; and A\; € R then Z?:l N; X; is sub-Gaussian with

parameter /> . A\2o2.
v Proof: HOMEWORK

rd
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Sub-gaussianity
Examples & counter-examples (1)

® Gaussian variables: if Z~N(u,0%) then E@E?) = w2
® Bounded variables: why 7
® Weighted sums of independent subG. variables

Additivity property of sub-Gaussian random variables: if X; are
sub-Gaussian with parameters o; and A\; € R then Z?:l N; X; is sub-Gaussian with

parameter /> . A\2o2.
v Proof: HOMEWORK
® Rademacher variables rz=+1)=Pz=-1)=1/2

v why ? whicho > 0
v EXERCISE: direct proof ?
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EXERCISE: Rademacher variables
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EXERCISE: Rademacher variables

® Hints:
v develop moment generating function into power series
v use that (2k)! > 2FE!
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Sub-gaussianity
Examples & counter-examples (2)

® Chi-square variables X ~N(0,1), Z = X"

1
E[GA(Z—l)] _ {m A€ [07 1/2)

+00 A>1/2

+ see e.g. Foundations of Machine Learning (C.14)

® Do we loose all concentration properties ?
v upcoming: notion of sub-exponential random variables
v application: Johnson-Lindenstrauss lemma

Gunta|

21



Sub-exponential random variables
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sub-Gaussian vs sub-exponential

® Definition:
v a centered random variable Z is sub-Gaussian with
parameter 0 > 0 if

i[eM] < M2 YAe R

v arandom variable X that admits an expectation is sub-
Gaussian if X — [E[X] is sub-Gaussian

v d
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sub-Gaussian vs sub-exponential

® Definition:
v a centered random variable Z is sub-Gaussian.with

parameter 0 > 0 if sub-exponential
parameters 1, b > (

[er] <M /2, VAER
= [_1/b7 1/b]

v arandom variable X that admits an expectation is sub-

Gaussian if X — E[X] is sub-Gaussian
exponentia sub-exponential
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Properties of sub-exponential variables

® Concentration: if Z is sub-exponential then

_t2/21/2 .f O < t < 2/b
e 1 1%
P(Z>u+t) < ’ - .
(Z = p )_{et/%, for t > 12 /b

v Hence the name-subexponential
v Proof: EXERCISE

o Additivity

Additivity property of sub-exponential random variables: if X; are sub-
exponential with parameters v;,b; and \; € R then Z?’:l A; X; is sub-exponential with
parameter v <77 and b >77.

v Proof: Home practice

&'wzz,|
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Characterizations

Theorem 1 (Characterizing sub-Exponential variables, cf Vershynin, Prop 2.7.1). Assume
Z is zero mean. Then the following properties are equivalent:

(1) there are v,b such that E(e*) < eX'"*/2 for all |\ < 1/b.
(2) sub-exponential tails: there are cp,c; > 0 such that

P(|Z| > t) < coe™, ¥t >0
(3) moment growth: there is co > 0 such that
] 1/E
[E(zM)] " <ok, vE>1

(4) there is c5 > 0 such that E(eMN?]) < e for 0 < X < 1/cs.
(5) there is c4 > 0 such that E(e41?!) < oco.

v d
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Characterizations

Theorem 1 (Characterizing sub-Exponential variables, cf Vershynin, Prop 2.7.1). Assume
Z is zero mean. Then the following properties are equivalent:

(1) there are v,b such that E(e*) < eX'"*/2 for all |\ < 1/b.
(2) sub-exponential tails: there are cp,c; > 0 such that

P(|Z| > t) < coe™ ', VYt >0

(3) moment growth: there is co > 0 such that
1/k
[E(zM)] " <ok, vE>1

(4) there is c5 > 0 such that E(eMN?]) < e for 0 < X < 1/cs.
(5) there is c4 > 0 such that E(e41?]) < co.

Theorem 2 (Characterizing sub-Gaussian variables, cf Vershynin, Prop 2.5.2). Assume Z
is zero mean. Then the following properties are equivalent:

(1) there is o such that E(e*?) < eX*7°/2 for all Ac R.
(2) sub-gaussian tails: there are cg,c1 > 0 such that

P(|Z| > t) < coP(|X| > 1), V¥t>0, with X ~ N(0,c1)

(3) moment growth
1/k
[IE(|Z|’“)] <eovh, VE>1

(4) there is cg such that B(eXZ") < %Y for |\ < 1/cs.
(5) there is cq such that E(e“Z") < oo.
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Bernstein’s condition

® Theorem
v denote w=E(Z)andV — Var(”Z)
v assume E(Z —pu|") < iEVY2 for k= 3,4,...

2
v then o E(e)\(Z—,u)) < 62(1>\—|K|b) for all |)\‘ < 1/b

e / is sub-exponential with parameters v = V2V and 20.
® Proof sketch:

+ Develop into power series and use moments and definition

® Exercice:
v assume |Z-—p|<bandV =Var(Z) <b?

v check Bernstein’s condition
v compare to Hoeffding's inequality
® Home practice (to go further): compare to Bennett’'s inequality
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That’s all folks !
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Exploiting variance information via
Bennett's inequality

® Assumptions & notations
v n independent random variables X1, ..., Xy, satisfy

EX;]=0 X;<c¢ o°:=2) var(X;)
v Then for each t>0 =
n n0.2
P (% ;Xi > t) < exp (—0—20(750/02))
where 6(u):=(1+u)log(l+u)—u

® Home practice

+ proof
+ comparison to Hoeffding’s inequality in the small and large deviation regimes
to be expressed e.g. as t <t

v d
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Hints

® Show that for any t>0, 4j[€tXi] < of (Var(X;)/c?)

v where f(z) = log( ! e~ T 4 v eCt) , Vo >0

® Show that f is concave

® Use Chernoff's bounding technique

e
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