Concentration: Negative association

Master 2 Mathematics and Computer Science

Guillaume Aubrun, <u>Aurélien Garivier</u>, Rémi Gribonval 2020-2021

Negative Association - Definition, Properties, and Applications, by David Wajc https: //www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf

Balls and Bins:A Study in Negative Dependence, by Balls and Bins:A Study in Negative Dependence, https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf Intuitively: X_1, \ldots, X_n are negatively associated when, if a subset I a variables is "high", a disjoint subset J has to be "low".

Definition

A set of real-valued random variables $X_1, X_2, ..., X_n$ is said to be negatively associated (NA) if for any two disjoint index sets $I, J \subset [n]$ and two functions f, g both monotone increasing or both monotone decreasing, it holds

$$\mathbb{E}\Big[f(X_i:i\in I)\,g\big(X_j:j\in J\big)\Big] \leq \mathbb{E}\big[f(X_i:i\in I)\Big]\,\mathbb{E}\Big[g\big(X_j:j\in J\big)\Big]$$

NB: *f* is monotone increasing if $\forall i \in I, x_i \leq x'_i$ implies $f(x) \leq f(x')$.

First properties

Let $X_1, X_2, ..., X_n$ be NA.

- For all $i \neq j$, $\mathbb{E}[X_i X_j] \leq \mathbb{E}[X_i] \mathbb{E}[X_j]$ i.e. $\operatorname{Cov}(X_i, X_j) \leq 0$.
- For any disjoints subsets $I, J \subset [n]$ and all x_1, \ldots, x_n ,

$$\mathbb{P}(X_i \ge x_i : i \in I \cup J) \le \mathbb{P}(X_i \ge x_i : i \in I) \mathbb{P}(X_j \ge x_j : j \in J) \text{ and}$$
$$\mathbb{P}(X_i \le x_i : i \in I \cup J) \le \mathbb{P}(X_i \le x_i : i \in I) \mathbb{P}(X_j \le x_j : j \in J)$$

• For all $x_1, ..., x_n$,

$$\mathbb{P}\left(\bigcap_{i} \left\{X_{i} \geq x_{i}\right\} \leq \prod_{i} \mathbb{P}(X_{i} \geq x_{i}) \text{ and} \\ \mathbb{P}\left(\bigcap_{i} \left\{X_{i} \leq x_{i}\right\}\right) \leq \prod_{i} \mathbb{P}(X_{i} \leq x_{i})$$

For all monotone increasing functions f₁,..., f_k depending on disjoint subsets of the (X_i)_i,

$$\mathbb{E}\Big[\prod_j f_j(X)\Big] \leq \prod_j \mathbb{E}ig[f_j(X)ig]$$

4

Chernoff-Hoeffding bound

Let X_1, \ldots, X_n be NA random variables with $X_i \in [a_i, b_i]$ a.s. Then $S = X_1 + \cdots + X_n$ satifies Hoeffding's tail bound: for all $t \ge 0$,

$$\mathbb{P}\Big[\big|S - E[S]\big| \ge t\Big] \le 2\exp\left(-\frac{2t^2}{\sum_i(b_i - a_i)^2}\right)$$

- Independent variables...
- 0-1 principle If X₁,...X_n are Bernoulli variables and ∑_i X_i ≤ 1 a.s., then they are NA.
- **Permutation distributions** If $x_1 \leq \cdots \leq x_n$ and if X_1, \ldots, X_n are random variables such that $\{X_1, \ldots, X_n\} = \{x_1, \ldots, x_n\}$ a.s., then they are NA.
- Sampling without replacement If X₁,..., X_n are sample without replacement from {x₁,..., x_N} (with N ≥ n), then they are NA.

Union

If the $\{X_i : i \in I\}$ are NA, if $\{Y_j : j \in J\}$ are NA, and if the $\{X_i\}$ are independent from the $\{Y_j\}$, then the $\{X_i, Y_j : i \in I, j \in J\}$ are NA.

Concordant monotone

If the $\{X_i : i \in I\}$ are NA, if $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ are all monotonically increasing and depend on different subsets of [n], then $\{f_i(X) : 1 \le j \le k\}$ are NA. The same holds if $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ are all monotonically decreasing. The standard bins and balls process consists of *m* balls and *n* bins. Each ball *b* is independently placed in bin *i* with probability $p_{b,i}$. The *occupancy number* B_i be the number of balls placed in bin *i*. In particular $\sum_i B_i = m$.

Prop: The B_i are NA.

Consequence: Concentration of the number $N = \sum_{i} \mathbb{1}\{B_i = 0\}$ of empty bins.

Proof: just apply the previous ideas to the $\{Z_{b,i} = \mathbb{1}\{\text{ball b fell into box } i\}: 1 \le b \le m, 1 \le i \le n\}.$