Concentration of measure in probability and
high-dimensional statistical learning

Lesson # 6

Guillaume Aubrun

Today we will look at high dimensions through the lens of geometry.
What does a high-dimensional space look like?

Placeholders marked Proof will be filled in class by writing on the slides.
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We denote by vol(-) the volume (=Lebesgue measure) in R".
Given subsets A, B in R” and t € R, define

tA={tx : xe A},

A+B={x+y : xeAyeB}.
We have vol(tA) = |t|" vol(A) by homogeneity. What about vol(A + B)?

Theorem (The Brunn—Minkowski inequality)

If A, B are nonempty then vol(A + B)Y/" > vol(A)Y/" 4 vol(B)/".

A (globally) equivalent inequality is: for t € [0, 1],
vol(tA + (1 — t)B) > vol(A)t vol(B)*t.

Proof of equivalence.
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There is a generalization which can be proved by induction on the
dimension.

Theorem (The Prékopa—Leindler inequality)
Fix t € [0,1]. If f,g,h: R" — [0, 00) satisfy

h(tx+ (1= t)y) > f(x)'g(y)""

t 1-t
[r=([) ([¢)
The hypothesis is satisfied for f =14, g =15, h =144, (1_1)B, and the
conclusion is precisely vol(tA + (1 — t)B) > vol(A)t vol(B) L.

then

September 24, 2020 3/12



Say that a probability measure iz on R” is log-concave if it has a density f
nd if log(f) is concave.

Examples: nondegenerate Gaussian measures, uniform measure on a
convex set A with 0 < vol(A) < oo.

Proposition

A marginal of a log-concave measure is log-concave.

Proof.

Say that a r.v. X is log-concave if its distribution is log-concave.

Proposition

The sum of independent log-concave r.v.s is log-concave.

Proof.
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Denote by B, the Euclidean ball in R”
B,={xeR" : Zx,?gl}.
Let K C R". The surface area of K can be defined as

5(K) = limsup vol(K +¢B)) — voI(K).

e—0 £

Theorem (Isoperimetric inequality)

Let K C R" with vol(K) > 0 and r > 0 such that vol(K) = vol(rB).
Then vol(K + eBp) > vol(rB, + €B,) and therefore a(K) > a(rB,).

For given volume, surface area is minimized by Euclidean balls.
Proof.
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Let o be the uniform probability measure on the sphere S"™~1 = 9B, It
can be defined for A C S""1 by

_vol,({ta : t€[0,1],a€ A})
o(A) = vol,(B,) '

The measure ¢ is rotation-invariant.
There are two distances on S"~!: the geodesic distance g and the
Euclidean distance from R", related by the formula

|x — y| = 2sin (g(;,y) .

Denote by C(x, ) the spherical cap of center x € S~ and angle
0 € [0,7].
C(x,0)={y €S"' : g(x,y) <6}

Let V,(0) = o(C(x,0)). We have V,(m — 0) = 1 — V().
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Crucial fact: for fixed 6 < 7/2, V,,(0) is exponentially small as n — .

We have V,(6) < 3sin(6)"*
Proof

For 0 < 6 < /2, it can be shown that
V(0)Y/" ~ sin(6)

as n — o0.
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Let (M, d) be a compact metric space and € > 0. A subset N C M is
© c-dense (or a e-net) if Vx € M, 3xg € N with d(x,xp) < €.
@® c-separated if Vx # y in N, d(x,y) > e.
We then define
® the covering number N(M,¢) as the minimal cardinality of an
e-dense set,
@® the packing number P(M,¢) as the minimal cardinality of an
g-separated set.
We have
P(M,2e) < N(M,e) < P(M,e).

Proof
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Consider the metric space (S"71,g). We have the inequalities (why?)

1
V()

1
SNS" L)< P(S" L)< ———
(5748 < P9 < g
therfore both N(S"~1,¢) and N(5"~1,¢) grow exponentially fast.
There is a precise answer for the covering number growth rate.

Theorem (Rogers)

1
For0 < & < /2 we have lim =log N(S"! ) = —logsine.
n—oo N

The packing problem is much more complicated. It is conjectured that

1
lim =log P(S"1,e) = —logsine,

n—oo n

which means that you cannot pack caps more efficently than by the greedy
algorithm. Connects to coding theory.
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Rogers's random covering argument. We show that if e < 1 then

n— 1 Vn(€1) 1
N(S" g 21+ 22) < {vn(sl) o8 (vn(sz)ﬂ V)

which impIies the theorem after some analysis.

Fix N = { Ve log (V”Eelgﬂ and let (x;)1<i<n be i.i.d. random uniform

points on S"~1. The covered part A = |J C(x;,¢) satisfies

Vi(e2)

Ea(S7\A) = (1= Vilen))" < expl~NVo(e)) < (0

Choose x; such that o(S" 1\ A) < \\%Zg Let C(yj,€2)1<j<m @ maximal

set of disjoint caps inside S"~1\ A. By disjointedness we have
MV, (g2) < o(S" 1\ A) and therefore M < ( 0 By maximality, we have

N M

g1 C U C(X,',€1 + 52) U U C(yj,252)
i—1 =1

showing (using that e3 < e1) that N(S" 1, g,e1 +e2) < N+ M.



Let E C S™ 1 be an equator (e.g. {x; = 0}). The e-neighbourhood of E
E.={xeS" 1 :3ycE : g(x,y)>e¢}
is the complement of two caps of angle /2 — . Therefore
o(S"H\ E) = 2V,(1/2 — €) < cos(e)™ ! < exp(—(n —1)£%/2).

Most of the mass on the sphere lies very close to an equator. This is even
true simultaneously for N >> 1 equators, as long as N is subexponential.

In other words, linear functions on the sphere are subGaussian r.v.s.

A much stronger statement is true: all Lipschitz functions are subGaussian
r.v.s.
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One can also prove an isoperimetric inequality on the sphere.

Theorem (lsoperimetric inequality on S"1)

Let AC S"! and C be a spherical cap such that o(A) = o(C). Then for
every € > 0, we have o(A:) = o(C.),

As a corollary, if A C S™1 satisfies o(A) = 1/2, then
a(§" T\ As) < V(m/2 —¢) < exp(—(n — 1)?/2).

This estimate can also be deduced from Brunn—Minkowski inequality.
Proof
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Corollary

Let f : S""1 — R a 1-Lipschitz function with median m. Then

o{f > m+e}) < %exp(—(n —1)e2/2),

o({If = m| > €}) < exp(—(n — 1)e2/2).

Proof
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Computing the median is often not easy. But once we know a function
concentrates, we can a posteriori replace the median by the mean.

Let f : S"1 — R a 1-Lipschitz function with expectation Ef. Then

o({|f — Ef| > €}) < Cexp(—cne?).

Here C and c are absolute constants.

We compare the expectation and the mean
|Ef —m| <E|f —m| = /OOOJ(|f— m| > t)dt
< /000 exp(—(n—1)t?)dt
= oV

so replacing m by Ef only affects the constants.
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