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Discovering dangerous
contigencies in electrical systems



The problem

—o—

~1
Power system
security I
assessment
/
L
Areas of Probable . "
Power System Impact.ed Regions mv.ol?/e
Collapse population of >130 Million

By Mark MacAlester, Federal Emergency Management Agency [Public domain], via
Wikimedia Commons

Damien Ernst (Electrical Engineering, Liege): How to identify quickly
contingencies/scenarios that could lead to unacceptable operating
conditions (dangerous contingencies) if no preventive actions were taken?



The model

e Subset AC X of
important items

o |[X[>1 Al <X
e Access to X only by

probabilistic experts
(P:)1<i<k: sequential
independent draws

Goal: discover rapidly the elements of A
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Estimating the Unseen



e Electro-mechanical
rotor cipher machines,
26 characters

e Invented at the end of
WW1 by Arthur

Scherbius
e e Commercial use, then
Rotors ‘ German Army during
Lampboard\, / ' Ww2

e First cracked by

; Marian Rejewski in

: ;‘ the 1930s (Bomb),

‘ Keyboafd then improved to

/ 3.10'* configurations

: "E"'\»A\Plugboard

Read Simon Singh,
The Code Book
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© 2006, by Louise Dade

Src: http://enigma.louisedade.co.uk/


http://enigma.louisedade.co.uk/

Battle of the Atlantic

e Massively used by the
German Kriegsmarine and
Luftwaffe

e weakness: 3-letters setting to
initiate communication,
taken from the
Kenngruppenbuch

e Government Code and
Cypher School: Bletchley
Park (on the train line
between Cambridge and

Oxford)

e Colossus (first programmable

computers) in 1943



Estimating probabilities

e Discrete alphabet A.
e Unknown probability p on A
e Sample Xj,..., X, of independent draws of p.

e Goal : use the sample to estimate p(a) for all a € A.
Natural idea:

p(a) = , where N(a) = #{i : Xi = a}




[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/0rlitsky’%20Talk%202016.pdf]

Safari preparation
Gl

A



https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf

[Sr‘c‘ Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsk; AQOTalk%QO‘ZOlG.pdf]
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https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf

Bigram Model for NLP (s seepe://mp stanora.cau/-venac]

Learning set:
john read moby dick

mary read a different book
she read a book by cher

el ) — c(wi_1w;)
A=) = 5 el )

1+1

p(s) = [ [ p(wilwi_1)
i=1

p( John read a book )
= p(john|-) p(read|john)  p(alread)  p(book|a)  p(:|book)
_ c(- john) c(john read) c(reada) c(a book) c(book -)
- > cl-w) >, cjohn w) >, c(read w) >, claw) >, c(book w)
= 1 1 2 1 1

3] 1 3] 2 2
~ 0.06


https://nlp.stanford.edu/~wcmac

Bigram Model for NLP (s seepe://mp stanora.cau/-venac]

Learning set:
john read moby dick

mary read a different book
she read a book by cher

c(wj—1w;)

> C(wimaw)

1+1

p(s) = .HP(W:'|W:>1)

P(Wi|Wi—1) =

p( cher read a book )
= p(cher|-) p(read|cher)  p(alread)  p(book|a)  P(:|book)
_ c(- cher) c(cher read) c(reada) c(a book) c(book -)
- Dowcl-w) >, c(cher w) >, c(read w) >, claw) > c(book w)
0 0 2 1 1
8 1 8 2 2
0

—> useless, the unseen must be treated correctly.


https://nlp.stanford.edu/~wcmac

Bayesian Approach: Laplace Estimator

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761)

Will the sun rise tomorrow?

N(a) +1
n+ |A|

p(a) =

e good for small alphabets and many samples
e very bad when lots of items seen once (ex: DNA sequences)

e |A| can be very large (or even infinite), but P concentrated on few
items

= not a satisfying solution to the problem



Alan Turing Irving John Good

1912-1954 1916-2009

student of Godfrey Harold Hardy =~ Graduated in Cambridge

in Cambridge Academic carrer in Bayesian statis-
PhD from Princeton with Alonzo tics in Manchester and then in the
Church University of Virginia (USA)
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Missing mass estimation

Xi,...,X, independent draws of p € M3 (A).

n

On(x) = > 1{Xm = x}

m=1

How to 'estimate’ the total mass of the unseen items

M, = p(x) 1{O,(x) =0} ?
xXEA

11



Let A=N, let p € M;(N) and let Xi,..., X, 'Ep.

For every x € N, let O,(x) = >, 1{X; = x}.

Pb: estimate the mass of the unseen

Mp=P(Xos1 ¢ {X1,..., Xa}) =D p(x) 1{O4(x) = 0}

Idea: use hapaxes = symbols x € N that appear once in the sample

Mn = %Zﬂ{on(x) = 1}
x=0

= Good-Turing 'estimator’
= leave-one-out estimator of M,: if X_; = {Xy,..., Xi—1, Xiz1,..., Xa},
1 n

M Zn{x,- ¢ X_i}

i=1

n=— —
n

12



'Bias’ of the Good-Turing estimator

Proposition [Good '1953]
Whatever the law p,

1

n

0 <E[M,] —E[M,] <

Proof:

E[M,] — E[M,] = %1& {Z 1{O0s(x) = 1}} —-E [Z p(X)1{0n(x) = o}}
xEN xEN

= = P(0n(x) = 1) — np(x) P(On(x) = 0)

= Z np(x) (1 — p(x))"f1 — np(x)(1 = p(x))"

=_E {Z p(x)1(On(x) = 1)] € [0, f} 13



Concentration of M,

oo

Z]l{O,,(x) = 1} = ¢(X1,...,X,), where
x=0
Vk,¥x1,. .., X0, X €N,

1

n

M,

|¢(X17 0oo ,X,,) - ¢(X17 000 7Xk—laXI/<7Xk+17 s 7Xn)| <

SN

Hence, by McDiarmid'’s inequality,
N 5 nx?
P (|1, — E[N,]| > x) < exp (—2>
and with probability at least 1 — ¢,

B[] + 12 Iog(l/é)]

A

M, €

n
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Concentration of the missing mass

M, = Zp(x) 1{Ox(x) =0} is a sum of dependent random variables.

But the 1{0,(x) = 0} are negatively associated!
Indeed,

e By the 0-1 principle, for all 1 </ < n the {1{X; = x} : x € N} are NA

e Hence, by the union property and by the fact that the X; are independent, the
{IL{X,-:X}:lSiSn,XEN} are NA

e Hence, by the concordant monotone property for the monotonically increasing function
(U, ..oy up) = ug + -+ U, the {On(x) = S0, 1{X; = x} : x € N} are NA

e Hence, again by the concordant monotone property for the monotonically decreasing
function u — 1{u = 0} on N, the {1{Os(x) =0} : x € N} are NA

= {exp (AM, } H exp (Ap(x)1{0n(x) = 0}) | < E[exp ()\/\71,,)}
XEX
where M, = Z p(x)Z, and where the Z, ~ B(q(x) :=P(On(x) = O))
xeN

are independent
15



Back to Chernoff’s roots

Attempts with Hoeffding, Bernstein, McDiarmid, etc. fail without an
assumption of maXyeN P(X) In what follows we just use that M, is real-valued

For every x > E[M,] and every A > 0,

oo Au 00
P(M, > x) < / ZWdPMn(U) < e_’\x/ e dPy, (u) = exp (—(Ax—A(N))

u=x -0
where A(X) = log (Z(X) := [, e*"dPu,(u)), and hence
P(M, > x) < exp (— I(x))
where /(x) = supyso Ax — A(N).
Similarly, for every x < E[M,],
B(M, < x) < exp ( — I(x))

where /(x) = supy_g Ax — A(A).

16



Chernoff’s rate function and KL divergence

Let P = Py, and for A € R let Py be defined by 2 (x) = £+, ie for all
= dP(x)
Prop: KL(Py, P) = AEA[X]—-A(\) = inf {KL(Q, P) : Eq[X] > E,\[X]}

I

o
Sk
g b
&

measurable, non-negative function f: E)\[ ] = fR

Proof: For every Q < P with Eq[X] > x,
KL(Q, P) — Alog (ﬂ(x)> dQ(x)
— [1oe (02209 de)

AX
KL(Q,PAH/RIog <%> dQ(x)

KL(Q, Px) + AEq[X] — log (Z(X))
0 + AEA[X] = A(\) =KL(Px,P)

AV

Cor: if \(x) is such that E,[X] = x, then /(x) = KL(Py), P)

17



Chernoff’s rate function and KL divergence

Let P = Py, and for A € R let Py be defined by 2 (x) = £r5;, ie for al

measurable, non-negative function f: Ex[f(X)] = [5 f(x)%dP(X)

Prop: KL(Py, P) = AEA[X]—A()) = inf {KL(Q, P) : Eq[X] > Ex[X]}

Cor: if \(x) is such that E,[X] = x, then /(x) = KL(Py), P)
E [Xe*X]
E [e*X]

2
N = 2 (X (E [XeAX}> — Vary[X] > 0, the C*

Since N'(\) = =E,[X] and

E [e*X] E [e*]
mapping A — /\x — A(A) is maximal where at A\(x) where
x =N (Mx)) = Ey0[X] and then
I(x ) /\( )x = AA(x))
= AGx — ( (Exx[X] = KL (Pa, P))

—KL( ) 17



Kullback-Leibler divergence and variance

X t 1
KL (Pao: P) = /IE[X] /IE[X] Vary)[X] o
Proof: If g(x) = KL(Py(x), P) = A(x)x — A(A(x)) then
£/(x) = N (x)x £ A(x) = NN (A(x)) = AX)
and if e(f) = A"1(£) = E,[X] = N'(0)

" — = 1 = ! !
g"'(x) =XN(x) = e(Mx)) N (\x)) VaIA %Y

The result follows since g(E[X]) = 0 and g’(E[X]) = A(E[X]) = 0.
2

ﬁ

Similarly, if Yu € [1,x], Vary,)[X] < u as for P(1) then Vx >0

Cor: if Yu € [E[X], x], Vary,)[X] < 02 then [(E[X] +¢) >

1+x tdu
I(1+X)2/ / — = (1+x)log(1+x) —x
1 1 u 18



For the missing mass

M, =" p(x)Z. where the Z ~ B(q(x) =P (On(x) = 0)) are

xeX

independent. Under Py, the Z, B (qA(x) = %)

Vary [M,] = p(x)?ax(x)(1 = aa(x)) <D p(x)?

Hence, for A < 0, Var), [/\;I,,} < 3 en P(x)?q(x) and since

P(x)a(x) < p(x)exp (~ np(x)) < sup{ue} = .

en
1
VarA E S —
en
xEN

which yields

enez

For all € > 0, /(E[M,] — ¢) >

Hence, with probability at least 1 — 0, M, > E[M,] — 2log(1/9)

en
19



High confidence estimation of the missing mass

A similar bound can be obtained for the right-deviations of M,. Putting
everything together,

High confidence region

With probability at least 1 — d, whatever the law p,

/\Aﬂn—%—(1+\f2) Iog(:/5) < My < W+ (1+v2) Iog(;l/é)

= sub-Gaussian concentration despite the absence of independence
and the absence of assumptions on p.

20



The Good-UCB Algorithm




The model

e Subset AC X of
important items

o |[X[>1 Al <X
e Access to X only by

probabilistic experts
(P:)1<i<k: sequential
independent draws

Goal: discover rapidly the elements of A

21



At each time step t =1,2,...:

e pick an index I; = 7rt(/1, Yi, .o, s—1, Ys_l) € {1,...,K} according
to past observations
e observe Y; = X, 5, . ~ P, where

nit = Z]l{l =i}

s<t

Goal: design the strategy m = (7;): so as to maximize the number of
important items found after t requests

Assumption: non-intersecting supports

AN supp(P;) Nsupp(P;) = for i # j

22



Is it a Bandit Problem ?

It looks like a bandit problem. ..

e sequential choices among K options
e want to maximize cumulative rewards

e exploration vs exploitation dilemma

... but it is not a bandit problem !

e rewards are not i.i.d.
e destructive rewards: no interest to observe twice the same important
item

e all strategies eventually equivalent

23



The oracle strategy

Proposition: Under the non-intersecting support hypothesis, the greedy
oracle strategy

IF € argmax P; (A\{Y1,..., Y:})
1<i<K

is optimal: for every possible strategy m, E[F’T(t)] < E[F*(t)]

Remark: the proposition is false if the supports may intersect

= estimate the “missing mass of important items"!

Solution proposed in [Optimal Discovery with Probabilistic Expert Advice: Finite Time Analysis
and Macroscopic Optimality, by Sébastien Bubeck, Damien Ernst and Aurélien Garivier, Journal of
Machine Learning Research vol. 14 Feb. 2013, pp.601-623]

24



The Good-UCB algorithm

Estimator of the missing important mass for expert /:

Njt—1

Rimer = —— 3" ]1{ S 1{Xs=x} =1
Nit—1 A —1
K nje—
and Z Jz:lll{Xj_rs =) = 1}
j=1 s=1

Good-UCB algorithm:

1: For 1 <t < K choose I; = t.

2: for t > K+ 1do o
3:  Choose Iy = argmax; <<k {ﬁ’, iy C\‘r'%}
4. Observe Y; distributed as P,

5:  Update the missing mass estimates accordingly

6: end for

25



Optimality results




Classical analysis

Theorem: For any t > 1, under the non-intersecting support
assumption, Good-UCB (with constant C = (1 + 1/2)+/3) satisfies

E [F*(t) — FUB(t)] < 17\/Ktlog(t) + 20V Kt + K + K log(t/K)

Remark: Usual result for bandit problem, but not-so-simple analysis

26



Sketch of proof

1. On a set § of probability at least 1 — % the “confidence
intervals” hold true simultaneously all u > v Kt

2. Let I, = argmaxy <;<k Rin,,_,- On Q,

1 214 V2) 3log(4u)

R
Mlyu—1 My u—1

> _
us Ny u—1 = IU’”I_u.u—l

3. But one shows that EF*(t) < > ER; ..
us Tus
4. Thus

u—1

E [F*(t) — FU5(1)]

S\/ﬁﬂEi ! +2(1+V2) 3|°g(4t)]

nlu,u—l n/u7u_1

u=1

< VKt + K + Klog(t/K) + 4(1 + v2) /3Kt log(4t)

27



Experiment: restoring property

250
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Figure 1: green: oracle, blue: Good-UCB, red: uniform sampling
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Another analysis of Good-UCB

For A € (0,1), T(X) = time at which missing mass of important items is
smaller than X on all experts:

T()\):inf{t:Vie {1, KL P(A\{Y1,..., Yi}) < )\}

Theorem: Let ¢ > 0 and S > 1. Under the non-intersecting support
assumption, for Good-UCB with C = (1 + \@)\/c + 2, with probability

at least 1 — £, for any A € (0,1),

Tucs(A) < T* + KSlog (8T* + 16KS log(KS)),

where T* = T* (A;2(1+\@) C+2>

S

29



The macroscopic limit

o Restricted framework: P; =U{1,..., N}
o N = o0

e |ANsupp(P;)|/N — gi €(0,1), g=3";qi

O o
(2R O g .
LY M N
S N S N o
0 ox | 0 ° ©
5
<
0\0 o o o
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o Restricted framework: P; =U{1,..., N}

e N —

e |ANsupp(P;)|/N — gi €(0,1), g=3";qi

O\ o O a0 ©
1
N AN o o9
1 O % AN o
o 1
o OoN | O A o
o
o 0 o 0
) o OV RN NEIN
AV <><§ A
o O A A Y (o
K| o o o o 0

The macroscopic limit
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The macroscopic limit

o Restricted framework: P; =U{1,..., N}
o N — o0

e |ANsupp(P;)|/N — gi €(0,1), g=3";qi

o o
Cogant®on | 060\ 00
0TI o 09 Yy
0Oy © OXO N 5 (©
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The Oracle behaviour

The limiting discovery process of the Oracle strategy is deterministic

Proposition: For every \ € (0, q;), for every sequence (AV)y converging
to A as N goes to infinity, almost surely

TN qi
AT _Z(logXL

i

31



Oracle vs. uniform sampling

Oracle: The proportion of important items not found after Nt
draws tends to

g— F*(t) = I(t)ﬂ/(t) exp (—t/I(t)) < Kq, exp(—t/K)

B 1/K
with g, = (Hi:l q,-) the geometric mean of the (g;);.

Uniform: The proportion of important items not found after Nt
draws tends to K gk exp(—t/K)

—> Asymptotic ratio of efficiency

_ k
— qi — % z/‘*l q" ~ 1
/)(q) q P 1/K =
K (H, 167/')

larger if the (g;); are unbalanced

32



Macroscopic optimality

Theorem: Take C = (1 + v/2)y/c + 2 with ¢ > 3/2 in the Good-UCB
algorithm.

e For every sequence (AV)y converging to A as N goes to infinity,
almost surely

limsup —Y<B2~ 72 UCB < Z (Iog q,)

N—+oo

e The proportion of items found after Nt steps F°UB(Nt) converges
uniformly to F*(Nt) as N goes to infinity

33



Experiment

Number of items found by Good-UCB (solid), the OCL (dashed), and
uniform sampling (dotted) as a function of time for sizes
N =128, N =500, N = 1000 and N = 10000 in a 7-experts setting.
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And when the assumptions are not satisfied?

1000
800}
600}
Number of primes found by .|
Good-UCB (solid), -
the oracle (dashed)
and uniform sampling (dot- %
ted) using geometric ex-
perts with means 100, 300, 1000
500, 700, 900, 800f
for C =0.1 (top) and C = goot
0.02 (bottom). a0l
200§
% 1 2 3 4 5

x 10
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Conclusion and perspectives

e We propose an algorithm for the optimal discovery with probabilistic
expert advice

e We give a standard regret analysis under the only assumption that
the supports of the experts are non-overlapping

e We propose a different optimality result, which permits a
macroscopic analysis in the uniform case

e Another interesting limit to consider is when the number of
important items to find is fixed, but the total number of items tends
to infinity (Poisson regime)

e Then, the behavior of the algorithm is not very good: too large
confidence bonus because no tight deviations bounds for the
Good-Turing estimator when the proportion of important items
tends to 0. Improvement by better deviation bounds?
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