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Recall from last time

Theorem (Spherical isoperimetric inequality)

Let A ⊂ Sn−1 and C be a spherical cap such that σ(A) = σ(C ). Then for
every ε > 0, we have σ(Aε) > σ(Cε),

Corollary

Let f : Sn−1 → R a 1-Lipschitz function with median m. Then

σ({|f −m| > ε}) 6 exp(−(n − 1)ε2/2).

Today we are going to prove similar theorems where the sphere Sn−1

(equipped with the geodesic distance g and the uniform measure σ) is
replaced by the Gaussian space, i.e. Rn equipped with the usual Euclidean
distance | · | and the standard Gaussian measure γn (= the distribution of
(X1, . . . ,Xn) where Xi are i.i.d. N(0, 1)).
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Fix a dimension n and let N > n. Think of Rn as a subspace of RN .
Let σN be the uniform measure on the sphere

√
NSN−1. Let

πN :
√

NSN−1 → Rn be the orthogonal projection and µN be the
image-measure of σN under πN .

Proposition (From the sphere to Gaussian)

The sequence (µN)N converges in distribution towards γn as N →∞.

Proof

Actually more is true: limN→∞ µN(B) = γn(B) for every Borel set (?).
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Theorem (Gaussian isoperimetric inequality)

Let A ⊂ Rn be a Borel set and H a half-space such that γn(A) = γn(H).
Then, for every t > 0, we have

γn(At) > γn(Ht).

Equivalently, if we define a ∈ [−∞,+∞] by the relation
γn(A) = γ1((−∞, a]), we have γn(At) > γ1((−∞, a + t]).

Special case : if γn(A) = 1/2 then a = 0 and

γn(At) > γ1((−∞, t])

or again

γn(Rn \ At) 6 γ1([t,+∞)) = erfc(t/
√

2) 6
1

2
exp(−t2/2)
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If γn(A) = 0 or γn(A) = 1 the result is obvious. Otherwise for every b < a,
we have γn(A) > γ1((∞, b]). Consider the projections πN : RN → Rn and
pN : RN → R. Since

γn(A) = lim
N→∞

σN(π−1N (A)) and γ1((∞, b]) = lim
N→∞

σN(p−1N ((−∞, b]),

we have σN(π−1N (A)) > σN(p−1N ((−∞, b])) for N large enough.
The spherical isoperimetric inequality implies that

σN(π−1N (A)t) > σN(p−1N ((−∞, b])t)

where t-enlargements are on
√

NSN−1. We have π−1N (A)t ⊂ π−1N (At) and

p−1N ((−∞, b])t) = p−1N ((−∞, tN))

where tN is defined by the relations sin(θN) = b√
N

and

sin(θN + t√
N

) = b+tN√
N

. Since lim tN = t (check!), we obtain by (?)

γn(At) > γ1((−∞, b + t)).

The last step is to take the supremum over b < a.
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As for the sphere, isoperimetry implies concentration for Lipschitz functions

Corollary

Let f : Rn → R be a 1-Lipschitz function with median m with respect to
the Gaussian measure γn. Then

γn({f > m + t}) 6 erfc(t/
√

2) 6
1

2
exp(−t2/2).

Proof

Equivalently, if X1, . . . ,Xn are i.i.d. N(0, 1) random variables and
Y = f (X1, . . . ,Xn), then P(Y > mY + t) 6 1

2 exp(−t2/2).
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We can replace the median by the expectation.

Corollary

Let X1, . . . ,Xn are i.i.d. N(0, 1) random variables, f : Rn → R a 1-Lipschitz
function and Y = f (X1, . . . ,Xn), then P(Y > E[Y ] + t) 6 C exp(−ct2).

(correct with C = 1 and c = 1/2)
Example: consider the 1-Lipschitz function x 7→ |x | on Rn, or

Y =
√

X 2
1 + · · ·+ X 2

n , so Y 2 has a χ2(n) distribution.

We have E[Y ] 6 E[Y 2]1/2 =
√

n and this is sharp (we actually have√
n − 1 6 mY 6 E[Y ] 6

√
n).

We obtain concentration bounds for χ2 random variables.

P(Y >
√

n + t) 6
1

2
e−t

2/2,

P(Y 6
√

n − 1 + t) 6
1

2
e−t

2/2.

Such estimates can also be proved by Bernstein inequalities.
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High-dimensional data = a finite set S ⊂ Rn, n ≫ 1.

Lemma (Johnson–Lindenstrauss lemma)

Let S ⊂ Rn finite, ε > 0. If k > 4ε−2 log card S, there is a linear map
f : Rn → Rk such that ∀x , y ∈ S,

(1− ε)|x − y | 6 |f (x)− f (y)| 6 (1 + ε)|x − y |

If we are interested in the geometry of S (e.g. we want to identify
clusters), we can apply a replace Rn by Rk and gain a lot from on
computational aspects

Very often log card S � n.

The proof will be by chosing f at random and taking advantage of
concentration of measure.
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Proof of Johnson–Lindenstrauss lemma
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It some situations it is not so obvious to compute either mY or E[Y ].
Example: consider a n ×m matrix M = (Zij) with i.i.d. N(0, 1) entries,
and the function f : Rn×m → R+ mapping M to ‖M‖op.

‖M‖op = max
|x |=1

|M(x)| = max
|x |=1,|y |=1

〈Mx , y〉.

This is a 1-Lipschitz function.
We have E‖M‖op > max(

√
n − 1,

√
m − 1).

To show that this is sharp we will rely on comparison theorems for
Gaussian processes.
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A Gaussian process is a collection (Xt)t∈T of random variables such that
any linear combination

∑
λtXt has a centered Gaussian distribution.

Given a Gaussian process (Xt)t∈T , the index set T can be equipped with
the distance

d(s, t) =
(
E|Xs − Xt |2

)1/2
Canonical example: if T ⊂ Rn and G is a standard Gaussian vector in Rn,
one can consider the process (Xt)t∈T defined by Xt = 〈G , t〉. We have
then d(s, t) = |s − t|.
Quantity of interest:

E sup
t∈T

Xt .

Basic example: if X1, . . . ,Xn are i.i.d. N(0, 1) random variables, then

E sup
16k6n

Xk = Θ(
√

log n)

(see Technical Lemma in Lecture 5)
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Theorem (Slepian’s inequality)

Let (Xt)t∈T and (Yt)t∈T be Gaussian processes. Assume that

1 EX 2
t = EY 2

t ,

2 ‖Xs − Xt‖L2 6 ‖Ys − Yt‖L2 .

Then, for every real numbers (λt), we have

P(∃t : Xt > λt) 6 P(∃t : Yt > λt).

In particular, E supt∈T Xt 6 E supt∈T Yt

The “in particular” part is clear if we know about stochastic domination
between random variables X and Y . The following are equivalent

1 ∀λ ∈ R,P(X > λ) 6 P(Y > λ),

2 for every increasing function f , Ef (X ) 6 Ef (Y ),

3 there is a coupling (X ′,Y ′) such that P(X ′ 6 Y ′) = 1.
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Proof of Slepian’s inequality
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Proof of Slepian’s inequality II
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Theorem (Slepian’s inequality, second version)

Let (Xt)t∈T and (Yt)t∈T be Gaussian processes. Assume that

‖Xs − Xt‖L2 6 ‖Ys − Yt‖L2 .

Then,
E sup

t∈T
Xt 6 E sup

t∈T
Yt
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Application: norm of Gaussian matrices.
Consider a n ×m matrix M = (Zij) with Zij i.i.d. N(0, 1). We have

P(‖M‖op > E[‖M‖op] + t) 6 exp(−t2/2)

with
E‖M‖op = E sup

x∈Sm−1,y∈Sn−1

〈Mx , y〉.

Let gm and g ′n be independent standard Gaussian vectors in Rm and Rn.
Consider the Gaussian procceses indexed by Sm−1 × Sn−1 defined by
X(x ,y) = 〈Mx , y〉 and Y(x ,y) = 〈gm, x〉+ 〈g ′n, y〉.
Fact: ‖X(x ,y) − X(x ′,y ′)‖L2 6 ‖Y(x ,y) − Y(x ′,y ′)‖L2
Proof
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Slepian’s lemma implies that

E‖M‖op = E sup
(x ,y)

X(x ,y) 6 E sup
(x ,y)

Y(x ,y) 6
√

m +
√

n.

This bound is very sharp! Simple check on Matlab gives

norm(randn(400,900))

ans = 49.5135

Next time: more on random matrices
How to use them for compressed sensing.
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