Concentration:
uniform convergence, VC dimension and the fundamental theorem of PAC learning

Master 2 Mathematics and Computer Science

Guillaume Aubrun, Aurélien Garivier, Rémi Gribonval
2020-2021
1. PAC learning

2. Uniform convergence for infinite classes: VC dimension and Sauer’s lemma

3. Finite VC dimension implies Uniform Convergence

4. Finite VC-dimension implies learnability
PAC learning
Learning framework

- Domain \mathcal{X}, label space $\mathcal{Y} = \{0, 1\}$
- Unknown distribution D on $\mathcal{X} \times \mathcal{Y}$
- Sample $S = (X_1, Y_1), \ldots, (X_n, Y_n) \overset{\text{iid}}{\sim} D$
- $h : \mathcal{X} \to \mathcal{Y}$, $h \in \mathcal{H}$ hypothesis class
- Loss function $\ell(y, y') = 1\{y \neq y'\}$
- Generalization error (loss)
 \[L_D(h) = \mathbb{E}_D[\ell(h(X), Y)] = \mathbb{E}_D[h(X) \neq Y] \]
- Training error
 \[L_S(h) = \frac{1}{n} \sum_{i=1}^{n} 1\{h(X_i) \neq Y_i\} \]
- Agnostic learning \neq realizable assumption (when there exists h^* such that $L_S(h^*) = 0$)
- Learning algorithm: $S \mapsto \hat{h}_n$ such that $L_D(\hat{h}_n) - \inf_{h \in \mathcal{H}} L_D(h)$ small
Agnostic PAC learnability

Definition

A hypothesis class \mathcal{H} is agnostic PAC learnable if there exists a function $n_{\mathcal{H}} : (0, 1)^2 \to \mathbb{N}$ and a learning algorithm $S \mapsto \hat{h}_n$ such that for every $\epsilon, \delta \in (0, 1)$, for every distribution D on $\mathcal{X} \times \mathcal{Y}$ when $S = ((X_1, Y_1), \ldots, (X_n, Y_n)) \sim D$,

$$\mathbb{P}
\left(
L_D(\hat{h}_n) \geq \inf_{h' \in \mathcal{H}} L_D(h') + \epsilon
\right) \leq \delta$$

for all $n \geq n_{\mathcal{H}}(\epsilon, \delta)$.

The smallest possible function $n_{\mathcal{H}}$ is called the sample complexity of learning \mathcal{H}.

Learning via uniform convergence

Definition
A training set S is called ϵ-representative (wrt domain $\mathcal{X} \times \mathcal{Y}$, hypothese class \mathcal{H}, loss function ℓ and distribution D) if

$$\forall h \in \mathcal{H}, |L_S(h) - L_D(h)| \leq \epsilon.$$

Lemma
If S is $\epsilon/2$-representative, then any ERM \hat{h}_n defined by $\hat{h}_n \in \text{arg min}_{h \in \mathcal{H}} L_S(h)$ satisfies:

$$L_D(\hat{h}_n) \leq \inf_{h \in \mathcal{H}} L_D(h) + \epsilon.$$

Proof: for every $h \in \mathcal{H}$,

$$L_D(\hat{h}_n) \leq L_S(\hat{h}_n) + \frac{\epsilon}{2} \leq L_S(h) + \frac{\epsilon}{2} \leq L_D(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2}.$$
Uniform Convergence Property

Definition

A hypothesis class \(\mathcal{H} \) has the *uniform convergence property* (wrt \(\mathcal{X} \times \mathcal{Y} \) and \(\ell \)) if there exists a function \(n^{UC}_{\mathcal{H}} : (0, 1)^2 \rightarrow \mathbb{N} \) such that for every \(\epsilon, \delta \in (0, 1) \) and for every distribution \(D \) over \(\mathcal{X} \times \mathcal{Y} \), a sample \(S = ((X_1, Y_1), \ldots, (X_n, Y_n)) \overset{iid}{\sim} D \) of size \(n \geq n^{UC}_{\mathcal{H}}(\epsilon, \delta) \) has probability at least \(1 - \delta \) to be \(\epsilon \)-representative.

Corollary

If \(\mathcal{H} \) has the uniform convergence property with a function \(m^{UC}_{\mathcal{H}} \), then \(\mathcal{H} \) is agnostically PAC learnable with a sample complexity \(n_{\mathcal{H}}(\epsilon, \delta) \leq n^{UC}_{\mathcal{H}}(\frac{\epsilon}{2}, \delta) \). Furthermore, the ERM is a successful PAC learner for \(\mathcal{H} \).
Finite classes are agnostically PAC-learnable

Theorem

Let \mathcal{H} be a finite hypothesis class. Then \mathcal{H} enjoys the uniform convergence property with sample complexity

$$n_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \left\lceil \log \frac{2|\mathcal{H}|}{\delta} \cdot \frac{1}{2\epsilon^2} \right\rceil.$$

Moreover, \mathcal{H} is agnostically PAC learnable using an ERM algorithm with sample complexity

$$n_{\mathcal{H}}(\epsilon, \delta) \leq 2n_{\mathcal{H}}^{UC}\left(\frac{\epsilon}{2}, \delta\right) \leq \left\lceil 2\log \frac{2|\mathcal{H}|}{\delta} \cdot \frac{1}{\epsilon^2} \right\rceil.$$

Proof: Hoeffding’s inequality and the union bound.
Uniform convergence for infinite classes: VC dimension and Sauer’s lemma
Shattering

Definition

Let \mathcal{H} be a class of functions $\mathcal{X} \to \{0, 1\}$ and let $C = \{x_1, \ldots, x_m\} \subset \mathcal{X}$. The *restriction* of \mathcal{H} to C is the set of functions $C \to \{0, 1\}$ that can be derived from \mathcal{H}:

$$\mathcal{H}_C = \left\{ (x_1, \ldots, x_m) \to (h(x_1), \ldots, h(x_m)) : h \in \mathcal{H} \right\}.$$

Shattering

A hypothesis class \mathcal{H} *shatters* a finite set $C \subset \mathcal{X}$ if $\mathcal{H}_C = \{0, 1\}^C$.

Example:

- $\mathcal{H} = \left\{ \mathbb{1}_{-\infty, a] : a \in \mathbb{R} \right\}$.
- $\mathcal{H}_{\text{rec}}^2 = \left\{ h(a_1, b_1, a_2, b_2) : a_1 \leq b_1 \text{ and } a_2 \leq b_2 \right\}$ where

$$h(a_1, b_1, a_2, b_2)(x_1, x_2) = \begin{cases} 1 & \text{if } a_1 \leq x_1 \leq b_1 \text{ and } a_2 \leq x_2 \leq b_2; \\ 0 & \text{otherwise}. \end{cases}$$
VC dimension

Definition

The Vapnik Chervonenkis dimension $\text{VCdim}(\mathcal{H})$ of a hypothesis class \mathcal{H} is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H}. If \mathcal{H} can shatter sets of arbitrarily large size we say that $\text{VCdim}(\mathcal{H}) = \infty$.

Example:

- $\mathcal{H} = \{ [l_{-\infty}, a] : a \in \mathbb{R} \}$.
- $\mathcal{H}_{\text{rec}}^2 = \{ h(a_1, b_1, a_2, b_2) : a_1 \leq b_1 \text{ and } a_2 \leq b_2 \}$ where

$$h(a_1, b_1, a_2, b_2)(x_1, x_2) = \begin{cases}
1 & \text{if } a_1 \leq x_1 \leq b_1 \text{ and } a_2 \leq x_2 \leq b_2; \\
0 & \text{otherwise}.
\end{cases}$$
Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0, 1\}$ and let the loss function of 0–1 loss. Then the following propositions are equivalent:

1. \mathcal{H} has the uniform convergence property,
2. any ERM rule is a successful agnostic PAC learner for \mathcal{H},
3. \mathcal{H} is agnostic PAC learnable,
4. \mathcal{H} has finite VC-dimension.
Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0, 1\}$ and let the loss function of 0−1 loss. Assume that $d := \text{VCdim}(\mathcal{H}) < \infty$. Then there exist constants C_1, C_2 such that:

1. \mathcal{H} has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \leq n_{\mathcal{H}}^{\text{UC}}(\epsilon, \delta) \leq C_2 \frac{d + \log(1/\delta)}{\epsilon^2},$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \leq n_{\mathcal{H}}(\epsilon, \delta) \leq C_2 \frac{d + \log(1/\delta)}{\epsilon^2}.$$
Definition

Let \mathcal{H} be a hypothesis class. Then the *growth function* of \mathcal{H}, denoted $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as the maximal number of different functions that can be obtained by restricting \mathcal{H} to a set of size m:

$$\tau_{\mathcal{H}}(m) = \max_{C \subset X : |C| = m} |\mathcal{H}_C|.$$

Note: if $\text{VCdim}(\mathcal{H}) = d$, then for any $m \leq d$ we have $\tau_{\mathcal{H}}(m) = 2^m$.

Sauer’s lemma

Let \mathcal{H} be a hypothesis class with $d = \text{VCdim}(\mathcal{H}) < \infty$. Then, for all $m \geq d$,

$$\tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i} \leq \left(\frac{em}{d} \right)^d.$$

Think of example: $\mathcal{H} = \{1_{(-\infty,a]} : a \in \mathbb{R}\}$ with $d = \text{VCdim}(\mathcal{H}) = 1$.
Proof of Sauer’s lemma 1/2

In fact we prove the stronger claim:

\[|\mathcal{H}_C| \leq |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}| \leq \sum_{i=0}^{d} \binom{m}{i} . \]

where the last inequality holds since no set of size larger than \(d\) is shattered by \(\mathcal{H}\). The proof is by induction.

\(m=1\): The empty set is always considered to be shattered by \(\mathcal{H}\). Hence, either \(|\mathcal{H}_C| = 1\) and \(d = 0\), inequality 1 \(\leq 1\), or \(d \geq 1\) and the inequality is 2 \(\leq 2\).

Induction: Let \(C = \{x_1, \ldots, x_m\}\), and let \(C' = \{x_2, \ldots, x_m\}\). We note functions like vectors, and we define

\[Y_0 = \{(y_2, \ldots, y_m) : (0, y_2, \ldots, y_m) \in \mathcal{H}_C \text{ or } (1, y_2, \ldots, y_m) \in \mathcal{H}_C\}, \text{ and} \]
\[Y_1 = \{(y_2, \ldots, y_m) : (0, y_2, \ldots, y_m) \in \mathcal{H}_C \text{ and } (1, y_2, \ldots, y_m) \in \mathcal{H}_C\} . \]

Then \(|\mathcal{H}_C| = |Y_0| + |Y_1|\). Moreover, \(Y_0 = \mathcal{H}_{C'}\) and hence by the induction hypothesis:

\[|Y_0| = |\mathcal{H}_{C'}| \leq |\{B' \subseteq C' : \mathcal{H} \text{ shatters } B'\}| = |\{B \subseteq C : x_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}| \]

Next, define

\[\mathcal{H}' = \left\{ h \in \mathcal{H} : \exists h' \in \mathcal{H} \text{ s.t. } \forall 1 \leq i \leq m, h'(x_i) = \begin{cases} 1 - h(x_1) & \text{if } i = 1 \\ h(x_i) & \text{otherwise} \end{cases} \right\} . \]

Note that \(\mathcal{H}'\) shatters \(B' \subseteq C'\) iff \(\mathcal{H}'\) shatters \(B' \cup \{x_1\}\), and that \(Y_1 = \mathcal{H}'_{C'}\). Hence, by the induction hypothesis,

\[|Y_1| = |\mathcal{H}'_{C'}| \leq |\{B' \subseteq C' : \mathcal{H}' \text{ shatters } B'\}| = |\{B' \subseteq C' : \mathcal{H}' \text{ shatters } B' \cup \{x_1\}\}| \]
\[= |\{B \subseteq C : x_1 \in B \text{ and } \mathcal{H}' \text{ shatters } B\}| \leq |\{B \subseteq C : x_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}| . \]

Overall,

\[|\mathcal{H}_C| = |Y_0| + |Y_1| \leq |\{B \subseteq C : x_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}| + |\{B \subseteq C : x_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}| = |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}| . \]
Proof of Sauer’s lemma 2/2

For the last inequality, one may observe that if \(m \geq 2d \), defining \(N \sim B(m, 1/2) \), Chernoff’s inequality and inequality \(\log(u) \geq (u - 1)/u \) yield

\[
- \log \mathbb{P}(N \leq d) \geq m \textup{kl} \left(\frac{d}{m}, \frac{1}{2} \right) \geq d \log \frac{2d}{m} + (m - d) \log \frac{2(m - d)}{m}
\]

\[
\geq m \log(2) + d \log \frac{d}{m} + (m - d) \frac{-d/m}{(m - d)/m}
\]

\[
= m \log(2) + d \log \frac{d}{em}
\]

and hence

\[
\sum_{i=0}^{d} \binom{m}{i} = 2^m \mathbb{P}(N \leq d) \leq \exp \left(-d \log \frac{d}{em} \right) = \left(\frac{em}{d} \right)^d.
\]

Besides, for the case \(d \leq m \leq 2d \), the inequality is obvious since \((em/d)^d \geq 2^m \): indeed, function \(f : x \mapsto -x \log(x/e) \) is increasing on \([0, 1]\), and hence for all \(d \leq m \leq 2d \):

\[
\frac{d}{m} \log \frac{em}{d} = f(d/m) \geq f(1/2) = \frac{1}{2} \log(2e) \geq \log(2),
\]

which implies

\[
\left(\frac{em}{d} \right)^d = \exp \left(d \log \frac{em}{d} \right) \geq \exp(m \log(2)) = 2^m.
\]

Alternately, you may simply observe that for all \(m \geq d \),

\[
\left(\frac{d}{m} \right)^d \sum_{i=0}^{d} \binom{m}{i} \leq \sum_{i=0}^{d} \left(\frac{d}{m} \right)^i \binom{m}{i} \leq \sum_{i=0}^{m} \left(\frac{d}{m} \right)^i \binom{m}{i} = \left(1 + \frac{d}{m} \right)^m \leq e^d.
\]
Finite VC dimension implies Uniform Convergence
Finite VC dimension implies Uniform Convergence

Theorem

Let \mathcal{H} be a class and let $\tau_\mathcal{H}$ be its growth function. Then, for every distribution D and for every $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the choice of the sample $S \sim D^\otimes n$ we have

$$\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)| \leq \frac{1 + \sqrt{\log (\tau_\mathcal{H}(2n))}}{\delta \sqrt{n/2}}.$$

Note: this result is sufficient to prove that finite VC-dim \implies learnable, but the dependency in δ is not correct at all: roughly speaking, the factor $1/\delta$ can be replaced by $\log(1/\delta)$.

14
Proof: symmetrization and Rademacher complexity (1/2)

We consider the 0-1 loss \(\ell(h, (x, y)) = 1 \{ h(x) \neq y \} \), or any \([0, 1]\)–valued loss \(\ell \). We denote \(Z_i = (X_i, Y_i) \), and observe that \(L_D(h) = \mathbb{E}_{Z_i}[\ell(h, Z_i)] = \mathbb{E}_{S'}[L_{S'}(h)] \) if \(S' = Z'_1, \ldots, Z'_n \) denotes another iid sample of \(D \). Hence,

\[
\mathbb{E}_S \left[\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)| \right] = \mathbb{E}_S \left[\sup_{h \in \mathcal{H}} |\mathbb{E}_{S'}[L_{S'}(h)] - L_S(h)| \right] = \mathbb{E}_S \left[\sup_{h \in \mathcal{H}} |\mathbb{E}_{S'}[L_{S'}(h) - L_S(h)]| \right]
\leq \mathbb{E}_S \left[\sup_{h \in \mathcal{H}} \mathbb{E}_{S'} \left[\left| L_{S'}(h) - L_S(h) \right| \right] \right] \leq \mathbb{E}_S \left[\mathbb{E}_{S'} \left[\sup_{h \in \mathcal{H}} \left| L_{S'}(h) - L_S(h) \right| \right] \right]
\]

\[
= \mathbb{E}_{S, S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n \ell(h, Z'_i) - \ell(h, Z_i) \right| \right]
\]

\[
= \mathbb{E}_{S, S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n \sigma_i (\ell(h, Z'_i) - \ell(h, Z_i)) \right| \right] \quad \text{for all } \sigma \in \{\pm 1\}^n
\]

\[
= \mathbb{E}_\Sigma \mathbb{E}_{S, S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n \Sigma_i (\ell(h, Z'_i) - \ell(h, Z_i)) \right| \right] \quad \text{if } \Sigma \sim \mathcal{U}(\{\pm 1\}^n)
\]

\[
= \mathbb{E}_{S, S'} \mathbb{E}_\Sigma \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n \Sigma_i (\ell(h, Z'_i) - \ell(h, Z_i)) \right| \right] .
\]

Now, for every \(S, S' \), let \(C = C_{S, S'} = \{ x : \exists i \in \{1, \ldots, n\} : x = X_i \text{ or } X'_i \} \). Then \(\forall \sigma \in \{-1, 1\}^n \),

\[
\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n \sigma_i (\ell(h, Z'_i) - \ell(h, Z_i)) \right| = \max_{h \in \mathcal{H} \setminus C} \frac{1}{n} \left| \sum_{i=1}^n \sigma_i (\ell(h, Z'_i) - \ell(h, Z_i)) \right| .
\]
Moreover, for every $h \in \mathcal{H}_C$ let $Z_h = \frac{1}{n} \sum_{i=1}^{n} \Sigma_i (\ell(h, Z'_i) - \ell(h, Z_i))$. Then $E_\Sigma[Z_h] = 0$, each summand belongs to $[-1, 1]$ and by Hoeffding’s inequality, for every $\epsilon > 0$:

$$P_\Sigma[|Z_h| \geq \epsilon] \leq 2 \exp \left(-\frac{n\epsilon^2}{2} \right).$$

Hence, by the union bound,

$$P_\Sigma[\max_{h \in \mathcal{H}_C} |Z_h| \geq \epsilon] \leq 2 |\mathcal{H}_C| \exp \left(-\frac{n\epsilon^2}{2} \right).$$

The following lemma permits to deduce that

$$E_\Sigma \left[\max_{h \in \mathcal{H}_C} |Z_h| \right] \leq \frac{1 + \sqrt{\log(|\mathcal{H}_C|)}}{\sqrt{n/2}} \leq \frac{1 + \sqrt{\log(\tau_\mathcal{H}(2n))}}{\sqrt{n/2}}.$$

since $|C| \leq 2n$. Hence,

$$E_{S} \left[\sup_{h \in \mathcal{H}} |L_D(h) - L_S(h)| \right] \leq E_{S,S'}E_\Sigma \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} \Sigma_i (\ell(h, Z'_i) - \ell(h, Z_i)) \right| \right] \leq \frac{1 + \sqrt{\log(\tau_\mathcal{H}(2n))}}{\sqrt{n/2}},$$

and we conclude by using Markov’s inequality (poor idea! Better: McDiarmid’s inequality).
Lemma

Let $a > 0$, $b > 1$, and let Z be a real-valued random variable such that for all $t \geq 0$, $\mathbb{P}(Z \geq t) \leq 2b \exp \left(-\frac{t^2}{a^2} \right)$. Then

$$\mathbb{E}[Z] \leq a \left(\sqrt{\log(b)} + \frac{1}{\sqrt{\log(b)}} \right).$$

Proof:

$$\mathbb{E}[Z] \leq \int_0^\infty \mathbb{P}(Z \geq t) dt \leq a \sqrt{\log(b)} + \int_{a \sqrt{\log(b)}}^\infty 2b \exp \left(-\frac{t^2}{a^2} \right) dt$$

$$\leq a \sqrt{\log(b)} + 2b \int_{a \sqrt{\log(b)}}^\infty \frac{t}{a \sqrt{\log(b)}} \exp \left(-\frac{t^2}{a^2} \right) dt$$

$$= a \sqrt{\log(b)} + \frac{2b}{a \sqrt{\log(b)}} \times \frac{a^2}{2} \exp \left(-\left(a \sqrt{\log(b)} \right)^2 \right)$$

$$= a \sqrt{\log(b)} + \frac{a}{\sqrt{\log(b)}}.$$

NB: cutting at $a \sqrt{\log(2b)}$ gives a better but less nice inequality for our use.
Finite VC-dimension implies learnability
It suffices to prove that finite VC-dim implies the uniform convergence property. From Sauer’s lemma, for all $m \geq d/2$ we have $\tau_H(2n) \leq (2en/d)^d$. With the previous theorem, this yields that with probability at least $1 - \delta$:

$$\sup_{h \in H} |L_D(h) - L_S(h)| \leq \frac{1 + \sqrt{d \log (2en/d)}}{\delta \sqrt{n/2}} \leq \frac{1}{\delta} \sqrt{\frac{8d \log(2en/d)}{n}}$$

as soon as $\sqrt{d \log (2en/d)} \geq 1$. To ensure that this is at most ϵ, one may choose

$$n \geq \frac{8d \log(n)}{(\delta \epsilon)^2} + \frac{8d \log(2e/d)}{(\delta \epsilon)^2}$$

By the following lemma, it is sufficient that

$$n \geq \frac{32d \log \left(\frac{4d}{(\delta \epsilon)^2} \right)}{(\delta \epsilon)^2} + \frac{16d \log \left(\frac{2e}{d} \right)}{(\delta \epsilon)^2}$$
Lemma

Let $a > 0$. Then

$$x \geq 2a \log(a) \implies x \geq a \log(x).$$

Proof: For $a \leq e$, true for every $x > 0$. Otherwise, for $a \geq \sqrt{e}$ we have $2a \log(a) \geq a$ and thus for every $t \geq 2a \log(a)$, as $f : t \mapsto t - a \log(t)$ is increasing on $[a, \infty)$, $f(t) \geq f(2a \log(a)) = a \log(a) - a \log(2 \log(a)) \geq 0$, since for every $a > 0$ it holds that $a \geq 2 \log(a)$.

Lemma

Let $a \geq 1, b > 0$. Then

$$x \geq 4a \log(2a) + 2b \implies x \geq a \log(x) + b.$$

Proof: It suffices to check that $x \geq 2a \log(x)$ (given by the above lemma) and that $x \geq 2b$ (obvious since $4a \log(2a) \geq 0$).