Concentration:
Lower bounds for deviations, and No Free
Lunch theorem

Master 2 Mathematics and Computer Science

Guillaume Aubrun, Aurélien Garivier, Rémi Gribonval
2020-2021

= | ==
(U] vt or o



Table of contents

1. Deviation Bound for Bernoulli Variables
2. Kullback-Leibler divergence

3. No-Free-Lunch theorems: when learning is not possible



Deviation Bound for Bernoulli
Variables



Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let pn € (0,1). Xy, ..., Xy & B(u), and let x € (1, 1].

(i) Chernoffs’ bound for Bernoulli variables:
P(Xy > x) < exp (= n ki(x, 1)) , (1)

il =
where kl(p, q) = plog 2 + (1 — p)log lip Same for left deviations.
q q

(i) If ¢(x) = KI(x, p), then ¢"'(x) = 1/[x(1 — x)] and

N2
x ) = S5 76 (o= ) 200 - )

(x — p)y?
= —9
1

~ 2maxy<y<p u(l — u)

2 o 1
HTJFX by Jensen, since ¢’ is convex and / s2(1 — s)ds = B
0

with X =
(x— u? > 2(x— p)?.

(iii) Hoeffding's bound for Bernoulli variables:
P(Xy > x) < exp (— 2n(x — p)?) . (2)

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0, 1] 2
and expectation .



A Divergence on the Set of Possible Means

P, (n kI (X, 1) > Iogi\ <25
w1 KX ) 5 )

Ki(py )




o If p<1/2,

P (Xn > ;) < exp (—g(l - 2u)2) .

(Consequence of Chernoff or direct computation with (1 — u)" < exp(—nu), or of

Hoeffding).

e For all i € [0, 1], Chernoff's bound with log(u) > (u— 1)/u yields

- i 1 —log(2) nu
=) < - = —0. < - .
]P’(X,,<2)exp( 5 ni exp ( 0153n,u)7exp< 7)

Hoeffding yields a very poor result, but (ii) gives:

P ()_(,, < %) < exp (—;Onu) =exp (—0.15np) < exp (—%) .



Sub-Gaussian inequalities

Bennett’s and Bernstein’s inequalities
Let (Xi)1<i<n be independent random variables upper-bounded by 1, let
i = (E[X1] + -+ + E[X,])/n, let 02 be such that E[X?] < o2 for all i
and let ¢(u) = (1 + u)log(1 + u) — u. Then, for all x > 0,
2
= - 2 [ % nx</2

2

X
Bernstein from Bennett: ¢(x) > ———
R

Extension: if X; < b with b > 0,

> _ no? bx nx2/2

Example: for X with range in [0, 1],

= 1 3 3 1 3nu
2) < “n(Zlog -~ = < Sl I
P(Xn<2>exp< n<2|0g2 2)u)exp( 28

since 9(x) = 2 (1 + %) ¢(x) — x> > 0.



Parenthesis: a nice proof for the technicalities of Bernstein

From [Pollard, MiniEmpirical ex.14, http://wwu.stat .yale.edu/~pollard/Books/Mini/Basic.pdf]
For any sufficiently smooth real-valued function g defined at least in a neighborhood of 0 let

g(x) — g(0) — xg’(0)

¢l = x2/2

if x #0, and G(0) = g”(0) .

By Taylor’s integral formula
x 1
£0) — 80— xg'0) = [ ¢"()x— uydu = [ ¢ (501 - s
J0 J0

Thus, G(x) = [ g"'(sx)dv(s), where dv(s) = 2(1 — s)1{0 < s < 1}ds.

Hence, if g is convex then g’/ > 0 and G > 0. Moreover, if g’/ is increasing then the functions

x +— g'’(sx) for s € [0, 1] are all increasing and G is also increasing as an average of increasing

functions. For g(u) = exp(u), this yields that (exp(u) — u — 1)/u? is increasing, as required for

the proof of Bernstein's inequality.

Similarly, if g’’ is convex then G is also convex as an average of convex functions (x — g”(sx)) .
s

Moreover, by Jensen's inequality applied to convex function v(s) = g’’(xs) with the probability
measure dv(s) = 2(1 — s)1{0 < s < 1}ds

G(x) = /Olg”(xs) 2(1 —s)ds > g”’ (X/Ols x 2(1 — s)ds> g <>3<>

For g(u) = (1 + u) log(1 + u) — u, g"”"(u) = 1/(1 + u) and this yields:

0, ()< :



http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf

Exercise: for X; < B(u), P(X, > 2u) < exp(—nx?)

Chernoff + Taylor: since log(u) > (u —1)/u,

& > 2ulog(2) — p = p(2log(2) — 1) ~ 0.386 1 .

kI(2p, p) = 2plog(2) + (1 — 2u) log
1—-2p

Chernoff with convexity:

2p —w)?/2 3
Mu ) > GEZW/2 3 o375,
4/3u 8
Improved Hoeffding:
2u — p)?/2 22 1
KI(2p, p) > Ll V. > £ /2 _ —~ =025
max,, <,<2, U(1 — u) 2u 4
Bennett: 2
2ulog 22— (2 — p) = p(2log(2) — 1) ~ 0.386 1 .
o
Bernstein:

(2 —p)/2 w2 3 e
-+ @u—w/3 = utppzel T T

Hoeffding: 2(2p — p)? = 2u?, very poor (as expected) when i is small.



Kullback-Leibler divergence




Kullback-Leibler divergence

Let P and @ be two probability distributions on a measurable set Q.
The Kullback-Leibler divergence from Q to P is defined as follows:

if P is not absolutely continuous with respect to Q, then
KL(P, Q) =

otherwise, Iet be the Radon-Nikodym derivative of P with
respect to Q. Then

KL(P,Q):/Iogde /ZQIogwdQ

Property: 0 < KL(P, Q) < 400, KL(P, Q) =0 iff P = Q.
IfP < Qand f = gg Jo flog(f) d@ = [q [flog(f)], dQ@ — [q [flog(f)] _ dQ, the later is finite since [f log(f)] _ < 1/e.

Examples:
KL (B(p). B()) = KI(p. q), KL (N (11,0°), N (2, 0%)) = L)




Lower Bound: Change of Measure

For all ¢ > 0 and all o > 0,

P (% 2 %) =, [1{% 2 )] O

e EX-‘,—E |:]]_{)_<n Z X} X * :| i e

=E.ie []1{>"<nzx}>< }

>Ee | 1{X, > x ]1{1 = log 22 (x) < Evse [log 22 (x4) +a}
2 Bxre | 1{ } n;gdm +{gdP‘L 1]

X

] _

1—Prere (Ko < x)

Y

1 n dPX+€ dPx+e
- PX+E (n Z |0g dPH (XI) > EX+€ |:|Og dPM (Xl):| + 0&)

= (1 - On(l)) .



Lower Bound: Change of Measure

Foralle >0and all >0

P (% 2 %) =, [1{% 2 )] O

u X X+€
v 1= dPyie dPyye
> Ex+€ ]I{X,, > X} ]l{; ;Iogﬁ (Xi) < Exte {Iog P, (X1)] + a}
>< ‘|
> 1Py ()_(n < X)

X € dPX €
— Py ( ZI + ) > Exie [Iog dP+ (Xl)} —i—a)

- (- on(1>) .

Asymptotic Optimality (Large Deviation Lower Bound)

1 _
iminf — > > —
||mn|nf . log P, (X,7 > x) > —kl(x, p)



Lower Bound: Change of Measure

Foralle >0and all >0

P (%o > x) = B, [1{%, > x}] m

i X x+e
v 1 & dPy e dPyyc
> Eyie ]I{X,, > X} ]l{; ;Iogﬁ (Xi) < Exte {Iog P, (X1)] + a}
>< ‘|
> 1Py ()_(n < X)

X € dPX €
— Py ( ZI + ) > Exie [Iog dP+ (Xl)} +a>

- (- on(1>) .

Asymptotic Optimality (Large Deviation Principle)

1 _
. log P, (X, > x) =2 Kl(x, p)



Properties of KL divergence

|fP:P1®P2 and Q:Ql®Q2,then

KL(P, Q) = KL(Py, Q1) + KL(P2, @) .

Let (€2,.A) be a measurable space, and let P and @ be two probability
measures on (2,.4). Let X : Q — (X, B) be a random variable, and let
PX (resp. QX) be the push-forward measures, ie the laws of X wrt P
(resp. Q). Then

KL (PX, Q%) < KL(P, Q).

Let P, Q@ € M1(Q2, A). Then

1P~ Qv sup [P(A) — Q(a) < /D
AcA 10



Proof: contraction

Contraction if KL(P, Q) = +o0, the result is obvious. Otherwise, P << Q@ and there exists
: Q — R such that for all measurable f : Q — R, fﬂ fdP = fn f dQ

e We first prove that PX < Q% and, if v(x ) 7EQ ‘X = x] is the Q-a.s. unique function
such that Eq [ 95| X] = v(X), then 'y— 9B . Indeed, for all B € B,
dP
cg dQ
dP dP
=Eq |Eq | —=1{X € B}|X|| =Eq |1{X € B}Eg | —=|X
o [sa [ Fgrox e 1] = 2o [rox c mrze ]|

PX(B>:P(XeB):./X Q = Eq [:—QE{XEB}]

= Eq[1{X € B}(X)] = /X _,70de = / dQ*

52 5 apPX
and hence P* < Q" and T =
e Now,

L(PX.,QX) = /leogv dQ* = /S;V(X)log'v(x)do
dP .
=Eq [(i) (EQ [E ‘X] )} where ¢ := x — x log(x) is convex

dP
< Egq {IEQ [¢7 <%> ‘XH by (conditional) Jensen’s inequality

=Eq [(z; (%)} =KL(P, Q) .

11



Proof: Pinsker

Let A€ A, p= P(A) and g = Q(A). By contraction,

KL(P. @) > KL(P*A, @*4) = KL (B(P(A)). B(Q(4)) ) = kI (P(4), Q(4)) = 2(P(4)~Q(A))* .

12



Lower Bound: the Entropic Way
Let Q = {0,1}", Xi(w) = w; ./\._._

Probability laws on Q: P, = B(p)®".

For all € > 0,

= KL (Pxye, Pu) KLP ® P, @® Q') = KL(P, @) + KL(P', Q")
KL(P, Q) > KL(PX, Q%)

KL <HD]1{)_<,,ZX}7 ]P’,]}L{)_("ZX}) contraction of entropy

x+te = data-processing inequality

Z ]P)X+6 <)_<I7 2 X) |0g ) - |0g(2) ki(p, q) > plogé — log 2

P, ()_(,, > x

A non-asymptotic lower bound

_ 0 ki(x+e, p)+log(2)

Ve > 0, P, ()_<,, > X) >e 1_e—2ne2

13



No-Free-Lunch theorems: when
learning is not possible




The No-Free-Lunch theorem

A learning algorithm A for binary classification maps a sample S ~ D®"
to a decision rule B,,.
Theorem
Let A be any learning algorithm for binary classification over a domain
X. If the training set size is n < |X|/2, then there exists a distribution
D over X x {0,1} such that:

e there exists a function f : X — {0,1} with Lp(f) = 0;

e with probability at least 1/7 over the choice of S ~ D®",

Lp(A(S)) =

| =

Note that the ERM over 7 = {f}, or over any set H such that
n > 8log(7|H|/6), is a successful learner in that setting.

14



Proof

Take C C X of cardinality 2n, and {0, 1}€ = {f, ..., fr} where T = 22, For each 1 < i < T, we denote by D; the
probability distribution on C x {0, 1} defined by

il g
o ify = fi(x),
D;({x,y}) =4 2n i
i (L }) {0 otherwise.

We will show that max; < ;< 7 E[Lp. (A(S))] > 1/4, which entails the result thanks to the small lemma: if P(0 < Z < 1) = 1 and
<is i
E[Z] > 1/4, then P(Z > 1/8) > 1/7. Indeed, 1/4 < E[Z] < P(Z < 1/8)/8 + P(Z > 1/8) = 1/8 — TP(Z > 1/8)/8.

All the X-samples S, . . ., S, for k = (2n)", are equaly likely. For 1 < j < k, if st = (x1, . - - » xn) we denote by
5} = (G, £0a))s - - - G, £0n)). and 7 = A(ST).

1 Kk g
1Sm’_a§TE[LD’_ (A(S))} = 1Sm’_a§T P g LDI( b

S SES o
I o
ki Tim
Fix1 < j < k, denoteSjX = (X1, - - - xp) and define {v{, .. ., v} =C\ {xg,- -

o 1 N
)= =3 i # 6

2n xec
and hence
T N 1T 1 P
=S, (F) 2 =3 =3 1{H ) # i} >
i=1 Ti=12p =21

Fix1 < r < p. Then the functions {f; : 1 < i < T} can be grouped into T /2 pairs of functions (70, £1), 1 < i < T /2 which
agree on all x € C except on v, and for all 1 < i < T /2 it holds that 1{@."@,) #0(ve)} + 1{?]."@,) # FL(vr)} = 1. Hence,
T T/2

2 1{@’@,) # fi(v)} = ; 1{@’@,) # )} + 11{5."@,) # 1 (vr)} = T /2, which concludes the proof. 15



Consequence: infinite VC-dimension —> no learnability

Recall that a hypothesis class H is agnostic PAC learnable if there exists
a function ny : (0,1)2 — N and a learning algorithm S — h, such that
for every €, € (0,1), for every distribution D on X x ) when
S=((X1, Y1), (Xn, Ya)) X D,

P(LD(Bn) > min Lo(K) 76) <5

for all n > ny (e, ).

Theorem
Let H be a class of infinite VC-dimension. Then # is not
PAC-learnable.

Proof: for every training size n, there exists a set C C X of size 2n that
is shattered by H. By the NFL theorem, for every learning algorithm A
there exists a probability distribution D over X x {0,1} and

h: X — {0,1} such that Lp(h) = 0 but with probability at least 1/7

over the training set, we have Lp(A(S)) > 1/8.
16



Consequence: Curse of Dimensionality

Theorem
Let ¢ > 1 be a Lipschitz constant. Let A be any learning algorithm for
binary classification over a domain X' = [0, 1]?. If the training set size is
n < (c+1)9/2, then there exists a distribution D over [0,1]¢ x {0, 1}
such that:

e 7(x) =P(Y =1|X = x) is c-Lipschitz;

e the Bayes error of the distribution is 0;

e with probability at least 1/7 over the choice of S ~ D®",

Lp(A(S)) >

| =

17
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