Concentration of measure in probability and
high-dimensional statistical learning

Lesson # 8

Guillaume Aubrun

Gaussian concentration

Placeholders marked Proof will be filled in class by writing on the slides.
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Recall from last time

Theorem (Spherical isoperimetric inequality)

Let AC S"! and C be a spherical cap such that o(A) = o(C). Then for
every ¢ > 0, we have o(A:) > o(C.),

Let f : S"~1 — R a 1-Lipschitz function with median m. Then

o({|f —m| > e}) < exp(—(n - 1)e*/2).

Today we are going to prove similar theorems where the sphere $"~!
(equipped with the geodesic distance g and the uniform measure o) is
replaced by the Gaussian space, i.e. R” equipped with the usual Euclidean
distance | - | and the standard Gaussian measure v, (= the distribution of
(X1,...,Xn) where X; are i.i.d. N(0,1)).
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Fix a dimension n and let N > n. Think of R" as a subspace of RV,
Let oy be the uniform measure on the sphere VNSV~ Let

7n - VNSNV=1 — R" be the orthogonal projection and py be the
image-measure of oy under my.

Proposition (From the sphere to Gaussian)

The sequence (uun)n converges in distribution towards v, as N — co.

Proof

Actually more is true: limy_oo un(B) = vn(B) for every Borel set ().



Theorem (Gaussian isoperimetric inequality)

Let A C R" be a Borel set and H a half-space such that v,(A) = v,(H).
Then, for every t > 0, we have

’Vn(At) = ')’n(Ht)'

Equivalently, if we define a € [—00, +00] by the relation
Vn(A) = 71((—00, a]), we have 7,(Ar) > 71((—00,a+ t]).

Special case : if y,(A) = 1/2 then a =0 and

Tn(Ae) = 71((—00, 1])

or again

(R A < ([t +00) = erte(t/V2) < 5 exp(—£/2)
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If vn(A) = 0 or y,(A) = 1 the result is obvious. Otherwise for every b < a,
we have 7,(A) > ~1((00, b]). Consider the projections my : RY — R” and
pn : RV = R. Since

n(A) = Jim on(my'(A) and (e, b]) = lim on(py*((—oo, b]),

we have on(my (A)) = on(py((—o0, b)) for N large enough.
The spherical isoperimetric inequality implies that

on(my* (A)e) = on(py (=00, b]):)
where t-enlargements are on v/NSV=1. We have 7, (A); C 75" (A:) and
Pt (=00, b])e) = py* (=00, t))

where ty is defined by the relations sin(fy) = ﬁ and
).

sin(Oy + f) bj/“%" Since lim ty = t (check!

'Yn(At) 2 71((_007 b + t))

The last step is to take the supremum over b < a.
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As for the sphere, isoperimetry implies concentration for Lipschitz functions

Let f : R™ — R be a 1-Lipschitz function with median m with respect to
the Gaussian measure y,. Then

y({f = m+t}) < erfc(t/\/_) —exp( 2/2).

Proof

Equivalently, if Xi,..., X, are i.i.d. N(0,1) random variables and
Y = f(X1,...,Xn), then P(Y > my +t) < S exp(—t?/2).
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We can replace the median by the expectation.

Let Xi,...,X, are i.i.d. N(0,1) random variables, f : R — R a 1-Lipschitz
function and Y = f(X1,...,X,), then P(Y > E[Y] + t) < C exp(—ct?).

(correct with C =1 and ¢ = 1/2)
Example: consider the 1-Lipschitz function x — |x| on R”, or

Y = /X2 + -+ X2, s0 Y2 has a x?(n) distribution.
We have E[Y] < E[Y?]Y/2 = {/n and this is sharp (we actually have
vVn—1< my <E[Y] < /n).

We obtain concentration bounds for x? random variables.

42
et/2’

N -

P(Y > Vn+1t)<

1
P(Y<Vn—1+1)< Ee—fz/?
Such estimates can also be proved by Bernstein inequalities.
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High-dimensional data = a finite set S C R", n>> 1.

Lemma (Johnson—Lindenstrauss lemma)

Let S C R" finite, e > 0. If k > 4c—2logcard S, there is a linear map
f: R" — RX such that Vx,y € S,

(I—e)lx =yl <[f(x) = fY) < (1 +e)lx—y|

If we are interested in the geometry of S (e.g. we want to identify
clusters), we can apply a replace R" by R¥ and gain a lot from on
computational aspects

Very often logcard S < n.

The proof will be by chosing f at random and taking advantage of
concentration of measure.
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Proof of Johnson—Lindenstrauss lemma
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It some situations it is not so obvious to compute either my or E[Y].
Example: consider a n x m matrix M = (Zj;) with i.i.d. N(0, 1) entries,
and the function f : R™™ — R mapping M to ||M||op.

IM|lop = max [M(x)| = max (Mx,y).
[x|=1 [x|=1,ly|=1

This is a 1-Lipschitz function.

We have E|[M||op = max(v/n—1,v/m—1).

To show that this is sharp we will rely on comparison theorems for
Gaussian processes.
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A Gaussian process is a collection (X:):cT of random variables such that
any linear combination > A:X; has a centered Gaussian distribution.
Given a Gaussian process (X:)teT, the index set T can be equipped with
the distance
d(s,t) = (E[Xs — X,[2)"/?
Canonical example: if T C R"” and G is a standard Gaussian vector in R”,
one can consider the process (X:):c7 defined by X; = (G, t). We have
then d(s,t) = |s — t|.
Quantity of interest:
E sup X;.
teT

Basic example: if Xi,..., X, are i.i.d. N(0,1) random variables, then

E sup Xx = O(y/logn)

1<k<n

(see Technical Lemma in Lecture 5)
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Theorem (Slepian’s inequality)

Let (X¢)teT and (Y:)teT be Gaussian processes. Assume that
® EX2 =EY?,
O || Xs — Xell 2 <|Ys — Yell2:

Then, for every real numbers (\t), we have

In particular, Esup,c X¢ < Esup,c7 Yt

The “in particular” part is clear if we know about stochastic domination
between random variables X and Y. The following are equivalent

® VAR, P(X > )) <P(Y >)),
@® for every increasing function f, Ef(X) < Ef(Y),
®© there is a coupling (X', Y') such that P(X’' < Y') = 1.
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Proof of Slepian’s inequality
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Proof of Slepian’s inequality Il
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Theorem (Slepian’s inequality, second version)

Let (X¢)teT and (Y:)teT be Gaussian processes. Assume that
[Xs = Xell 2 < || Vs = Yell 2.
Then,

Esup X; < Esup Y;
teT teT
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Application: norm of Gaussian matrices.
Consider a n x m matrix M = (Zj) with Zj; i.i.d. N(0,1). We have

P([M|op > E[[|M||op] + t) < exp(—t/2)
with
E[[M|lop = E sup (Mx, y).
xeSm—1 yesn—1
Let gm and g, be independent standard Gaussian vectors in R™ and R".
Consider the Gaussian procceses indexed by S™~1 x S"~! defined by
X(xy) <MX y> and nxy) - <gm7 >+<gr/17y>
Fact: HXx,y) X(x’, ||L2 < ny,y) Y(x’,y’)HLZ
Proof
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Slepian’s lemma implies that
EHM”OP—E(SUp)X(Xy) E(sup) Y(xy) vm++/n.

This bound is very sharp! Simple check on Matlab gives

norm(randn (400,900))
ans = 49.5135

Next time: more on random matrices
How to use them for compressed sensing.
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