
Concentration of measure in probability and
high-dimensional statistical learning

Lesson # 6

Guillaume Aubrun

Today we will look at high dimensions through the lens of geometry.
What does a high-dimensional space look like?

Placeholders marked Proof will be filled in class by writing on the slides.
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We denote by vol(·) the volume (=Lebesgue measure) in Rn.
Given subsets A, B in Rn and t ∈ R, define

tA = {tx : x ∈ A },

A + B = {x + y : x ∈ A, y ∈ B }.

We have vol(tA) = |t|n vol(A) by homogeneity. What about vol(A + B)?

Theorem (The Brunn–Minkowski inequality)

If A, B are nonempty then vol(A + B)1/n > vol(A)1/n + vol(B)1/n.

A (globally) equivalent inequality is: for t ∈ [0, 1],

vol(tA + (1− t)B) > vol(A)t vol(B)1−t .

Proof of equivalence.
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There is a generalization which can be proved by induction on the
dimension.

Theorem (The Prékopa–Leindler inequality)

Fix t ∈ [0, 1]. If f , g , h : Rn → [0,∞) satisfy

h(tx + (1− t)y) > f (x)tg(y)1−t

then ∫
h >

(∫
f

)t (∫
g

)1−t
.

The hypothesis is satisfied for f = 1A, g = 1B , h = 1tA+(1−t)B , and the
conclusion is precisely vol(tA + (1− t)B) > vol(A)t vol(B)1−t .
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Say that a probability measure µ on Rn is log-concave if it has a density f
nd if log(f ) is concave.
Examples: nondegenerate Gaussian measures, uniform measure on a
convex set A with 0 < vol(A) <∞.

Proposition

A marginal of a log-concave measure is log-concave.

Proof.

Say that a r.v. X is log-concave if its distribution is log-concave.

Proposition

The sum of independent log-concave r.v.s is log-concave.

Proof.
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Denote by Bn the Euclidean ball in Rn

Bn = {x ∈ Rn :
∑

x2i 6 1}.

Let K ⊂ Rn. The surface area of K can be defined as

a(K ) = lim sup
ε→0

vol(K + εBn)− vol(K )

ε
.

Theorem (Isoperimetric inequality)

Let K ⊂ Rn with vol(K ) > 0 and r > 0 such that vol(K ) = vol(rBn).
Then vol(K + εBn) > vol(rBn + εBn) and therefore a(K ) > a(rBn).

For given volume, surface area is minimized by Euclidean balls.
Proof.
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Let σ be the uniform probability measure on the sphere Sn−1 = ∂Bn. It
can be defined for A ⊂ Sn−1 by

σ(A) =
voln({ta : t ∈ [0, 1], a ∈ A})

voln(Bn)
.

The measure σ is rotation-invariant.
There are two distances on Sn−1: the geodesic distance g and the
Euclidean distance from Rn, related by the formula

|x − y | = 2 sin

(
g(x , y

2

)
.

Denote by C (x , θ) the spherical cap of center x ∈ Sn−1 and angle
θ ∈ [0, π].

C (x , θ) = {y ∈ Sn−1 : g(x , y) 6 θ}.

Let Vn(θ) = σ(C (x , θ)). We have Vn(π − θ) = 1− Vn(θ).
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Crucial fact: for fixed θ < π/2, Vn(θ) is exponentially small as n→∞.

We have Vn(θ) 6 1
2 sin(θ)n−1

Proof

For 0 < θ < π/2, it can be shown that

V (θ)1/n ∼ sin(θ)

as n→∞.
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Let (M, d) be a compact metric space and ε > 0. A subset N ⊂ M is

1 ε-dense (or a ε-net) if ∀x ∈ M, ∃x0 ∈ N with d(x , x0) 6 ε.

2 ε-separated if ∀x 6= y in N, d(x , y) > ε.

We then define

1 the covering number N(M, ε) as the minimal cardinality of an
ε-dense set,

2 the packing number P(M, ε) as the minimal cardinality of an
ε-separated set.

We have
P(M, 2ε) 6 N(M, ε) 6 P(M, ε).

Proof

September 24, 2020 8 / 12



Consider the metric space (Sn−1, g). We have the inequalities (why?)

1

Vn(ε)
6 N(Sn−1, ε) 6 P(Sn−1, ε) 6

1

Vn(ε/2)

therfore both N(Sn−1, ε) and N(Sn−1, ε) grow exponentially fast.
There is a precise answer for the covering number growth rate.

Theorem (Rogers)

For 0 < ε < π/2 we have lim
n→∞

1

n
logN(Sn−1, ε) = − log sin ε.

The packing problem is much more complicated. It is conjectured that

lim
n→∞

1

n
logP(Sn−1, ε) = − log sin ε,

which means that you cannot pack caps more efficently than by the greedy
algorithm. Connects to coding theory.

September 24, 2020 9 / 12



Rogers’s random covering argument. We show that if ε2 < ε1 then

N(Sn−1, g , ε1 + ε2) 6

⌈
1

Vn(ε1)
log

(
Vn(ε1)

Vn(ε2)

)⌉
+

1

Vn(ε1)

which implies the theorem after some analysis.

Fix N =
⌈

1
Vn(ε1)

log
(
Vn(ε1)
Vn(ε2)

)⌉
and let (xi )16i6N be i.i.d. random uniform

points on Sn−1. The covered part A =
⋃
C (xi , ε) satisfies

Eσ(Sn−1 \ A) = (1− Vn(ε1))N 6 exp(−NVn(ε1)) 6
Vn(ε2)

Vn(ε1)
.

Choose xi such that σ(Sn−1 \ A) 6 Vn(ε2)
Vn(ε1)

. Let C (yj , ε2)16j6M a maximal

set of disjoint caps inside Sn−1 \ A. By disjointedness, we have
MVn(ε2) 6 σ(Sn−1 \A) and therefore M 6 1

Vn(ε1)
. By maximality, we have

Sn−1 ⊂
N⋃
i=1

C (xi , ε1 + ε2) ∪
M⋃
j=1

C (yj , 2ε2)

showing (using that ε2 6 ε1) that N(Sn−1, g , ε1 + ε2) 6 N + M.
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Let E ⊂ Sn−1 be an equator (e.g. {x1 = 0}). The ε-neighbourhood of E

Eε = {x ∈ Sn−1 : ∃y ∈ E : g(x , y) > ε}

is the complement of two caps of angle π/2− ε. Therefore

σ(Sn−1 \ Eε) = 2Vn(π/2− ε) 6 cos(ε)n−1 6 exp(−(n − 1)ε2/2).

Most of the mass on the sphere lies very close to an equator. This is even
true simultaneously for N � 1 equators, as long as N is subexponential.

In other words, linear functions on the sphere are subGaussian r.v.s.

A much stronger statement is true: all Lipschitz functions are subGaussian
r.v.s.
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One can also prove an isoperimetric inequality on the sphere.

Theorem (Isoperimetric inequality on Sn−1)

Let A ⊂ Sn−1 and C be a spherical cap such that σ(A) = σ(C ). Then for
every ε > 0, we have σ(Aε) > σ(Cε),

As a corollary, if A ⊂ Sn−1 satisfies σ(A) = 1/2, then
σ(Sn−1 \ Aε) 6 V (π/2− ε) 6 1

2 exp(−(n − 1)ε2/2).

This estimate can also be deduced from Brunn–Minkowski inequality.
Proof
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Corollary

Let f : Sn−1 → R a 1-Lipschitz function with median m. Then

σ({f > m + ε}) 6 1

2
exp(−(n − 1)ε2/2),

σ({|f −m| > ε}) 6 exp(−(n − 1)ε2/2).

Proof
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Computing the median is often not easy. But once we know a function
concentrates, we can a posteriori replace the median by the mean.

Corollary

Let f : Sn−1 → R a 1-Lipschitz function with expectation Ef . Then

σ({|f − Ef | > ε}) 6 C exp(−cnε2).

Here C and c are absolute constants.

We compare the expectation and the mean

|Ef −m| 6 E|f −m| =

∫ ∞
0

σ(|f −m| > t)dt

6
∫ ∞
0

exp(−(n − 1)t2) dt

= O(1/
√
t)

so replacing m by Ef only affects the constants.
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