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Discovering dangerous

contigencies in electrical systems



The problem

Power system

security

assessment

By Mark MacAlester, Federal Emergency Management Agency [Public domain], via

Wikimedia Commons

Damien Ernst (Electrical Engineering, Liège): How to identify quickly

contingencies/scenarios that could lead to unacceptable operating

conditions (dangerous contingencies) if no preventive actions were taken?
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The model

• Subset A ⊂ X of

important items

• |X | � 1, |A| � |X |
• Access to X only by

probabilistic experts

(Pi )1≤i≤K : sequential

independent draws

Goal: discover rapidly the elements of A
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Estimating the Unseen



Enigma

• Electro-mechanical

rotor cipher machines,

26 characters

• Invented at the end of

WW1 by Arthur

Scherbius

• Commercial use, then

German Army during

WW2

• First cracked by

Marian Rejewski in

the 1930s (Bomb),

then improved to

3. 10114 configurations

• Read Simon Singh,

The Code Book 4



Enigma

Src: http://enigma.louisedade.co.uk/
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Battle of the Atlantic

• Massively used by the

German Kriegsmarine and

Luftwaffe

• weakness: 3-letters setting to

initiate communication,

taken from the

Kenngruppenbuch

• Government Code and

Cypher School: Bletchley

Park (on the train line

between Cambridge and

Oxford)

• Colossus (first programmable

computers) in 1943
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Estimating probabilities

• Discrete alphabet A.

• Unknown probability p on A

• Sample X1, . . . ,Xn of independent draws of p.

• Goal : use the sample to estimate p(a) for all a ∈ A.

Natural idea:

p̂(a) =
N(a)

n
, where N(a) = #

{
i : Xi = a

}

7



: 43

Safari preparation
Observe animal sample

1 giraffe, 2 elephants, 3 zebras

Probability estimation?

Empirical frequency

3

Species Probability
giraffes 1/6

elephants 2/6
zebras 3/6

Problem?

[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]
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[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]
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Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick

mary read a different book

she read a book by cher

p(wi |wi−1) =
c(wi−1wi )∑
w c(wi−1w)

p(s) =
l+1∏
i=1

p(wi |wi−1)

p( john read a book )

= p(john|·) p(read |john) p(a|read) p(book|a) p(·|book)

= c(· john)∑
w c(· w)

c(john read)∑
w c(john w)

c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 1
3

1
1

2
3

1
2

1
2

≈ 0.06
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Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick

mary read a different book

she read a book by cher

p(wi |wi−1) =
c(wi−1wi )∑
w c(wi−1w)

p(s) =
l+1∏
i=1

p(wi |wi−1)

p( cher read a book )

= p(cher |·) p(read |cher) p(a|read) p(book|a) P(·|book)

= c(· cher)∑
w c(· w)

c(cher read)∑
w c(cher w)

c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 0
3

0
1

2
3

1
2

1
2

= 0

=⇒ useless, the unseen must be treated correctly.
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Bayesian Approach: Laplace Estimator

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761)

Will the sun rise tomorrow?

p̂(a) =
N(a) + 1

n + |A|

• good for small alphabets and many samples

• very bad when lots of items seen once (ex: DNA sequences)

• |A| can be very large (or even infinite), but P concentrated on few

items

=⇒ not a satisfying solution to the problem
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Alan Turing Irving John Good

1912-1954

student of Godfrey Harold Hardy

in Cambridge

PhD from Princeton with Alonzo

Church

1916-2009

Graduated in Cambridge

Academic carrer in Bayesian statis-

tics in Manchester and then in the

University of Virginia (USA)
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Missing mass estimation

X1, . . . ,Xn independent draws of p ∈M1(A).

On(x) =
n∑

m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen items

Mn =
∑
x∈A

p(x) 1{On(x) = 0} ?

11



Missing Mass

Let A = N, let p ∈M1(N) and let X1, . . . ,Xn
iid∼ p.

For every x ∈ N, let On(x) =
∑n

i=1 1{Xi = x}.

Pb: estimate the mass of the unseen

Mn= P
(
Xn+1 /∈ {X1, . . . ,Xn}

)
=
∞∑
x=0

p(x)1
{
On(x) = 0

}
Idea: use hapaxes = symbols x ∈ N that appear once in the sample

M̂n =
1

n

∞∑
x=0

1
{
On(x) = 1

}
= Good-Turing ’estimator’

= leave-one-out estimator of Mn: if X−i = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn},

M̂n =
1

n

n∑
i=1

1
{
Xi /∈ X−i

}
12



’Bias’ of the Good-Turing estimator

Proposition [Good ’1953]

Whatever the law p,

0 ≤ E
[
M̂n

]
− E[Mn] ≤ 1

n

Proof:

E
[
M̂n

]
− E[Mn] =

1

n
E

∑
x∈N

1{On(x) = 1}

− E

∑
x∈N

p(X )1{On(x) = 0}


=

1

n

∑
x∈N

P
(
On(x) = 1

)
− np(x) P(On(x) = 0)

=
1

n

∑
x∈N

np(x)
(

1− p(x)
)n−1 − np(x)

(
1− p(x)

)n
=

1

n

∑
x∈N

p(x)× np(x)
(

1− p(x)
)n−1

=
1

n

∑
x∈N

p(x) P
(
On(x) = 1

)

=
1

n
E

∑
x∈N

p(x)1
(
On(x) = 1

) ∈ [0,
1

n

]
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Concentration of M̂n

M̂n =
1

n

∞∑
x=0

1
{
On(x) = 1

}
= φ(X1, . . . ,Xn), where

∀k,∀x1, . . . , xn, x
′
k ∈ N,∣∣φ(x1, . . . , xn)− φ(x1, . . . , xk−1, x

′
k , xk+1, . . . , xn)

∣∣ ≤ 2

n
.

Hence, by McDiarmid’s inequality,

P
(∣∣M̂n − E[M̂n]

∣∣ > x
)
≤ exp

(
−n x2

2

)
and with probability at least 1− δ,

M̂n ∈

[
E[M̂n]±

√
2 log(1/δ)

n

]

14



Concentration of the missing mass

Mn =
∞∑
x=0

p(x)1
{
On(x) = 0

}
is a sum of dependent random variables.

But the 1
{
On(x) = 0

}
are negatively associated!

Indeed,

• By the 0-1 principle, for all 1 ≤ i ≤ n the
{
1{Xi = x} : x ∈ N

}
are NA

• Hence, by the union property and by the fact that the Xi are independent, the{
1{Xi = x} : 1 ≤ i ≤ n, x ∈ N

}
are NA

• Hence, by the concordant monotone property for the monotonically increasing function

(u1, . . . , un) 7→ u1 + · · · + un, the
{
On(x) =

∑n
i=1 1{Xi = x} : x ∈ N

}
are NA

• Hence, again by the concordant monotone property for the monotonically decreasing

function u 7→ 1{u = 0} on N, the
{
1
{
On(x) = 0

}
: x ∈ N

}
are NA

=⇒ E
[

exp
(
λMn

)]
= E

[∏
x∈X

exp
(
λp(x)1{On(x) = 0}

)]
≤ E

[
exp

(
λM̃n

)]
where M̃n =

∑
x∈N

p(x)Zx and where the Zx ∼ B
(
q(x) := P

(
On(x) = 0

))
are independent

15



Back to Chernoff’s roots

Attempts with Hoeffding, Bernstein, McDiarmid, etc. fail without an

assumption of maxx∈N P(x). In what follows we just use that Mn is real-valued

For every x > E[Mn] and every λ > 0,

P(Mn ≥ x) ≤
∫ ∞
u=x

eλu

eλx
dPMn(u) ≤ e−λx

∫ ∞
u=0

eλudPMn(u) = exp
(
−(λx−Λ(λ)

)
where Λ(λ) = log

(
Z (λ) :=

∫∞
u=0

eλudPMn(u)
)
, and hence

P(Mn ≥ x) ≤ exp
(
− I (x)

)
where I (x) = supλ>0 λx − Λ(λ).

Similarly, for every x < E[Mn],

P(Mn ≤ x) ≤ exp
(
− I (x)

)
where I (x) = supλ<0 λx − Λ(λ).
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Chernoff’s rate function and KL divergence

Let P = PMn and for λ ∈ R let Pλ be defined by dPλ
dP (x) = eλx

Z(λ) , ie for all

measurable, non-negative function f : Eλ
[
f (X )

]
=
∫
R f (x) eλx

Z(λ)dP(x)

Prop: KL(Pλ,P) = λEλ[X ]−Λ(λ) = inf
{
KL(Q,P) : EQ [X ] ≥ Eλ[X ]

}
Proof: For every Q � P with EQ [X ] ≥ x ,

KL(Q,P) =

∫
R

log

(
dQ

dP
(x)

)
dQ(x)

=

∫
R

log

(
dQ

dPλ
(x)

dPλ

dP
(x)

)
dQ(x)

= KL(Q,Pλ) +

∫
R

log

(
eλx

Z(λ)

)
dQ(x)

= KL(Q,Pλ) + λEQ [X ]− log
(
Z(λ)

)
≥ 0 + λEλ[X ] − Λ(λ) = KL(Pλ,P)

Cor: if λ(x) is such that Eλ(x)[X ] = x, then I (x) = KL(Pλ(x),P)
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Chernoff’s rate function and KL divergence

Let P = PMn and for λ ∈ R let Pλ be defined by dPλ
dP (x) = eλx

Z(λ) , ie for all

measurable, non-negative function f : Eλ
[
f (X )

]
=
∫
R f (x) eλx

Z(λ)dP(x)

Prop: KL(Pλ,P) = λEλ[X ]−Λ(λ) = inf
{
KL(Q,P) : EQ [X ] ≥ Eλ[X ]

}
Cor: if λ(x) is such that Eλ(x)[X ] = x, then I (x) = KL(Pλ(x),P)

Since Λ′(λ) =
E
[
XeλX

]
E [eλX ]

= Eλ[X ] and

Λ′′(λ) =
E
[
X 2eλX

]
E [eλX ]

−

(
E
[
XeλX

]
E [eλX ]

)2

= Varλ[X ] > 0, the C∞

mapping λ 7→ λx − Λ(λ) is maximal where at λ(x) where

x = Λ′
(
λ(x)

)
= Eλ(x)[X ] and then

I (x) = λ(x)x − Λ
(
λ(x)

)
= λ(x)x −

(
λ(x)Eλ(x)[X ]−KL

(
Pλ(x),P

))
=KL

(
Pλ(x),P

)
17



Kullback-Leibler divergence and variance

KL
(
Pλ(x),P

)
=

∫ x

E[X ]

∫ t

E[X ]

1

Varλ(u)[X ]
du

Proof: If g(x) = KL
(
Pλ(x),P

)
= λ(x)x − Λ(λ(x)) then

g ′(x) = λ′(x)x + λ(x)− λ′(x)Λ′
(
λ(x)

)
= λ(x)

and if e(`) = λ−1(`) = E`[X ] = Λ′(`)

g ′′(x) = λ′(x) =
1

e′
(
λ(x)

) =
1

Λ′′
(
λ(x)

) =
1

Varλ(x)[X ]

The result follows since g
(
E[X ]

)
= 0 and g ′

(
E[X ]

)
= λ

(
E[X ]

)
= 0.

Cor: if ∀u ∈
[
E[X ], x

]
,Varλ(u)[X ] ≤ σ2 then I

(
E[X ] + ε

)
≥ ε2

2σ2

Similarly, if ∀u ∈ [1, x ],Varλ(u)[X ] ≤ u as for P(1) then ∀x ≥ 0

I (1 + x) ≥
∫ 1+x

1

∫ t

1

du

u
= (1 + x) log(1 + x)− x

18



For the missing mass

M̃n =
∑
x∈X

p(x)Zx where the Zx ∼ B
(
q(x) := P

(
On(x) = 0

))
are

independent. Under Pλ, the Zx
iid∼ B

(
qλ(x) = q(x)eλp(x)

1−q(x)+q(x)eλp(x)

)
Varλ

[
M̃n

]
=
∑
x∈N

p(x)2qλ(x)
(
1− qλ(x)

)
≤
∑
x∈N

p(x)2qλ(x)

Hence, for λ < 0, Varλ
[
M̃n

]
≤
∑

x∈N p(x)2q(x) and since

p(x)q(x) ≤ p(x) exp
(
− np(x)

)
≤ 1

n
sup
u>0

{
u e−u

}
=

1

en
,

Varλ
[
M̃n

]
≤
∑
x∈N

p(x)

en
≤ 1

en

which yields

For all ε > 0, I
(
E[Mn]− ε

)
≥ e n ε2

2

Hence, with probability at least 1− δ, Mn ≥ E[Mn]−
√

2 log(1/δ)
en .

19



High confidence estimation of the missing mass

A similar bound can be obtained for the right-deviations of Mn. Putting

everything together,

High confidence region

With probability at least 1− δ, whatever the law p,

M̂n −
1

n
−
(
1 +
√

2
)√ log(4/δ)

n
≤ Mn ≤ M̂n +

(
1 +
√

2
)√ log(4/δ)

n

=⇒ sub-Gaussian concentration despite the absence of independence

and the absence of assumptions on p.
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The Good-UCB Algorithm



The model

• Subset A ⊂ X of

important items

• |X | � 1, |A| � |X |
• Access to X only by

probabilistic experts

(Pi )1≤i≤K : sequential

independent draws

Goal: discover rapidly the elements of A

21



Goal

At each time step t = 1, 2, . . . :

• pick an index It = πt
(
I1,Y1, . . . , Is−1,Ys−1

)
∈ {1, . . . ,K} according

to past observations

• observe Yt = XIt ,nIt ,t
∼ PIt , where

ni,t =
∑
s≤t

1{Is = i}

Goal: design the strategy π = (πt)t so as to maximize the number of

important items found after t requests

Fπ(t) =
∣∣∣A ∩ {Y1, . . . ,Yt

}∣∣∣
Assumption: non-intersecting supports

A ∩ supp(Pi ) ∩ supp(Pj) = ∅ for i 6= j

22



Is it a Bandit Problem ?

It looks like a bandit problem. . .

• sequential choices among K options

• want to maximize cumulative rewards

• exploration vs exploitation dilemma

. . . but it is not a bandit problem !

• rewards are not i.i.d.

• destructive rewards: no interest to observe twice the same important

item

• all strategies eventually equivalent

23



The oracle strategy

Proposition: Under the non-intersecting support hypothesis, the greedy

oracle strategy

I ∗t ∈ argmax
1≤i≤K

Pi (A \ {Y1, . . . ,Yt})

is optimal: for every possible strategy π, E
[
Fπ(t)

]
≤ E

[
F ∗(t)

]
.

Remark: the proposition is false if the supports may intersect

=⇒ estimate the “missing mass of important items”!

Solution proposed in [Optimal Discovery with Probabilistic Expert Advice: Finite Time Analysis

and Macroscopic Optimality, by Sébastien Bubeck, Damien Ernst and Aurélien Garivier, Journal of

Machine Learning Research vol. 14 Feb. 2013, pp.601-623]
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The Good-UCB algorithm

Estimator of the missing important mass for expert i :

R̂i,ni,t−1 =
1

ni,t−1

∑
x∈A

1

{ ni,t−1∑
s=1

1{Xi,s = x} = 1

and
K∑
j=1

nj,t−1∑
s=1

1{Xj,s = x} = 1

}

Good-UCB algorithm:

1: For 1 ≤ t ≤ K choose It = t.

2: for t ≥ K + 1 do

3: Choose It = argmax1≤i≤K

{
R̂i,ni,t−1 + C

√
log (4t)
ni,t−1

}
4: Observe Yt distributed as PIt

5: Update the missing mass estimates accordingly

6: end for

25



Optimality results



Classical analysis

Theorem: For any t ≥ 1, under the non-intersecting support

assumption, Good-UCB (with constant C = (1 +
√

2)
√

3) satisfies

E
[
F ∗(t)− FUCB(t)

]
≤ 17

√
Kt log(t) + 20

√
Kt + K + K log(t/K )

Remark: Usual result for bandit problem, but not-so-simple analysis

26



Sketch of proof

1. On a set Ω̃ of probability at least 1−
√

K
t , the “confidence

intervals” hold true simultaneously all u ≥
√
Kt

2. Let Īu = argmax1≤i≤K Ri,ni,u−1 . On Ω̃,

RIu,nIu ,u−1
≥ RĪu,nĪu ,u−1

− 1

nIu,u−1
− 2(1 +

√
2)

√
3 log(4u)

nIu,u−1

3. But one shows that EF ∗(t) ≤
∑t

u=1 ERĪu,nπĪu ,u−1

4. Thus

E
[
F ∗(t)− FUCB(t)

]
≤
√
Kt + E

[
t∑

u=1

1

nIu,u−1
+ 2(1 +

√
2)

√
3 log(4t)

nIu,u−1

]
≤
√
Kt + K + K log(t/K ) + 4(1 +

√
2)
√

3Kt log(4t)

27



Experiment: restoring property

Figure 1: green: oracle, blue: Good-UCB, red: uniform sampling
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Another analysis of Good-UCB

For λ ∈ (0, 1), T (λ) = time at which missing mass of important items is

smaller than λ on all experts:

T (λ) = inf

{
t : ∀i ∈ {1, . . . ,K},Pi

(
A \ {Y1, . . . ,Yt}

)
≤ λ

}
Theorem: Let c > 0 and S ≥ 1. Under the non-intersecting support

assumption, for Good-UCB with C = (1 +
√

2)
√
c + 2, with probability

at least 1− K
cSc , for any λ ∈ (0, 1),

TUCB(λ) ≤ T ∗ + KS log (8T ∗ + 16KS log(KS)) ,

where T ∗ = T ∗

(
λ− 3

S
− 2(1 +

√
2)

√
c + 2

S

)

29



The macroscopic limit

• Restricted framework: Pi = U{1, . . . ,N}
• N →∞
• |A ∩ supp(Pi )|/N → qi ∈ (0, 1), q =

∑
i qi

30
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The Oracle behaviour

The limiting discovery process of the Oracle strategy is deterministic

Proposition: For every λ ∈ (0, q1), for every sequence (λN)N converging

to λ as N goes to infinity, almost surely

lim
N→∞

TN
∗ (λN)

N
=
∑
i

(
log

qi
λ

)
+

31



Oracle vs. uniform sampling

Oracle: The proportion of important items not found after Nt

draws tends to

q − F ∗(t) = I (t)q
I (t)

exp (−t/I (t)) ≤ Kq
K

exp(−t/K )

with q
K

=
(∏K

i=1 qi
)1/K

the geometric mean of the (qi )i .

Uniform: The proportion of important items not found after Nt

draws tends to Kq̄K exp(−t/K )

=⇒ Asymptotic ratio of efficiency

ρ(q) =
q̄K
q
K

=
1
K

∑k
i=1 qi(∏k

i=1 qi
)1/K

≥ 1

larger if the (qi )i are unbalanced

32



Macroscopic optimality

Theorem: Take C = (1 +
√

2)
√
c + 2 with c > 3/2 in the Good-UCB

algorithm.

• For every sequence (λN)N converging to λ as N goes to infinity,

almost surely

lim sup
N→+∞

TN
UCB(λN)

N
≤
∑
i

(
log

qi
λ

)
+

• The proportion of items found after Nt steps FGUCB(Nt) converges

uniformly to F ∗(Nt) as N goes to infinity

33



Experiment

Number of items found by Good-UCB (solid), the OCL (dashed), and

uniform sampling (dotted) as a function of time for sizes

N = 128,N = 500,N = 1000 and N = 10000 in a 7-experts setting.
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And when the assumptions are not satisfied?

Number of primes found by

Good-UCB (solid),

the oracle (dashed)

and uniform sampling (dot-

ted) using geometric ex-

perts with means 100, 300,

500, 700, 900,

for C = 0.1 (top) and C =

0.02 (bottom).
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Conclusion and perspectives

• We propose an algorithm for the optimal discovery with probabilistic

expert advice

• We give a standard regret analysis under the only assumption that

the supports of the experts are non-overlapping

• We propose a different optimality result, which permits a

macroscopic analysis in the uniform case

• Another interesting limit to consider is when the number of

important items to find is fixed, but the total number of items tends

to infinity (Poisson regime)

• Then, the behavior of the algorithm is not very good: too large

confidence bonus because no tight deviations bounds for the

Good-Turing estimator when the proportion of important items

tends to 0. Improvement by better deviation bounds?
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