Concentration: Lower bounds for deviations, and No Free Lunch theorem

Master 2 Mathematics and Computer Science

Guillaume Aubrun, <u>Aurélien Garivier</u>, Rémi Gribonval 2020-2021

Table of contents

- 1. Deviation Bound for Bernoulli Variables
- 2. Kullback-Leibler divergence
- 3. No-Free-Lunch theorems: when learning is not possible

Deviation Bound for Bernoulli

Variables

Chernoff's Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let $\mu \in (0,1)$. $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{B}(\mu)$, and let $x \in (\mu,1]$.

(i) Chernoffs' bound for Bernoulli variables:

$$\mathbb{P}(\bar{X}_n \ge x) \le \exp\left(-n \operatorname{kl}(x, \mu)\right), \tag{1}$$

where $kl(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$. Same for left deviations.

(ii) If $\phi(x) = kl(x, \mu)$, then $\phi''(x) = 1/[x(1-x)]$ and

(iii) Hoeffding's bound for Bernoulli variables:

$$\mathbb{P}(\bar{X}_n > x) < \exp\left(-2n(x - \mu)^2\right). \tag{2}$$

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0,1] and expectation μ .

A Divergence on the Set of Possible Means

Examples

• If $\mu < 1/2$,

$$\mathbb{P}\left(ar{X}_n > rac{1}{2}
ight) \leq \exp\left(-rac{n}{2}(1-2\mu)^2
ight) \; .$$

(Consequence of Chernoff or direct computation with $(1-u)^n \le \exp(-n u)$, or of Hoeffding).

• For all $\mu \in [0,1]$, Chernoff's bound with $\log(u) \geq (u-1)/u$ yields

$$\mathbb{P}\left(\bar{X}_n < \frac{\mu}{2}\right) \leq \exp\left(-\frac{1 - \log(2)}{2} \, n\mu\right) \approx \exp\left(-0.153 \, n\mu\right) \leq \exp\left(-\frac{n\mu}{7}\right) \; .$$

Hoeffding yields a very poor result, but (ii) gives:

$$\mathbb{P}\left(\bar{X}_n < \frac{\mu}{2}\right) \leq \exp\left(-\frac{3}{20}n\mu\right) = \exp\left(-0.15n\mu\right) \leq \exp\left(-\frac{n\mu}{8}\right) .$$

4

Sub-Gaussian inequalities

Bennett's and Bernstein's inequalities

Let $(X_i)_{1\leq i\leq n}$ be independent random variables upper-bounded by 1, let $\bar{\mu}=(\mathbb{E}[X_1]+\cdots+\mathbb{E}[X_n])/n$, let σ^2 be such that $\mathbb{E}[X_i^2]\leq\sigma^2$ for all i and let $\phi(u)=(1+u)\log(1+u)-u$. Then, for all x>0,

$$\mathbb{P}(\bar{X} \ge \bar{\mu} + x) \le \exp\left(-n\sigma^2\phi\left(\frac{x}{\sigma^2}\right)\right) \le \exp\left(-\frac{nx^2/2}{\sigma^2 + x/3}\right) .$$

Bernstein from Bennett:
$$\phi(x) \ge \frac{x^2}{2\left(1+\frac{x}{3}\right)}$$
 since $\psi(x) = 2\left(1+\frac{x}{3}\right)\phi(x) - x^2 \ge 0$.

Extension: if $X_i \leq b$ with b > 0,

$$\mathbb{P}\big(\bar{X}_n \geq \bar{\mu} + x\big) \leq \exp\left(-\frac{n\sigma^2}{b^2}\phi\left(\frac{bx}{\sigma^2}\right)\right) \leq \exp\left(-\frac{n\,x^2/2}{\sigma^2 + bx/3}\right) \; .$$

Example: for X with range in [0,1],

$$\mathbb{P}\left(\bar{X}_n < \frac{\mu}{2}\right) \leq \exp\left(-n\left(\frac{3}{2}\log\frac{3}{2} - \frac{1}{2}\right)\mu\right) \leq \exp\left(-\frac{3n\mu}{28}\right) \; .$$

Parenthesis: a nice proof for the technicalities of Bernstein

From [Pollard, MiniEmpirical ex.14, http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf]

For any sufficiently smooth real-valued function g defined at least in a neighborhood of 0 let

$$G(x) = \frac{g(x) - g(0) - xg'(0)}{x^2/2}$$
 if $x \neq 0$, and $G(0) = g''(0)$.

By Taylor's integral formula

$$g(x) - g(0) - xg'(0) = \int_0^x g''(u)(x - u)du = x^2 \int_0^1 g''(sx)(1 - s)ds.$$

Thus, $G(x) = \int g''(sx)d\nu(s)$, where $d\nu(s) = 2(1-s)\mathbb{1}\{0 \le s \le 1\}ds$.

Hence, if g is convex then $g'' \geq 0$ and $G \geq 0$. Moreover, if g'' is increasing then the functions $x \mapsto g''(sx)$ for $s \in [0,1]$ are all increasing and G is also increasing as an average of increasing functions. For $g(u) = \exp(u)$, this yields that $(\exp(u) - u - 1)/u^2$ is increasing, as required for the proof of Bernstein's inequality.

Similarly, if g'' is convex then G is also convex as an average of convex functions $\Big(x\mapsto g''(sx)\Big)_s$. Moreover, by Jensen's inequality applied to convex function $\psi(s)=g''(xs)$ with the probability measure $d\nu(s)=2(1-s)\mathbb{1}\{0\le s\le 1\}ds$

$$G(x) = \int_0^1 g''(xs) \ 2(1-s)ds \ge g''\left(x \int_0^1 s \times 2(1-s)ds\right) = g''\left(\frac{x}{3}\right) \ .$$

For $g(u) = (1 + u) \log(1 + u) - u$, g''(u) = 1/(1 + u) and this yields:

$$\frac{g(u)}{u^2/2} \ge g''\left(\frac{u}{3}\right) = \frac{1}{1+u/3} .$$

Exercise: for $X_i \stackrel{iid}{\sim} \mathcal{B}(\mu)$, $\mathbb{P}(\bar{X}_n \geq 2\mu) \leq \exp(-n \times ?)$

Chernoff + **Taylor**: since $\log(u) \ge (u-1)/u$,

$$\mathsf{kl}(2\mu,\mu) = 2\mu\log(2) + (1-2\mu)\log\frac{1-2\mu}{1-2\mu} \geq 2\mu\log(2) - \mu = \mu(2\log(2)-1) \approx 0.386\,\mu\;.$$

Chernoff with convexity:

$$\label{eq:kl} \text{kl}(2\mu,\mu) \geq \frac{(2\mu-\mu)^2/2}{4/3\mu} = \frac{3}{8}\,\mu = 0.375\mu \;.$$

Improved Hoeffding:

$$\mathrm{kl}(2\mu,\mu) \geq \frac{(2\mu-\mu)^2/2}{\max_{\mu \leq u \leq 2\mu} u(1-u)} \geq \frac{\mu^2/2}{2\mu} = \frac{1}{4}\,\mu = 0.25\mu\;.$$

Bennett:

$$2\mu \log \frac{2\mu}{\mu} - (2\mu - \mu) = \mu(2\log(2) - 1) \approx 0.386 \,\mu$$
.

Bernstein:

$$\frac{(2\mu-\mu)^2/2}{\mu(1-\mu)+(2\mu-\mu)/3} \ge \frac{\mu^2/2}{\mu+\mu/3} \frac{3}{8} \mu = 0.375 \mu .$$

Hoeffding: $2(2\mu - \mu)^2 = 2\mu^2$, very poor (as expected) when μ is small.

Kullback-Leibler divergence

Kullback-Leibler divergence

Definition

Let P and Q be two probability distributions on a measurable set Ω . The Kullback-Leibler divergence from Q to P is defined as follows:

- if P is not absolutely continuous with respect to Q, then $KL(P,Q) = +\infty$;
- otherwise, let $\frac{dP}{dQ}$ be the Radon-Nikodym derivative of P with respect to Q. Then

$$\mathsf{KL}(P,Q) = \int_{\Omega} \log \frac{dP}{dQ} \, dP = \int_{\Omega} \frac{dP}{dQ} \log \frac{dP}{dQ} \, dQ \; .$$

Property: $0 \le KL(P, Q) \le +\infty$, KL(P, Q) = 0 iff P = Q.

 $\text{If } P \ll Q \text{ and } f = \frac{dP}{dQ}, \int_{\Omega} f \log(f) \, dQ = \int_{\Omega} \left[f \log(f) \right]_{+} \, dQ - \int_{\Omega} \left[f \log(f) \right]_{-} \, dQ, \text{ the later is finite since } \left[f \log(f) \right]_{-} \, \leq 1/e.$

Examples:

$$\mathsf{KL}\left(\mathcal{B}(p),\mathcal{B}(q)\right) = \mathsf{kl}(p,q),\; \mathsf{KL}\left(\mathcal{N}(\mu_1,\sigma^2),\,\mathcal{N}(\mu_2,\sigma^2)\right) = \frac{(\mu_1-\mu_2)^2}{2\sigma^2}$$
.

Lower Bound: Change of Measure

For all
$$\epsilon > 0$$
 and all $\alpha > 0$,
$$\mathbb{P}_{\mu} \left(\bar{X}_n \geq x \right) = \mathbb{E}_{\mu} \left[\mathbb{I} \{ \bar{X}_n \geq x \} \right]$$

$$= \mathbb{E}_{x+\epsilon} \left[\mathbb{I} \{ \bar{X}_n \geq x \} \times \frac{d\mathbb{P}_{\mu}}{d\mathbb{P}_{x+\epsilon}} \left(X_1, \dots, X_n \right) \right]$$

$$= \mathbb{E}_{x+\epsilon} \left[\mathbb{I} \{ \bar{X}_n \geq x \} \times e^{-\sum_{i=1}^n \log \frac{dP_{x+\epsilon}}{dP_{\mu}}} (X_i) \right]$$

$$\geq \mathbb{E}_{x+\epsilon} \left[\mathbb{I} \{ \bar{X}_n \geq x \} \ \mathbb{I} \left\{ \frac{1}{n} \sum_{i=1}^n \log \frac{dP_{x+\epsilon}}{dP_{\mu}} (X_i) \leq \mathbb{E}_{x+\epsilon} \left[\log \frac{dP_{x+\epsilon}}{dP_{\mu}} (X_1) \right] + \alpha \right\}$$

$$\times e^{-\sum_{i=1}^n \log \frac{dP_{x+\epsilon}}{dP_{\mu}}} (X_i) \right]$$

$$\geq e^{-n \left\{ \mathbb{E}_{x+\epsilon} \left[\log \frac{dP_{x+\epsilon}}{dP_{\mu}} (X_1) \right] + \alpha \right\}} \left[1 - \mathbb{P}_{x+\epsilon} \left(\bar{X}_n < x \right) \right]$$

$$-\mathbb{P}_{x+\epsilon}\left(\frac{1}{n}\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{i}) > \mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{1})\right] + \alpha\right)\right]$$

$$= e^{-n\left\{k|(x+\epsilon,\mu)+\alpha\right\}}\left(1 - o_{n}(1)\right).$$

Lower Bound: Change of Measure

For all $\epsilon > 0$ and all $\alpha > 0$,

$$\begin{split} \mathbb{P}_{\mu}\left(\bar{X}_{n} \geq x\right) &= \mathbb{E}_{\mu}\left[\mathbb{1}\{\bar{X}_{n} \geq x\}\right] \\ &\geq \mathbb{E}_{x+\epsilon}\left[\mathbb{1}\{\bar{X}_{n} \geq x\} \,\mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}\left(X_{i}\right) \leq \mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}\left(X_{1}\right)\right] + \alpha\right\} \\ &\times e^{-\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}\left(X_{i}\right)} \\ &\geq e^{-n\left\{\mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}\left(X_{1}\right)\right] + \alpha\right\}} \left[1 - \mathbb{P}_{x+\epsilon}\left(\bar{X}_{n} < x\right) \\ &- \mathbb{P}_{x+\epsilon}\left(\frac{1}{n}\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}\left(X_{i}\right) > \mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}\left(X_{1}\right)\right] + \alpha\right)\right] \\ &= e^{-n\left\{kl(x+\epsilon,\mu) + \alpha\right\}} \left(1 - o_{n}(1)\right). \end{split}$$

Asymptotic Optimality (Large Deviation Lower Bound)

$$\liminf_{n} \frac{1}{n} \log \mathbb{P}_{\mu} \left(\bar{X}_{n} \geq x \right) \geq - \operatorname{kl}(x, \mu) .$$

Lower Bound: Change of Measure

For all $\epsilon > 0$ and all $\alpha > 0$,

$$\mathbb{P}_{\mu}\left(\bar{X}_{n} \geq x\right) = \mathbb{E}_{\mu}\left[\mathbb{1}\{\bar{X}_{n} \geq x\}\right]$$

$$\geq \mathbb{E}_{x+\epsilon}\left[\mathbb{1}\{\bar{X}_{n} \geq x\} \,\mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{i}) \leq \mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{1})\right] + \alpha\right\}$$

$$\times e^{-\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{i})}\right]$$

$$\geq e^{-n\left\{\mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{1})\right] + \alpha\right\}}\left[1 - \mathbb{P}_{x+\epsilon}\left(\bar{X}_{n} < x\right)\right]$$

$$- \mathbb{P}_{x+\epsilon}\left(\frac{1}{n}\sum_{i=1}^{n}\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{i}) > \mathbb{E}_{x+\epsilon}\left[\log\frac{dP_{x+\epsilon}}{dP_{\mu}}(X_{1})\right] + \alpha\right)\right]$$

$$= e^{-n\left\{kl(x+\epsilon,\mu) + \alpha\right\}}\left(1 - o_{n}(1)\right).$$

Asymptotic Optimality (Large Deviation Principle)

$$\frac{1}{n}\log \mathbb{P}_{\mu}\left(\bar{X}_{n} \geq x\right) \underset{n \to \infty}{\longrightarrow} -\operatorname{kl}(x, \mu) .$$

Properties of KL divergence

Tensorization of entropy:

If $P = P_1 \otimes P_2$ and $Q = Q_1 \otimes Q_2$, then

$$\mathsf{KL}(P,Q) = \mathsf{KL}(P_1,Q_1) + \mathsf{KL}(P_2,Q_2) .$$

Contraction of entropy data-processing inequality:

Let (Ω, \mathcal{A}) be a measurable space, and let P and Q be two probability measures on (Ω, \mathcal{A}) . Let $X: \Omega \to (\mathcal{X}, \mathcal{B})$ be a random variable, and let P^X (resp. Q^X) be the push-forward measures, ie the laws of X wrt P (resp. Q). Then

$$\mathsf{KL}\left(P^X,Q^X\right) \leq \mathsf{KL}(P,Q)$$
.

Pinsker's inequality:

Let $P, Q \in \mathfrak{M}_1(\Omega, \mathcal{A})$. Then

$$||P-Q||_{TV} \stackrel{\mathrm{def}}{=} \sup_{A \in \mathcal{A}} |P(A)-Q(A)| \leq \sqrt{\frac{\mathsf{KL}(P,Q)}{2}} \ .$$

Proof: contraction

Contraction: if $\mathsf{KL}(P,Q) = +\infty$, the result is obvious. Otherwise, $P \ll Q$ and there exists $\frac{dP}{dQ}: \Omega \to \mathbb{R}$ such that for all measurable $f: \Omega \to \mathbb{R}$, $\int_\Omega f \, dP = \int_\Omega f \, \frac{dP}{dQ} \, dQ$.

• We first prove that $P^X \ll Q^X$ and, if $\gamma(x) := \mathbb{E}_Q\left[\frac{dP}{dQ}\big|X=x\right]$ is the Q-a.s. unique function such that $\mathbb{E}_Q\left[\frac{dP}{dQ}\big|X\right] = \gamma(X)$, then $\gamma = \frac{dP^X}{dQ^X}$. Indeed, for all $B \in \mathcal{B}$,

$$P^{X}(B) = P(X \in B) = \int_{X \in B} \frac{dP}{dQ} dQ = \mathbb{E}_{Q} \left[\frac{dP}{dQ} \mathbb{1} \{ X \in B \} \right]$$

$$= \mathbb{E}_{Q} \left[\mathbb{E}_{Q} \left[\frac{dP}{dQ} \mathbb{1} \{ X \in B \} \middle| X \right] \right] = \mathbb{E}_{Q} \left[\mathbb{1} \{ X \in B \} \mathbb{E}_{Q} \left[\frac{dP}{dQ} \middle| X \right] \right]$$

$$= \mathbb{E}_{Q} \left[\mathbb{1} \{ X \in B \} \gamma(X) \right] = \int_{X \in B} \gamma(X) dQ = \int_{B} \gamma dQ^{X}$$

and hence $P^X \ll Q^X$ and $\frac{dP^X}{dQ^X} = \gamma$.

Now,

$$\begin{split} \operatorname{KL}\left(\boldsymbol{P}^{\boldsymbol{X}},\boldsymbol{Q}^{\boldsymbol{X}}\right) &= \int_{\mathcal{X}} \gamma \log \gamma \; d\boldsymbol{Q}^{\boldsymbol{X}} = \int_{\Omega} \gamma(\boldsymbol{X}) \log \gamma(\boldsymbol{X}) \, d\boldsymbol{Q} \\ &= \mathbb{E}_{\boldsymbol{Q}}\left[\phi\left(E_{\boldsymbol{Q}}\left[\frac{d\boldsymbol{P}}{d\boldsymbol{Q}}\middle|\boldsymbol{X}\right]\right)\right] \quad \text{where } \phi := \boldsymbol{x} \mapsto \boldsymbol{x} \log(\boldsymbol{x}) \text{ is convex} \\ &\leq \mathbb{E}_{\boldsymbol{Q}}\left[\mathbb{E}_{\boldsymbol{Q}}\left[\phi\left(\frac{d\boldsymbol{P}}{d\boldsymbol{Q}}\right)\middle|\boldsymbol{X}\right]\right] \quad \text{by (conditional) Jensen's inequality} \\ &= \mathbb{E}_{\boldsymbol{Q}}\left[\phi\left(\frac{d\boldsymbol{P}}{d\boldsymbol{Q}}\right)\right] = \operatorname{KL}(\boldsymbol{P},\boldsymbol{Q})\;. \end{split}$$

Proof: Pinsker

Let
$$A \in \mathcal{A}$$
, $p = P(A)$ and $q = Q(A)$. By contraction,

$$\mathsf{KL}(P,Q) \geq \mathsf{KL}(P^{1_A},Q^{1_A}) = \mathsf{KL}\left(\mathcal{B}\big(P(A)\big),\mathcal{B}\big(Q(A)\big)\right) = \mathsf{kl}\left(P(A),Q(A)\right) \geq 2\big(P(A) - Q(A)\big)^2 \;.$$

Lower Bound: the Entropic Way

Let
$$\Omega = \{0,1\}^n$$
, $X_i(\omega) = \omega_i$

Probability laws on Ω : $\mathbb{P}_p = \mathcal{B}(p)^{\otimes n}$.

For all $\epsilon > 0$,

$$\begin{split} & \text{rn kl}\big(x+\epsilon,\mu\big) = \mathsf{KL}\left(\mathbb{P}_{x+\epsilon},\mathbb{P}_{\mu}\right) & \text{kl}(\mathsf{P}\otimes\mathsf{P}',\mathsf{Q}\otimes\mathsf{Q}') = \mathsf{KL}(\mathsf{P},\mathsf{Q}) + \mathsf{KL}(\mathsf{P}',\mathsf{Q}') \\ & \geq \mathsf{KL}\left(\mathbb{P}_{x+\epsilon}^{\mathbb{I}\left\{\bar{X}_{n} \geq x\right\}},\,\mathbb{P}_{\mu}^{\mathbb{I}\left\{\bar{X}_{n} \geq x\right\}}\right) & \overset{\mathsf{KL}(\mathsf{P},\,\mathsf{Q}) \geq \mathsf{KL}(\mathsf{P}^{X},\,\mathsf{Q}^{X})}{\mathsf{contraction of entropy}} \\ & = \mathsf{kl}\left(\mathbb{P}_{x+\epsilon}\left(\bar{X}_{n} \geq x\right),\,\mathbb{P}_{\mu}\left(\bar{X}_{n} \geq x\right)\right) \\ & \geq \mathbb{P}_{x+\epsilon}\left(\bar{X}_{n} \geq x\right)\log\frac{1}{\mathbb{P}_{\mu}\left(\bar{X}_{n} > x\right)} - \log(2) & \mathsf{kl}(\mathsf{p},\,\mathsf{q}) \geq \mathsf{p}\log\frac{1}{q} - \log 2 \end{split}$$

A non-asymptotic lower bound

$$\forall \epsilon > 0, \qquad \mathbb{P}_{\mu}\left(\bar{X}_{n} \geq x\right) \geq \frac{e^{-\frac{n \, kl(x+\epsilon, \mu) + \log(2)}{1-e^{-2n\epsilon^{2}}}}$$

learning is not possible

No-Free-Lunch theorems: when

The No-Free-Lunch theorem

A learning algorithm A for binary classification maps a sample $S \sim \mathcal{D}^{\otimes n}$ to a decision rule \hat{h}_n .

Theorem

Let A be any learning algorithm for binary classification over a domain \mathcal{X} . If the training set size is $n \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- there exists a function $f: \mathcal{X} \to \{0,1\}$ with $L_D(f) = 0$;
- ullet with probability at least 1/7 over the choice of $S\sim \mathcal{D}^{\otimes n}$,

$$L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$$
.

Note that the ERM over $\mathcal{H} = \{f\}$, or over any set \mathcal{H} such that $n \geq 8 \log(7|\mathcal{H}|/6)$, is a successful learner in that setting.

Proof

Take $C \subset \mathcal{X}$ of cardinality 2n, and $\{0,1\}^C = \{f_1,\ldots,f_T\}$ where $T = 2^{2n}$. For each $1 \leq i \leq T$, we denote by D_i the probability distribution on $C \times \{0,1\}$ defined by

$$D_{\hat{I}}(\{x,y\}) = \begin{cases} \frac{1}{2n} & \text{if } y = f_{\hat{I}}(x) \\ 0 & \text{otherwise.} \end{cases}$$

We will show that $\max_{1 \leq j \leq T} \mathbb{E} \left[\mathbb{L}_{D_j}(A(S)) \right] \geq 1/4$, which entails the result thanks to the small lemma: if $P(0 \leq Z \leq 1) = 1$ and $\mathbb{E}[Z] \geq 1/4$, then $\mathbb{P}(Z \geq 1/8) \geq 1/7$. Indeed, $1/4 \leq \mathbb{E}[Z] \leq \mathbb{P}(Z < 1/8)/8 + \mathbb{P}(Z \geq 1/8) = 1/8 - 7\,\mathbb{P}(Z \geq 1/8)/8$.

All the X-samples S_1^X,\ldots,S_k^X , for $k=(2n)^n$, are equaly likely. For $1\leq j\leq k$, if $S_j^X=(x_1,\ldots,x_n)$ we denote by $S_j^i=((x_1,f_i(x_1)),\ldots,(x_n,f_i(x_n)),$ and $\hat{f}_j^i=A(S_j^i).$

$$\begin{split} \max_{1 \leq i \leq T} \mathbb{E} \Big[L_{D_i} (A(S)) \Big] &= \max_{1 \leq i \leq T} \frac{1}{k} \sum_{j=1}^k L_{D_i} \binom{\hat{r}^i}{j} \ge \frac{1}{T} \sum_{i=1}^I \frac{1}{k} \sum_{j=1}^k L_{D_i} \binom{\hat{r}^i}{j} \\ &= \frac{1}{k} \sum_{j=1}^k \frac{1}{T} \sum_{i=1}^T L_{D_i} \binom{\hat{r}^i}{j} \ge \min_{1 \leq j \leq k} \frac{1}{T} \sum_{i=1}^T L_{D_i} \binom{\hat{r}^i}{j} \ . \end{split}$$

Fix $1 \leq j \leq k$, denote $S_j^X = (x_1, \ldots, x_n)$ and define $\{v_1, \ldots, v_p\} = C \setminus \{x_1, \ldots, x_n\}$, where $p \geq n$. Then

$$L_{D_{\hat{i}}}\left(\hat{f}_{\hat{j}}^{i}\right) = \frac{1}{2n}\sum_{x \in C}\mathbb{1}\left\{\hat{f}_{\hat{j}}^{i}(x) \neq f_{\hat{i}}(x)\right\} \geq \frac{1}{2p}\sum_{r=1}^{p}\mathbb{1}\left\{\hat{f}_{\hat{j}}^{i}(v_{r}) \neq f_{\hat{i}}(v_{r})\right\}$$

and hence

$$\frac{1}{T}\sum_{i=1}^T L_{D_i} \left(\hat{f}_j^i\right) \geq \frac{1}{T}\sum_{i=1}^T \frac{1}{2p}\sum_{r=1}^p \mathbbm{1}\{\hat{f}_j^i(v_r) \neq f_i(v_r)\} \geq \frac{1}{2}\min_{1 \leq r \leq p} \frac{1}{T}\sum_{i=1}^T \mathbbm{1}\{\hat{f}_j^i(v_r) \neq f_i(v_r)\} \ .$$

Fix $1 \leq r \leq p$. Then the functions $\{f_i: 1 \leq i \leq T\}$ can be grouped into T/2 pairs of functions $(\tilde{f}_i^0, \tilde{f}_i^{1}), 1 \leq i \leq T/2$ which agree on all $x \in C$ except on v_r , and for all $1 \leq i \leq T/2$ it holds that $1\{\hat{f}_i^j(v_r) \neq \hat{f}_i^0(v_r)\} + 1\{\hat{f}_i^j(v_r) \neq \tilde{f}_i^{1}(v_r)\} = 1$. Hence,

$$\sum_{i=1}^{T} \mathbf{1} \big\{ \hat{t}_{j}^{\hat{i}}(\mathbf{v}_{r}) \neq f_{\hat{i}}(\mathbf{v}_{r}) \big\} = \sum_{i=1}^{T/2} \mathbf{1} \big\{ \hat{t}_{j}^{\hat{i}}(\mathbf{v}_{r}) \neq \tilde{t}_{i}^{\hat{0}}(\mathbf{v}_{r}) \big\} + \mathbf{1} \big\{ \hat{t}_{j}^{\hat{i}}(\mathbf{v}_{r}) \neq \tilde{t}_{i}^{\hat{1}}(\mathbf{v}_{r}) \big\} = T/2, \text{ which concludes the proof.}$$

Consequence: infinite VC-dimension ⇒ no learnability

Recall that a hypothesis class $\mathcal H$ is agnostic PAC learnable if there exists a function $n_{\mathcal H}:(0,1)^2\to\mathbb N$ and a learning algorithm $S\mapsto \hat h_n$ such that for every $\epsilon,\delta\in(0,1)$, for every distribution D on $\mathcal X\times\mathcal Y$ when $S=((X_1,Y_1),\ldots,(X_n,Y_n))\stackrel{iid}{\sim} D$,

$$\mathbb{P}\Big(L_D(\hat{h}_n) \geq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon\Big) \leq \delta$$

for all $n \geq n_{\mathcal{H}}(\epsilon, \delta)$.

Theorem

Let $\mathcal H$ be a class of infinite VC-dimension. Then $\mathcal H$ is not PAC-learnable.

Proof: for every training size n, there exists a set $C \subset \mathcal{X}$ of size 2n that is shattered by \mathcal{H} . By the NFL theorem, for every learning algorithm A there exists a probability distribution D over $\mathcal{X} \times \{0,1\}$ and $h: \mathcal{X} \to \{0,1\}$ such that $L_D(h) = 0$ but with probability at least 1/7 over the training set, we have $L_D(A(S)) \geq 1/8$.

Consequence: Curse of Dimensionality

Theorem

Let c>1 be a Lipschitz constant. Let A be any learning algorithm for binary classification over a domain $\mathcal{X}=[0,1]^d$. If the training set size is $n\leq (c+1)^d/2$, then there exists a distribution \mathcal{D} over $[0,1]^d\times\{0,1\}$ such that:

- $\eta(x) = \mathbb{P}(Y = 1 | X = x)$ is *c*-Lipschitz;
- the Bayes error of the distribution is 0;
- ullet with probability at least 1/7 over the choice of $S\sim \mathcal{D}^{\otimes n}$,

$$L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$$
.