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Sequential Decision Problems



Solving a Game

2 player game with finite number of actions

src: wikipedia.org

but too deep for exhaustive search of minimax action (by alpha-beta)

Example: Go (≈ 10171 possible configurations)
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wikipedia.org


Monte Carlo Tree Search

Heuristic search algorithm using random playouts / rollouts

src: https://www.remi-coulom.fr/
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Dose Finding
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Content Recommandation
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Optimization

• Goal : maximize function

f : C ⊂ Rd → R possibly

observed with noise

• Applications: computer

experiment
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• Model: f comes from a Gaussian Process, or when it has a small

norm in the induced RKHS.
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The Simple Bandit Model



Best-Arm Identification with Fixed Confidence

K options = probability distributions ν = (νa)1≤a≤K

νa ∈ F exponential family parameterized by its expectation µa

x 1 x 2 x 3 x 4 x 5

At round t, you may:

• choose an option At = φt (A1,X1, . . . ,At−1,Xt−1)) ∈ {1, . . . ,K}
• observe a new independent sample Xt ∼ νAt

so as to identify the best option a∗ = argmaxa µa and µ∗ = max
a
µa

as fast as possible: stopping time τ .

Fixed-budget setting Fixed-confidence setting

given τ = T minimize E[τ ]

minimize P(âτ 6= a∗) under constraint P(âτ 6= a∗) ≤ δ
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Intuition: a Simple Example

Most simple setting: for all a ∈ {1, . . . ,K},

νa = N (µa, 1)

For example: µ = [2, 1.75, 1.75, 1.6, 1.5].

At time t:

Ü you have sampled na times the option a

Ü your empirical average is X̄a,na .

−
2

0
2

4

arm  1 arm  2 arm  3 arm  4 arm  5

−→ if you stop at time t, your probability of prefering arm a ≥ 2 to arm

a∗ = 1 is:

P
(
X̄a,na > X̄1,n1

)
= P

(
X̄a,na − µa −

(
X̄1,n1 − µ1

)√
1/n1 + 1/na

>
µ1 − µa√

1/n1 + 1/na

)

= Φ̄

(
µ1 − µa√

1/n1 + 1/na

)
where Φ̄(u) =

∫ ∞
u

e−u2/2

√
2π

du
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Intuition: Equalizing the Probabilities of Confusion

Most simple setting: for all a ∈ {1, . . . ,K},

νa = N (µa, 1)

For example: µ = [2, 1.75, 1.75, 1.6, 1.5].

Active Learning

Ü You allocate a relative budget wa to

option a, with w1 + · · ·+ wK = 1.

At time t:

Ü you have sampled na ≈ wat times the option a

Ü your empirical average is X̄a,na .

−
2

0
2

4

arm  1 arm  2 arm  3 arm  4 arm  5

−→ if you stop at time t, your probability of prefering arm a ≥ 2 to arm

a∗ = 1 is:

P
(
X̄a,na > X̄1,n1

)
= P

(
X̄a,na − µa −

(
X̄1,n1 − µ1

)√
1/n1 + 1/na

>
µ1 − µa√

1/n1 + 1/na

)

= Φ̄

(
µ1 − µa√

1/n1 + 1/na

)
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Improving: trial 1
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Optimal Proportions
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How to Turn this Intuition into a Theorem?

• The arms are not Gaussian (no formula for probability of confusion)

−→ large deviations (Sanov, KL)

• You do not allocate a relative budget at first, but you use sequential

sampling

−→ no fixed-size samples: sequential experiment

−→ tracking lemma

• How to compute the optimal proportions?

−→ lower bound, game

• The parameters of the distribution are unknown

−→ (sequential) estimation

• When should you stop?

−→ Chernoff’s stopping rule

13



Exponential Families

ν1, . . . , νK belong to a one-dimensional exponential family

Pλ,Θ,b =
{
νθ, θ ∈ Θ : νθ has density fθ(x) = exp(θx − b(θ)) w .r .t. λ

}
Example: Gaussian, Bernoulli, Poisson distributions...

• νθ can be parametrized by its mean µ = ḃ(θ) : νµ := νḃ−1(µ)

Notation: Kullback-Leibler divergence

For a given exponential family,

d(µ, µ′) := KL(νµ, νµ
′
) = EX∼νµ

[
log

dνµ

dνµ′
(X )

]
is the KL-divergence between the distributions of mean µ and µ′.

We identify ν = (νµ1 , . . . , νµK ) and µ = (µ1, . . . , µK ) and consider

S =

{
µ ∈ (ḃ(Θ))K : ∃a ∈ {1, . . . ,K} : µa > max

i 6=a
µi

}
14



Classical strategies



LUCB: Lower-Upper Confidence Bounds

• Build confidence bounds La(t) and Ua(t) such that with probability

at least 1− δ, for all times t ≥ 1 and all arms a ∈ {1, . . . ,K}:

µa ∈ [La(t),Ua(t)] ,

• Sample alternately

â(t) = argmax
a∈{1,...,K}

La(t) and argmax
b 6=â(t)

Ub(t)

• Stopping time τδ = the first time t when

∃â ∈ {1, . . . ,K} : ∀a 6= â,Ua(t) < Lâ(t)

Analysis: δ-correct by nature, and with proba-

bility at least 1− δ:

τδ ≤ C
∑
a 6=a∗

1

(µ∗ − µa)2

for some constant C .

15



Racing: Successive Eliminations

• Proceed in rounds where, at each round, all active arms are sample

once

• Keep a list of active arms = those which have not been eliminated

• At the end of each round, eliminate the arms which are provably

suboptimal (with a global risk δ)

Analysis: similarly, one finds a constant C such

that

E
[
τδ
]
≤ C

∑
a 6=a∗

1

(µ∗ − µa)2
.

wr

rb
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Lower Bound



Information in Bandit Models

Theorem [see Garivier, Ménard and Stoltz, M.O.R. to appear]

For all bandit problems µ and λ, all stopping time τ and

σ(Fτ )–measurable random variables Z with values in [0, 1],

K∑
a=1

Eµ
[
Na(τ)

]
d(µa, λa) ≥ kl

(
Eµ[Z ], Eλ[Z ]

)
.

Proof: if Iτ = (A1,XA1,1, . . . ,Aτ ,XAτ ,NAτ (τ)),

K∑
a=1

Eµ
[
Na(τ)

]
d(µa, λa) = KL

(
PIτ
µ , P

Iτ
λ

)
≥ KL

(
PZ
µ ,PZ

λ

)
≥ kl

(
Eµ[Z ], Eλ[Z ]

)
by tensorization and contraction of entropy (and small lemma).
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Lower-Bounding the Sample Complexity

Let µ = (µ1, . . . , µK ) and λ = (λ1, . . . , λK ) be two elements of S.

Uniform δ-correct Constraint [Kaufmann, Cappé, Garivier ’15]

If a∗(µ) 6= a∗(λ), any δ-correct algorithm satisfies

K∑
a=1

Eµ

[
Na(τδ)

]
d(µa, λa) ≥ kl(δ, 1− δ)

where kl(p, q) = p log p
q + (1− p) log 1−p

1−q .

µ µ µ µ4 3 2 1
m2

Let Alt(µ) = {λ : a∗(λ) 6= a∗(µ)}. Take: λ1 = m2− ε λ2 = m2 + ε

Eµ[N1(τδ)] d(µ1,m2 − ε) + Eµ[N2(τδ) ] d(µ2,m2 + ε) ≥ kl(δ, 1− δ)
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Lower-Bounding the Sample Complexity

Let µ = (µ1, . . . , µK ) and λ = (λ1, . . . , λK ) be two elements of S.

Uniform δ-correct Constraint [Kaufmann, Cappé, Garivier ’15]

If a∗(µ) 6= a∗(λ), any δ-correct algorithm satisfies

K∑
a=1

Eµ

[
Na(τδ)

]
d(µa, λa) ≥ kl(δ, 1− δ)

where kl(p, q) = p log p
q + (1− p) log 1−p

1−q .
µ µ µ µ4 3 2 1

m3 m2m4

Let Alt(µ) = {λ : a∗(λ) 6= a∗(µ)}.

inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τδ)] d(µa, λa) ≥ kl(δ, 1− δ)

Eµ[τδ]× inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τδ)]

Eµ[τδ]
d(µa, λa) ≥ kl(δ, 1− δ)

Eµ[τδ]×

(
sup

w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wa d(µa, λa)

)
≥ kl(δ, 1− δ)

18



Lower Bound: the Complexity of BAI

Theorem [Garivier and Kaufmann 2016]

For any δ-correct algorithm,

Eµ[τδ] ≥ T ∗(µ) kl(δ, 1− δ) ,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wa d(µa, λa)

)
.

• kl(δ, 1− δ) ∼ log(1/δ) when δ → 0, kl(δ, 1− δ) ≥ log
(
1/(2.4δ)

)
• cf. [Graves and Lai 1997, Vaidhyan and Sundaresan, 2015]

Ü the optimal proportions of arm draws are

w∗(µ) = argmax
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)

Ü they do not depend on δ
19



PAC-BAI as a Game

Given a parameter µ = (µ1, . . . , µK ) :

• the statistician chooses proportions of arm draws w = (wa)a

• the opponent chooses an alternative model λ

• the payoff is the minimal number T = T (w ,λ) of draws necessary

to ensure that he does not violate the δ-PAC constraint

K∑
a=1

Twa d(µa, λa) ≥ kl(δ, 1− δ)

• T ∗(µ) kl(δ, 1− δ) = value of the game

w∗ = optimal action for the statistician

20



PAC-BAI as a Game

Given a parameter µ = (µ1, . . . , µK ) such that µ1 > µ2 ≥ · · · ≥ µK :

• the statistician chooses proportions of arm draws w = (wa)a

• the opponent chooses an arm a ∈ {2, . . . ,K} and

λa = arg minλ w1 d(µ1, λ) + wa d(µa, λ)
µ µ µ µ4 3 2 1

m3

• the payoff is the minimal number T = T (w , a, δ) of draws

necessary to ensure that

Tw1 d(µ1, λa − ε) + Twa d(µa, λa + ε) ≥ kl(δ, 1− δ)

that is T (w , a, δ) =
kl(δ, 1− δ)

w1 d(µ1, λa − ε) + wa d(µa, λa + ε)

• T ∗(µ) kl(δ, 1− δ) = value of the game

w∗ = optimal action for the statistician

20



Properties of T ∗(µ) and w∗(µ)

1. Unique solution, solution of scalar equations only

2. For all µ ∈ S, for all a, w∗a (µ) > 0

3. w∗ is continuous in every µ ∈ S
4. If µ1 > µ2 ≥ · · · ≥ µK , one has w∗2 (µ) ≥ · · · ≥ w∗K (µ)

(one may have w∗1 (µ) < w∗2 (µ))

5. Case of two arms [Kaufmann, Cappé, Garivier ’14]

Eµ[τδ] ≥ kl(δ, 1− δ)

d∗(µ1, µ2)
.

where d∗ is the ‘reversed’ Chernoff information

d∗(µ1, µ2) := d(µ1, µ∗) = d(µ2, µ∗) .

6. Gaussian arms : algebraic equation but no simple formula for K ≥ 3.

K∑
a=1

2σ2

∆2
a

≤ T ∗(µ) ≤ 2
K∑

a=1

2σ2

∆2
a

.
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Sampling rule: Tracking the optimal proportions

µ̂(t) = (µ̂1(t), . . . , µ̂K (t)): vector of empirical means

Introducing

Ut =
{
a : Na(t) <

√
t
}
,

the arm sampled at round t + 1 is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

t w∗a (µ̂(t))− Na(t) (tracking)

Lemma

Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w∗a (µ)

)
= 1.
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Sequential Generalized Likelihood Test

High values of the Generalized Likelihood Ratio

Za,b(t) := log
max{λ:λa≥λb} dPλ(X1, . . . ,Xt)

max{λ:λa≤λb} dPλ(X1, . . . ,Xt)

= Na(t) d
(
µ̂a(t), µ̂a,b(t)

)
+ Nb(t) d

(
µ̂b(t), µ̂a,b(t)

)
if µ̂a(t) > µ̂b(t)
−Zb,a(t) otherwise

reject the hypothesis that (µa ≤ µb).

We stop when one arm is assessed to be significantly larger than all other

arms, according to a GLR test:

τδ = inf
{
t ∈ N : ∃a ∈ {1, . . . ,K},∀b 6= a,Za,b(t) > β(t, δ)

}
= inf

{
t ∈ N : Z (t) := max

a∈{1,...,K}
min
b 6=a

Za,b(t) > β(t, δ)

}
Chernoff stopping rule [Chernoff ’59]

Two other possible interpretations of the stopping rule:

Ü MDL:

Za,b(t) =
(
Na(t) + Nb(t)

)
H
(
µ̂a,b(t)

)
−
[
Na(t)H

(
µ̂a(t)

)
+ Nb(t)H

(
µ̂b(t)

)]
25



Sequential Generalized Likelihood Test

High values of the Generalized Likelihood Ratio

Za,b(t) := log
max{λ:λa≥λb} dPλ(X1, . . . ,Xt)

max{λ:λa≤λb} dPλ(X1, . . . ,Xt)

reject the hypothesis that (µa ≤ µb).

We stop when one arm is assessed to be significantly larger than all other

arms, according to a GLR test:

τδ = inf

{
t ∈ N : Z (t) := max

a∈{1,...,K}
min
b 6=a

Za,b(t) > β(t, δ)

}
Chernoff stopping rule [Chernoff ’59]

Two other possible interpretations of the stopping rule:

Ü plug-in complexity estimate: if F (w , µ) := inf
λ∈Alt(µ)

K∑
a=1

wa d
(
µa, λa

)
,

stop when Z(t) = t F
(Na(t)

t
, µ̂(t)

)
≥ β(t, δ) instead of the lower bound

t

T ∗(µ)
= t F (w∗, µ) ≥ kl(δ, 1 − δ).

25



Calibration

Theorem

The Chernoff rule is δ-PAC for β(t, δ) = log
(

2(K−1)t
δ

)
Lemma

If µa < µb, whatever the sampling rule,

Pµ

(
∃t ∈ N : Za,b(t) > log

(
2t

δ

))
≤ δ

The proof uses:

Ü Barron’s lemma (change of distribution)

Ü and Krichevsky-Trofimov’s universal distribution

(very information-theoretic ideas)

26



Outline

Sequential Decision Problems

The Simple Bandit Model

Classical strategies

Lower Bound

The Track-and-Stop Strategy

Sampling Rule

Stopping Rule

Optimality

27



Asymptotic Optimality of the T&S strategy

Theorem [Garivier and Kaufmann 2016]

The Track-and-Stop strategy, that uses

• the Tracking sampling rule

• the Chernoff stopping rule with β(t, δ) = log
(

2(K−1)t
δ

)
• and recommends âτδ = argmax

a=1...K
µ̂a(τδ)

is δ-PAC for every δ ∈ (0, 1) and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
= T ∗(µ).

28



Why is the T&S Strategy asymptotically Optimal?
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Sketch of proof (almost-sure convergence only)

• forced exploration =⇒ Na(t)→∞ a.s. for all a ∈ {1, . . . ,K}
Ü µ̂(t)→ µ a.s.

Ü w∗
(
µ̂(t)

)
→ w∗ a.s.

Ü tracking rule:
Na(t)

t
→

t→∞
w∗a a.s.

• but the mapping F : (µ′,w) 7→ inf
λ∈Alt(µ′)

K∑
a=1

wad(µ′a, λa) is

continuous at (µ,w∗(µ)):

Ü Z (t) = t × F
(
µ̂(t), (Na(t)/t)Ka=1

)
∼ t × F (µ,w∗) = t × T ∗(µ)−1

and for every ε > 0 there exists t0 such that

t ≥ t0 ⇒ Z (t) ≥ t × (1 + ε)−1T ∗(µ)−1

=⇒ Thus τδ ≤ t0 ∧ inf
{
t ∈ N : (1 + ε)−1T ∗(µ)−1t ≥ log(2(K − 1)t/δ)

}
and lim sup

δ→0

τδ
log(1/δ)

≤ (1 + ε)T ∗(µ) a.s.

30



Numerical Experiments

• µ1 = [0.5 0.45 0.43 0.4] Ü w∗(µ1) = [0.42 0.39 0.14 0.06]

• µ2 = [0.3 0.21 0.2 0.19 0.18]Üw∗(µ2) = [0.34 0.25 0.18 0.13 0.10]

In practice, set the threshold to β(t, δ) = log
(

log(t)+1
δ

)
(δ-PAC OK)

Track-and-Stop Chernoff-Racing KL-LUCB KL-Racing

µ1 4052 4516 8437 9590

µ2 1406 3078 2716 3334

Table 1: Expected number of draws Eµ[τδ] for δ = 0.1, averaged over

N = 3000 experiments.

Ü Empirically good even for ‘large’ values of the risk δ

Ü Racing is sub-optimal in general, because it plays w1 = w2

Ü LUCB is sub-optimal in general, because it plays w1 = 1/2

31



Perspectives

For best arm identification, we showed that

lim sup
δ→0

inf
δ-correct strategy

Eµ[τδ]

log(1/δ)
=

(
sup

w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

))−1

and provided an efficient strategy asymptotically matching this bound.

Future work:

• * anytime stopping Ü gives a confidence level

• ** find an ε-optimal arm (PAC-setting)

• * find the m-best arms

• *** design and analyze more stable algorithm (hint: optimism)

• *** give a simple algorithm with a finite-time analysis

candidate: play action maximizing the expected increase of Z (t)

• *** extend to structured (dose, MCTS) and continuous settings

x 1 x 2 x 3 x 4 x 5
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