# Concentration: Case Study: Optimal Discovery

Master 2 Mathematics and Computer Science

Guillaume Aubrun, <u>Aurélien Garivier</u>, Rémi Gribonval 2020-2021



- 1. Discovering dangerous contigencies in electrical systems
- 2. Estimating the Unseen
- 3. The Good-UCB Algorithm
- 4. Optimality results

# Discovering dangerous contigencies in electrical systems

#### The problem

Power system security assessment **Areas of Probable** Impacted Regions involve **Power System** population of >130 Million Collapse

By Mark MacAlester, Federal Emergency Management Agency [Public domain], via Wikimedia Commons

Damien Ernst (Electrical Engineering, Liège): How to identify quickly contingencies/scenarios that could lead to unacceptable operating conditions (dangerous contingencies) if no preventive actions were taken?

- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$ ,  $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P<sub>i</sub>)<sub>1≤i≤K</sub>: sequential independent draws



- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$ ,  $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P<sub>i</sub>)<sub>1≤i≤K</sub>: sequential independent draws



- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$ ,  $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P<sub>i</sub>)<sub>1≤i≤K</sub>: sequential independent draws



- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$ ,  $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P<sub>i</sub>)<sub>1≤i≤K</sub>: sequential independent draws



# **Estimating the Unseen**

#### Enigma



- Electro-mechanical rotor cipher machines, 26 characters
- Invented at the end of WW1 by Arthur Scherbius
- Commercial use, then German Army during WW2
- First cracked by Marian Rejewski in the 1930s (Bomb), then improved to 3. 10<sup>114</sup> configurations
- Read Simon Singh, The Code Book



#### Enigma



Src: http://enigma.louisedade.co.uk/

#### **Battle of the Atlantic**



- Massively used by the German Kriegsmarine and Luftwaffe
- weakness: 3-letters setting to initiate communication, taken from the *Kenngruppenbuch*
- Government Code and Cypher School: Bletchley Park (on the train line between Cambridge and Oxford)
- Colossus (first programmable computers) in 1943

- Discrete alphabet A.
- Unknown probability p on A
- Sample  $X_1, \ldots, X_n$  of independent draws of p.
- Goal : use the sample to estimate p(a) for all  $a \in A$ .

Natural idea:

$$\hat{p}(a) = \frac{N(a)}{n}$$
, where  $N(a) = \#\{i : X_i = a\}$ 

# Safari preparation



: 43



Learning set: john read moby dick mary read a different book she read a book by cher

$$egin{aligned} p(w_i|w_{i-1}) &= rac{c(w_{i-1}w_i)}{\sum_w c(w_{i-1}w)} \ p(s) &= \prod_{i=1}^{l+1} p(w_i|w_{i-1}) \end{aligned}$$



[Src: https://nlp.stanford.edu/~wcmac]

Learning set: john read moby dick mary read a different book she read a book by cher

$$p(w_i|w_{i-1}) = rac{c(w_{i-1}w_i)}{\sum_w c(w_{i-1}w)} 
onumber \ p(s) = \prod_{i=1}^{l+1} p(w_i|w_{i-1})$$



⇒ useless, the unseen **must** be treated correctly.

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761) Will the sun rise tomorrow?

$$\hat{p}(a) = rac{N(a)+1}{n+|A|}$$

- good for small alphabets and many samples
- very bad when lots of items seen once (ex: DNA sequences)
- |A| can be very large (or even infinite), but P concentrated on few items
- $\implies$  not a satisfying solution to the problem

### Alan Turing

#### **Irving John Good**



1912-1954 student of Godfrey Harold Hardy in Cambridge PhD from Princeton with Alonzo Church



1916-2009 Graduated in Cambridge Academic carrer in Bayesian statistics in Manchester and then in the University of Virginia (USA)  $X_1, \ldots, X_n$  independent draws of  $p \in \mathfrak{M}_1(A)$ .

$$O_n(x) = \sum_{m=1}^n \mathbb{1}\{X_m = x\}$$



How to 'estimate' the total mass of the unseen items

$$M_n = \sum_{x \in A} p(x) \ \mathbb{1}\{O_n(x) = 0\}$$
 ?

#### Missing Mass

Let 
$$A = \mathbb{N}$$
, let  $p \in \mathcal{M}_1(\mathbb{N})$  and let  $X_1, \ldots, X_n \stackrel{iid}{\sim} p$ .

For every  $x \in \mathbb{N}$ , let  $O_n(x) = \sum_{i=1}^n \mathbb{1}\{X_i = x\}$ .

Pb: estimate the mass of the unseen

$$M_n = \mathbb{P}(X_{n+1} \notin \{X_1, \dots, X_n\}) = \sum_{x=0}^{\infty} p(x) \mathbb{1}\{O_n(x) = 0\}$$

Idea: use hapaxes = symbols  $x \in \mathbb{N}$  that appear once in the sample

$$\hat{M}_n = \frac{1}{n} \sum_{x=0}^{\infty} \mathbb{1}\left\{O_n(x) = 1\right\}$$

= Good-Turing 'estimator'

= *leave-one-out* estimator of  $M_n$ : if  $X_{-i} = \{X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n\}$ ,

$$\hat{M}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\left\{X_i \notin X_{-i}\right\}$$

#### 'Bias' of the Good-Turing estimator

#### Proposition [Good '1953]

Whatever the law p,

$$0 \leq \mathbb{E}\big[\hat{M}_n\big] - \mathbb{E}[M_n] \leq \frac{1}{n}$$

Proof:

$$\mathbb{E}[\hat{M}_n] - \mathbb{E}[M_n] = \frac{1}{n} \mathbb{E}\left[\sum_{x \in \mathbb{N}} \mathbb{1}\{O_n(x) = 1\}\right] - \mathbb{E}\left[\sum_{x \in \mathbb{N}} p(X)\mathbb{1}\{O_n(x) = 0\}\right]$$
$$= \frac{1}{n} \sum_{x \in \mathbb{N}} \mathbb{P}(O_n(x) = 1) - np(x) \mathbb{P}(O_n(x) = 0)$$
$$= \frac{1}{n} \sum_{x \in \mathbb{N}} np(x)(1 - p(x))^{n-1} - np(x)(1 - p(x))^n$$
$$= \frac{1}{n} \sum_{x \in \mathbb{N}} p(x) \times np(x)(1 - p(x))^{n-1}$$
$$= \frac{1}{n} \sum_{x \in \mathbb{N}} p(x) \mathbb{P}(O_n(x) = 1)$$
$$= \frac{1}{n} \mathbb{E}\left[\sum_{x \in \mathbb{N}} p(x)\mathbb{1}(O_n(x) = 1)\right] \in \left[0, \frac{1}{n}\right]$$

13

## **Concentration of** $\hat{M}_n$

$$\hat{M}_n = \frac{1}{n} \sum_{x=0}^{\infty} \mathbb{1} \{ O_n(x) = 1 \} = \phi(X_1, \dots, X_n), \text{ where}$$
$$\forall k, \forall x_1, \dots, x_n, x'_k \in \mathbb{N},$$

$$\left|\phi(x_1,\ldots,x_n)-\phi(x_1,\ldots,x_{k-1},x'_k,x_{k+1},\ldots,x_n)\right|\leq \frac{2}{n}.$$

#### Hence, by McDiarmid's inequality,

$$\mathbb{P}\Big(\big|\hat{M}_n - \mathbb{E}[\hat{M}_n]\big| > x\Big) \le \exp\left(-\frac{n\,x^2}{2}\right)$$

and with probability at least  $1-\delta$  ,

$$\hat{M}_n \in \left[\mathbb{E}[\hat{M}_n] \pm \sqrt{\frac{2\log(1/\delta)}{n}}\right]$$

#### Concentration of the missing mass

$$M_n = \sum_{x=0}^{\infty} p(x) \mathbb{1} \{ O_n(x) = 0 \}$$
 is a sum of *dependent* random variables.

#### But the $\mathbb{1}{O_n(x) = 0}$ are negatively associated!

Indeed,

- By the 0-1 principle, for all  $1 \le i \le n$  the  $\{\mathbb{1}\{X_i = x\} : x \in \mathbb{N}\}$  are NA
- Hence, by the union property and by the fact that the  $X_i$  are independent, the  $\{\mathbbm{1}\{X_i = x\} : 1 \le i \le n, x \in \mathbb{N}\}$  are NA
- Hence, by the concordant monotone property for the monotonically increasing function  $(u_1, \ldots, u_n) \mapsto u_1 + \cdots + u_n$ , the  $\{O_n(x) = \sum_{i=1}^n \mathbb{1}\{X_i = x\} : x \in \mathbb{N}\}$  are NA
- Hence, again by the concordant monotone property for the monotonically decreasing function  $u \mapsto \mathbb{1}\{u = 0\}$  on  $\mathbb{N}$ , the  $\{\mathbb{1}\{O_n(x) = 0\} : x \in \mathbb{N}\}$  are NA

$$\implies \mathbb{E}\Big[\exp\left(\lambda M_n\right)\Big] = \mathbb{E}\left[\prod_{x \in \mathcal{X}} \exp\left(\lambda p(x)\mathbb{1}\{O_n(x) = 0\}\right)\right] \le \mathbb{E}\Big[\exp\left(\lambda \tilde{M}_n\right)\Big]$$
  
where  $\tilde{M}_n = \sum_{x \in \mathbb{N}} p(x)Z_x$  and where the  $Z_x \sim \mathcal{B}\Big(q(x) := \mathbb{P}\big(O_n(x) = 0\big)\Big)$   
are independent

#### Back to Chernoff's roots

Attempts with Hoeffding, Bernstein, McDiarmid, etc. fail without an assumption of  $\max_{x \in \mathbb{N}} P(x)$ . In what follows we just use that  $M_n$  is real-valued For every  $x > \mathbb{E}[M_n]$  and every  $\lambda > 0$ ,

 $\mathbb{P}(M_n \ge x) \le \int_{u=0}^{\infty} \frac{e^{\lambda u}}{e^{\lambda x}} dP_{M_n}(u) \le e^{-\lambda x} \int_{u=0}^{\infty} e^{\lambda u} dP_{M_n}(u) = \exp\left(-(\lambda x - \Lambda(\lambda))\right)$ 

where  $\Lambda(\lambda) = \log \left( Z(\lambda) := \int_{u=0}^{\infty} e^{\lambda u} dP_{M_n}(u) \right)$ , and hence

$$\mathbb{P}(M_n \ge x) \le \exp\left(-I(x)\right)$$

where  $I(x) = \sup_{\lambda>0} \lambda x - \Lambda(\lambda)$ .

Similarly, for every  $x < \mathbb{E}[M_n]$ ,

$$\mathbb{P}(M_n \le x) \le \exp\left(-I(x)\right)$$

where  $I(x) = \sup_{\lambda < 0} \lambda x - \Lambda(\lambda)$ .

#### Chernoff's rate function and KL divergence

Let  $P = P_{M_n}$  and for  $\lambda \in \mathbb{R}$  let  $P_{\lambda}$  be defined by  $\frac{dP_{\lambda}}{dP}(x) = \frac{e^{\lambda x}}{Z(\lambda)}$ , ie for all measurable, non-negative function  $f: \mathbb{E}_{\lambda}[f(X)] = \int_{\mathbb{R}} f(x) \frac{e^{\lambda x}}{Z(\lambda)} dP(x)$ 

**Prop:** KL( $P_{\lambda}, P$ ) =  $\lambda \mathbb{E}_{\lambda}[X] - \Lambda(\lambda) = \inf \{ \operatorname{KL}(Q, P) : \mathbb{E}_{Q}[X] \ge \mathbb{E}_{\lambda}[X] \}$ 

**Proof:** For every  $Q \ll P$  with  $\mathbb{E}_Q[X] \ge x$ ,

$$\begin{split} \operatorname{KL}(Q, P) &= \int_{\mathbb{R}} \log \left( \frac{dQ}{dP}(x) \right) dQ(x) \\ &= \int_{\mathbb{R}} \log \left( \frac{dQ}{dP_{\lambda}}(x) \frac{dP_{\lambda}}{dP}(x) \right) dQ(x) \\ &= \operatorname{KL}(Q, P_{\lambda}) + \int_{\mathbb{R}} \log \left( \frac{e^{\lambda x}}{Z(\lambda)} \right) dQ(x) \\ &= \operatorname{KL}(Q, P_{\lambda}) + \lambda \mathbb{E}_{Q}[X] - \log \left( Z(\lambda) \right) \\ &\geq 0 + \lambda \mathbb{E}_{\lambda}[X] - \Lambda(\lambda) = \operatorname{KL}(P_{\lambda}, P) \end{split}$$

Cor: if  $\lambda(x)$  is such that  $\mathbb{E}_{\lambda(x)}[X] = x$ , then  $I(x) = \mathrm{KL}(P_{\lambda(x)}, P)$ 

#### Chernoff's rate function and KL divergence

Let  $P = P_{M_n}$  and for  $\lambda \in \mathbb{R}$  let  $P_{\lambda}$  be defined by  $\frac{dP_{\lambda}}{dP}(x) = \frac{e^{\lambda x}}{Z(\lambda)}$ , ie for all measurable, non-negative function  $f: \mathbb{E}_{\lambda}[f(X)] = \int_{\mathbb{R}} f(x) \frac{e^{\lambda x}}{Z(\lambda)} dP(x)$ 

**Prop:** KL( $P_{\lambda}, P$ ) =  $\lambda \mathbb{E}_{\lambda}[X] - \Lambda(\lambda) = \inf \{ \operatorname{KL}(Q, P) : \mathbb{E}_{Q}[X] \ge \mathbb{E}_{\lambda}[X] \}$ 

Cor: if 
$$\lambda(x)$$
 is such that  $\mathbb{E}_{\lambda(x)}[X] = x$ , then  $I(x) = \mathrm{KL}(P_{\lambda(x)}, P)$   
Since  $\Lambda'(\lambda) = \frac{\mathbb{E}\left[Xe^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]} = \mathbb{E}_{\lambda}[X]$  and  
 $\Lambda''(\lambda) = \frac{\mathbb{E}\left[X^{2}e^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]} - \left(\frac{\mathbb{E}\left[Xe^{\lambda X}\right]}{\mathbb{E}\left[e^{\lambda X}\right]}\right)^{2} = \mathbb{V}\mathrm{ar}_{\lambda}[X] > 0$ , the  $C^{\infty}$   
mapping  $\lambda \mapsto \lambda x - \Lambda(\lambda)$  is maximal where at  $\lambda(x)$  where  
 $x = \Lambda'(\lambda(x)) = \mathbb{E}_{\lambda(x)}[X]$  and then  
 $I(x) = \lambda(x)x - \Lambda(\lambda(x))$   
 $= \lambda(x)x - (\lambda(x)\mathbb{E}_{\lambda(x)}[X] - \mathrm{KL}(P_{\lambda(x)}, P))$   
 $= \mathrm{KL}(P_{\lambda(x)}, P)$ 

## Kullback-Leibler divergence and variance

$$\begin{split} \operatorname{KL}(P_{\lambda(x)},P) &= \int_{\mathbb{E}[X]}^{x} \int_{\mathbb{E}[X]}^{t} \frac{1}{\operatorname{Var}_{\lambda(u)}[X]} du \\ \mathbf{Proof:} \ \operatorname{If} \ g(x) &= \operatorname{KL}(P_{\lambda(x)},P) = \lambda(x)x - \Lambda(\lambda(x)) \ \operatorname{then} \\ g'(x) &= \lambda'(x)x + \lambda(x) - \lambda'(x)\Lambda'(\lambda(x)) = \lambda(x) \\ \operatorname{and} \ \operatorname{if} \ e(\ell) &= \lambda^{-1}(\ell) = \mathbb{E}_{\ell}[X] = \Lambda'(\ell) \\ g''(x) &= \lambda'(x) = \frac{1}{e'(\lambda(x))} = \frac{1}{\Lambda''(\lambda(x))} = \frac{1}{\operatorname{Var}_{\lambda(x)}[X]} \\ \operatorname{The} \ \operatorname{result} \ \operatorname{follows} \ \operatorname{since} \ g(\mathbb{E}[X]) = 0 \ \operatorname{and} \ g'(\mathbb{E}[X]) = \lambda(\mathbb{E}[X]) = 0. \\ \mathbf{Cor:} \ \operatorname{if} \ \forall u \in [\mathbb{E}[X], x], \operatorname{Var}_{\lambda(u)}[X] \leq \sigma^{2} \ \operatorname{then} \ I(\mathbb{E}[X] + \epsilon) \geq \frac{\epsilon^{2}}{2\sigma^{2}} \\ \operatorname{Similarly,} \ \operatorname{if} \ \forall u \in [1, x], \operatorname{Var}_{\lambda(u)}[X] \leq u \ \operatorname{as} \ \operatorname{for} \ \mathcal{P}(1) \ \operatorname{then} \ \forall x \geq 0 \end{split}$$

$$U(1+x) \ge \int_{1}^{1+x} \int_{1}^{t} \frac{du}{u} = (1+x)\log(1+x) - x$$

#### For the missing mass

$$\begin{split} \tilde{M}_n &= \sum_{x \in X} p(x) Z_x ext{ where the } Z_x \sim \mathcal{B}\Big(q(x) := \mathbb{P}ig( O_n(x) = 0 ig) \Big) ext{ are independent. Under } P_\lambda, ext{ the } Z_x \stackrel{iid}{\sim} \mathcal{B}\left(q_\lambda(x) = rac{q(x)e^{\lambda p(x)}}{1-q(x)+q(x)e^{\lambda p(x)}}
ight) \ \mathbb{V}\mathrm{ar}_\lambdaig[ ilde{M}_nig] &= \sum_{x \in \mathbb{N}} p(x)^2 q_\lambda(x) ig(1-q_\lambda(x)ig) \leq \sum_{x \in \mathbb{N}} p(x)^2 q_\lambda(x) \end{split}$$

Hence, for  $\lambda < 0$ ,  $\mathbb{V}\mathrm{ar}_{\lambda} \big[ \tilde{M}_n \big] \leq \sum_{x \in \mathbb{N}} p(x)^2 q(x)$  and since

$$p(x)q(x) \le p(x) \exp\left(-np(x)\right) \le \frac{1}{n} \sup_{u>0} \left\{ u \ e^{-u} \right\} = \frac{1}{en} ,$$
$$\mathbb{V}\mathrm{ar}_{\lambda} \big[ \tilde{M}_n \big] \le \sum_{x \in \mathbb{N}} \frac{p(x)}{en} \le \frac{1}{en}$$

which yields

For all 
$$\epsilon > 0$$
,  $I(\mathbb{E}[M_n] - \epsilon) \ge \frac{e n \epsilon^2}{2}$   
Hence, with probability at least  $1 - \delta$ ,  $M_n \ge \mathbb{E}[M_n] - \sqrt{\frac{2 \log(1/\delta)}{en}}$ .

A similar bound can be obtained for the right-deviations of  $M_n$ . Putting everything together,

#### High confidence region

With probability at least  $1 - \delta$ , whatever the law *p*,

$$\hat{M}_n - \frac{1}{n} - (1 + \sqrt{2})\sqrt{\frac{\log(4/\delta)}{n}} \le M_n \le \hat{M}_n + (1 + \sqrt{2})\sqrt{\frac{\log(4/\delta)}{n}}$$

 $\implies$  sub-Gaussian concentration despite the absence of independence and the absence of assumptions on *p*.

# The Good-UCB Algorithm

- Subset A ⊂ X of important items
- $|\mathcal{X}| \gg 1$ ,  $|\mathcal{A}| \ll |\mathcal{X}|$
- Access to X only by probabilistic experts (P<sub>i</sub>)<sub>1≤i≤K</sub>: sequential independent draws



#### Goal

At each time step  $t = 1, 2, \ldots$ :

- pick an index  $I_t = \pi_t (I_1, Y_1, \dots, I_{s-1}, Y_{s-1}) \in \{1, \dots, K\}$  according to past observations
- observe  $Y_t = X_{I_t, n_{I_t, t}} \sim P_{I_t}$ , where

$$n_{i,t} = \sum_{s \le t} \mathbb{1}\{l_s = i\}$$

**Goal:** design the strategy  $\pi = (\pi_t)_t$  so as to maximize the number of important items found after *t* requests

 $F^{\pi}(t) = \left| A \cap \left\{ Y_1, \ldots, Y_t \right\} \right|$ 

Assumption: non-intersecting supports

 $A \cap \operatorname{supp}(P_i) \cap \operatorname{supp}(P_j) = \emptyset$  for  $i \neq j$ 

It looks like a bandit problem...

- sequential choices among K options
- want to maximize cumulative rewards
- exploration vs exploitation dilemma

... but it is not a bandit problem !

- rewards are not i.i.d.
- destructive rewards: no interest to observe twice the same important item
- all strategies eventually equivalent

**Proposition:** Under the non-intersecting support hypothesis, the greedy oracle strategy

$$J_t^* \in \operatorname*{argmax}_{1 \leq i \leq K} P_i \left( A \setminus \{Y_1, \dots, Y_t\} \right)$$

is optimal: for every possible strategy  $\pi$ ,  $\mathbb{E}[F^{\pi}(t)] \leq \mathbb{E}[F^{*}(t)]$ .

Remark: the proposition is false if the supports may intersect

 $\implies$  estimate the "missing mass of important items"!

Solution proposed in [Optimal Discovery with Probabilistic Expert Advice: Finite Time Analysis and Macroscopic Optimality, *by Sébastien Bubeck, Damien Ernst and Aurélien Garivier*, Journal of Machine Learning Research vol. 14 Feb. 2013, pp.601-623]

#### The Good-UCB algorithm

Estimator of the missing important mass for expert *i*:

$$\hat{R}_{i,n_{i,t-1}} = \frac{1}{n_{i,t-1}} \sum_{x \in A} \mathbb{1} \left\{ \sum_{s=1}^{n_{i,t-1}} \mathbb{1} \{ X_{i,s} = x \} = 1 \\ \text{and} \sum_{j=1}^{K} \sum_{s=1}^{n_{j,t-1}} \mathbb{1} \{ X_{j,s} = x \} = 1 \right\}$$

#### Good-UCB algorithm:

- 1: For  $1 \leq t \leq K$  choose  $I_t = t$ .
- 2: for  $t \geq K + 1$  do
- 3: Choose  $I_t = \operatorname{argmax}_{1 \le i \le K} \left\{ \hat{R}_{i, n_{i,t-1}} + C_{\sqrt{\frac{\log(4t)}{n_{i,t-1}}}} \right\}$
- 4: Observe  $Y_t$  distributed as  $\hat{P}_{l_t}$
- 5: Update the missing mass estimates accordingly
- 6: end for

# **Optimality results**

**Theorem:** For any  $t \ge 1$ , under the non-intersecting support assumption, Good-UCB (with constant  $C = (1 + \sqrt{2})\sqrt{3}$ ) satisfies

 $\mathbb{E}\left[F^*(t) - F^{\textit{UCB}}(t)\right] \leq 17\sqrt{\textit{K}t\log(t)} + 20\sqrt{\textit{K}t} + \textit{K} + \textit{K}\log(t/\textit{K})$ 

Remark: Usual result for bandit problem, but not-so-simple analysis

#### Sketch of proof

1. On a set  $\tilde{\Omega}$  of probability at least  $1 - \sqrt{\frac{\kappa}{t}}$ , the "confidence intervals" hold true simultaneously all  $u \ge \sqrt{\kappa t}$ 

2. Let 
$$\overline{I}_u = \operatorname{argmax}_{1 \leq i \leq K} R_{i, n_{i, u-1}}$$
. On  $\overline{\Omega}$ ,

$${{
m \textit{R}}_{{l_u},{n_{{l_u},u - 1}}}} \ge {{
m \textit{R}}_{{\overline{l_u}},{n_{{\overline{l_u}},u - 1}}}} - rac{1}{{n_{{l_u},u - 1}}} - 2(1 + \sqrt{2})\sqrt{rac{{3\log (4u)}}{{n_{{l_u},u - 1}}}}$$

3. But one shows that  $\mathbb{E}F^*(t) \leq \sum_{u=1}^t \mathbb{E}R_{\bar{l}_u, n_{\bar{l}_u, u-1}}$ 

4. Thus

$$\mathbb{E}\left[F^*(t) - F^{UCB}(t)\right]$$

$$\leq \sqrt{Kt} + \mathbb{E}\left[\sum_{u=1}^t \frac{1}{n_{l_u,u-1}} + 2(1+\sqrt{2})\sqrt{\frac{3\log(4t)}{n_{l_u,u-1}}}\right]$$

$$\leq \sqrt{Kt} + K + K\log(t/K) + 4(1+\sqrt{2})\sqrt{3Kt\log(4t)}$$

#### **Experiment:** restoring property



Figure 1: green: oracle, blue: Good-UCB, red: uniform sampling

For  $\lambda \in (0, 1)$ ,  $T(\lambda) =$  time at which missing mass of important items is smaller than  $\lambda$  on all experts:

$$T(\lambda) = \inf \left\{ t : \forall i \in \{1, \dots, K\}, P_i(A \setminus \{Y_1, \dots, Y_t\}) \leq \lambda \right\}$$

**Theorem:** Let c > 0 and  $S \ge 1$ . Under the non-intersecting support assumption, for Good-UCB with  $C = (1 + \sqrt{2})\sqrt{c+2}$ , with probability at least  $1 - \frac{\kappa}{cS^c}$ , for any  $\lambda \in (0, 1)$ ,

 $T_{UCB}(\lambda) \leq T^* + KS \log (8T^* + 16KS \log(KS)),$ 

where 
$$T^* = T^* \left(\lambda - \frac{3}{S} - 2(1 + \sqrt{2})\sqrt{\frac{c+2}{S}}\right)$$

#### The macroscopic limit

- Restricted framework:  $P_i = \mathcal{U}\{1, \ldots, N\}$
- $N \to \infty$
- $|A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$



#### The macroscopic limit

- Restricted framework:  $P_i = \mathcal{U}\{1, \ldots, N\}$
- $N \to \infty$
- $|A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$



#### The macroscopic limit

- Restricted framework:  $P_i = \mathcal{U}\{1, \ldots, N\}$
- $N \to \infty$
- $|A \cap \operatorname{supp}(P_i)|/N \to q_i \in (0,1), \ q = \sum_i q_i$



The limiting discovery process of the Oracle strategy is deterministic

**Proposition:** For every  $\lambda \in (0, q_1)$ , for every sequence  $(\lambda^N)_N$  converging to  $\lambda$  as N goes to infinity, almost surely

$$\lim_{N \to \infty} \frac{T^N_*(\lambda^N)}{N} = \sum_i \left( \log \frac{q_i}{\lambda} \right)_+$$

#### Oracle vs. uniform sampling

**Oracle:** The proportion of important items not found after *Nt* draws tends to

$$q - F^*(t) = I(t)\underline{q}_{I(t)} \exp\left(-t/I(t)\right) \le K\underline{q}_K \exp\left(-t/K\right)$$

with  $\underline{q}_{\kappa} = \left(\prod_{i=1}^{\kappa} q_i\right)^{1/\kappa}$  the geometric mean of the  $(q_i)_i$ . **Uniform:** The proportion of important items not found after Nt draws tends to  $K\bar{q}_{\kappa} \exp(-t/\kappa)$ 

 $\implies$  Asymptotic ratio of efficiency

$$ho(q) = rac{ar{q}_{\kappa}}{\underline{q}_{\kappa}} = rac{rac{1}{\kappa}\sum_{i=1}^{k}q_{i}}{\left(\prod_{i=1}^{k}q_{i}
ight)^{1/\kappa}} \geq 1$$

larger if the  $(q_i)_i$  are unbalanced

**Theorem:** Take  $C = (1 + \sqrt{2})\sqrt{c+2}$  with c > 3/2 in the Good-UCB algorithm.

• For every sequence  $(\lambda^N)_N$  converging to  $\lambda$  as N goes to infinity, almost surely

$$\limsup_{N \to +\infty} \frac{T^N_{UCB}(\lambda^N)}{N} \leq \sum_i \left(\log \frac{q_i}{\lambda}\right)_+$$

• The proportion of items found after Nt steps  $F^{GUCB}(Nt)$  converges uniformly to  $F^*(Nt)$  as N goes to infinity

#### Experiment

Number of items found by Good-UCB (solid), the OCL (dashed), and uniform sampling (dotted) as a function of time for sizes N = 128, N = 500, N = 1000 and N = 10000 in a 7-experts setting.



34

#### And when the assumptions are not satisfied?

Number of primes found by Good-UCB (solid), the oracle (dashed) and uniform sampling (dotted) using geometric experts with means 100, 300, 500, 700, 900, for C = 0.1 (top) and C =0.02 (bottom).



#### **Conclusion and perspectives**

- We propose an algorithm for the optimal discovery with probabilistic expert advice
- We give a standard regret analysis under the only assumption that the supports of the experts are non-overlapping
- We propose a different optimality result, which permits a macroscopic analysis in the uniform case
- Another interesting limit to consider is when the number of important items to find is fixed, but the total number of items tends to infinity (Poisson regime)
- Then, the behavior of the algorithm is not very good: too large confidence bonus because no tight deviations bounds for the Good-Turing estimator when the proportion of important items tends to 0. Improvement by better deviation bounds?