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R. GRIBONVAL - CONCENTRATION OF MEASURE AND HIGH-DIMENSIONAL LEARNING

Practical information

• Lecturers  
✓ Guillaume Aubrun    Aurélien Garivier   Rémi Gribonval 

• Joint course: maths & computer science 
✓ Monday 13:30-15:30 
✓ Friday    10:15-12:15 
✓ this week: CS only 

• Language : french or english ? 

• Attendance : physical (and/or virtual as needed) 
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Remote attendance via 
https://ent-services.ens-lyon.fr/entVisio
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Practical information

• Official pad: 
✓ latest general information on all courses 
✓ presence sheets (in class & online) 
https://pad.inria.fr/p/r.f0843991855b3c5006ef30aeb674d272

• Web page that I maintain 
https://people.irisa.fr/Remi.Gribonval/talks-and-tutorials/m2-ens-lyon-concentration/ 
✓ course specific information 
✓ links, bibliographical references … 

• Evaluation 
✓ Principle 

✦ Homework, in-class exercises & final exam: 50% 
✦ Final exam: 50% 

✓ More details in due time
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Questions ?
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• Goal 
✦ use training data to infer parameters     to achieve a certain task 

✦ avoid overfitting: ensure generalization to unseen data of similar type 

• Training collection = large point cloud 
✦ signals, images, … 
✦ feature vectors, labels, …  

• Examples of tasks & parameters 

High dimensional statistical learning

Compressive Gaussian Mixture Estimation
Anthony Bourrier12, Rémi Gribonval2, Patrick Pérez1
1 Technicolor, 975 Avenue des Champs Blancs, 35576 Cesson Sévigné, France

firstname.lastname@technicolor.com
2 INRIA Rennes - Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes, France

firstname.lastname@inria.fr

Motivation

Goal: Infer parameters ✓ from n-dimensional data X = {x1, . . . ,xN}. This
typically requires extensive access to the data. Proposed method: Infer
from a sketch of the data ) memory and privacy savings.

n x1 . . . xN

Learning set
(size Nn)

Â
=) m ẑ

Database sketch
(size m)

L
=) K ✓

Learned parameters
(size K)

Figure 1: Illustration of the proposed sketching framework. A is a sketch-
ing operator, L is a learning method from the sketch.

Model and problem statement

Application to mixture of isotropic Gaussians in Rn:

fµ / exp
�
�kx� µk22/(2�2)

�
. (1)

Data X = {xj}Nj=1 ⇠
i.i.d.

p =
Pk

s=1↵sfµs
with:

•weights ↵1, . . . ,↵k (positive, sum to one)
•means µ1, . . . ,µk 2 Rn.

Sketch = Fourier samplings at different frequencies: (Af )l = f̂ (!l).
Empirical version: (Â(X ))l =

1
N

PN
j=1 exp(�ih!l,xji) ⇡ (Ap)l.

We want to infer the mixture parameters from ẑ = Â(X ).
Problem casted as:

p̂ = argmin
q2⌃k

kẑ�Aqk22, (2)

where ⌃k = mixtures of k isotropic Gaussians with positive weights.
Standard CS Our problem

Signal x 2 Rn f 2 L1(Rn)

Dimension n Infinite
Sparsity k k

Dictionary {e1, . . . , en} F = {fµ,µ 2 Rn}
Measurements x 7! ha,xi f 7!

R
Rn f (x)e�ih!,xidx

Algorithm

Current estimate p̂ with weights {↵̂s}ks=1 and support �̂ = {µ̂s}ks=1.
Residual r̂ = ẑ�Ap̂.
1. Searching new support functions:

Search for ”good components to add” to the support
) Local minima of µ 7! �hAfµ, r̂i, added to the support �̂.
New support �̂0.

2. k-term thresholding:
Projection of ẑ onto �̂0 with positivity constraints on coefficients:

argmin
�2RK

+

||ẑ�U�||22, (3)

with U = [µ̂1, . . . , µ̂K].
k highest coefficients and corresponding support are kept
! new support �̂ and coefficients ↵̂1, . . . , ↵̂k.

3. Final ”shift”:
Gradient descent algorithm on the objective function, with initialization at
the current support and coefficients.

First step Second step Third step

Figure 2: Algorithm illustration in dimension n = 1 for k = 3 Gaus-
sians. Top: Iteration 1. Bottom: Iteration 2. Blue curve=true mixture,
Red curve=reconstructed mixture, Green curve=gradient function. Green
Dots=Candidate Centroids, Red Dots=Reconstructed Centroids.

Experimental results

Data setup: � = 1, (↵1, . . . ,↵k) drawn uniformly on the simplex.
Entries of µ1, . . . ,µk ⇠

i.i.d.
N (0, 1).

Algorithm heuristics:
•Frequencies drawn i.i.d. from N (0, Id).

•New support function search (step 1) initialized as ru, where r uniformly

drawn in

0,max

x2X
||x||2

�
and u uniformly drawn on B2(0, 1).

Comparison between:
•Our method: Sketch is computed on-the-fly and data is discarded.

•EM: Data is stored to allow the standard optimization steps to be per-
formed.

Quality measures: KL Divergence and Hellinger distance.

N
Compressed EM

KL div. Hell. Mem. KL div. Hell. Mem.
103 0.68± 0.28 0.06± 0.01 0.6 0.68± 0.44 0.07± 0.03 0.24
104 0.24± 0.31 0.02± 0.02 0.6 0.19± 0.21 0.01± 0.02 2.4
105 0.13± 0.15 0.01± 0.02 0.6 0.13± 0.21 0.01± 0.02 24

Table 1: Comparison between our method and an EM algorithm. n =
20, k = 10,m = 1000.
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Figure 3: Left: Example of data and sketch for n = 2. Right: Reconstruc-
tion quality for n = 10.
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High dimensional statistical learning

• Machine learning:  
✓ focus on design of computationally efficient algorithms 

• Statistical learning:  
✓ focus on proving statistical guarantees 

➡ the PAC (Probably Approximately Correct) framework 

➡ notions of complexity / dimension of a learning task 

8

How many training samples do I need to learn accurately ?
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High dimensional statistical learning

x1 x2 xnX

• Training collection = collection of feature vectors 

✓ High feature dimension d 
✓ Large collection size n = “volume” 

9
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High dimensional statistical learning

• Challenges of high dimension 

✓ statistical significance of results 

✓ computational scalability of algorithms 

➡ sparsity promoting algorithms 

➡ dimension reduction when d “too large” 

➡ model selection 

10

d � n
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Organization - CS viewpoint

• Important tools for (high-dim) statistical learning 

➡ the PAC (Probably Approximately Correct) framework 
➡ notions of complexity / dimension of a learning task 
➡ sparsity promoting algorithms 
➡ dimension reduction with random projections 

✓ Swiss knife:  
✦ measure concentration (probability theory) 

11
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Organization - Maths viewpoint

• Important concepts in probability 

➡ deviation inequalities for averages of independent 
variables 

➡ concentration of high-dimensional random functions 
➡ isoperimetry in the sphere and Gaussian spaces 

✓ Applications:  
✦ analysis of random graphs 
✦ random projections for dimension reduction 
✦ structural risk minimization in machine learning 

12
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Introduction to measure 
concentration
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Why measure concentration ?

• Experiment: draw a dice 
✓ observation: a random number  

• Repeat the experiment n times 
✓ independent & identically distributed (i.i.d.) random numbers 

✓ compute the empirical average 

➡ value ?

14

Xi 2 {1, . . . , 6}

X 2 {1, . . . , 6}

1  i  n

X̄n := 1
n

nX

i=1

Xi
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Distribution of a random variable

• Discrete random variables  
✓ ex: uniform distribution on  

• Scalar random variables  
✓ ex: Gaussian distribution 

• Also: vector random variables  … 

15

P (X = 1) = . . . = P (X = 6) = 1/6

{1, . . . , 6}

X ⇠ P

P (a  X  b) =

Z b

a

1p
2⇡�2

e�(x�µ)2/2�2

| {z }
p(x)

dx
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Expectation of a random variable

• Discrete random variables  

✓ ex: uniform distribution on  

• Scalar random variables  

✓ ex: Gaussian distribution 

16

⌦ = {1, . . . , 6}

= ????

= ????

E(X) =
X

x2⌦

xP (X = x)

E(X) =

Z +1

�1
xp(x)dx

E(X) = EX⇠P(X)

p(x) =
1p
2⇡�2

e�(x�µ)2/2�2
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Back to our problem …

• Experiment: draw a dice 
✓ observation: a random number  

• Repeat the experiment n times 
✓ independent & identically distributed (i.i.d.) random numbers 

✓ compute the empirical average 

➡ value

17

Xi 2 {1, . . . , 6}

X 2 {1, . . . , 6}

1  i  n

= ????

X̄n := 1
n

nX

i=1

Xi
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Overview

• Law of large numbers 
• Central Limit Theorem 

• Markov / Chebyshev / Chernoff / Hoeffding  

• Summary

18
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Law of large numbers

• Expectation of the empirical average 

• Property:  
✓ when n gets large, the empirical average tends to the expectation 

✓ mathematical expression 

19

= ????E(X̄n)

lim
n!1

|X̄n � E(X)| = 0 ?
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Law of large numbers

• Expectation of the empirical average 

• Property:  
✓ when n gets large, the empirical average tends to the expectation 

✓ mathematical expression 

19
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Law of large numbers

• Expectation of the empirical average 

• Property:  
✓ when n gets large, the empirical average tends to the expectation 

✓ mathematical expression 

19

= ????E(X̄n)

lim
n!1

|X̄n � E(X)| = 0

lim
n!1

P (|X̄n � E(X)| > ✏) = 0

?
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Law of large numbers

• Expectation of the empirical average 

• Property:  
✓ when n gets large, the empirical average tends to the expectation 

✓ mathematical expression 

19

= ????

8✏ > 0

E(X̄n)

lim
n!1

|X̄n � E(X)| = 0

lim
n!1

P (|X̄n � E(X)| > ✏) = 0

?
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Limits of law of large numbers

• Law of large numbers 
✓ randomness captured by one quantity 

✓ asymptotic behavior = qualitative 

• Quantitative results ? Target probability level 
✓ How many training samples             ? 
✓ What precision              ? 

• Order of magnitude of              ? 

20

8✏ > 0, lim
n!1

⇢(n, ✏) = 0

n(⇢, ✏)
⇢(n, ✏)  ⇢

✏(n, ⇢)

⇢(n, ✏)

⇢(n, ✏) := P (|X̄n � E(X)| > ✏)
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Overview

• Law of large numbers 

• Central Limit Theorem 
• Markov / Chebyshev / Chernoff / Hoeffding  

• Summary
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Variance of a random variable

• Definition 

• Property 

• Examples 
✓ uniform distribution on  

✓ Gaussian distribution 

22

⌦ = {1, . . . , 6}
= ????

= ????

Var(X) = E(X2)� [E(X)]2

Proof ?

Var(X)

Var(X)

Var(X) := E[(X � E(X))2]

p(x) =
1p
2⇡�2

e�(x�µ)2/2�2
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Variance of the empirical average

• Consider i.i.d. samples with finite variance  

✓ Expectation 

✓ Variance 

✓ Rescaled variance 

23

Var(Xi) = �2 < 1, 1  i  nXi ⇠ P

= ????

= ????

= ????

E(X̄n)

Var(X̄n)

Var[
p
n(X̄n � E(X))]
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Variance of the empirical average

• Consider i.i.d. samples with finite variance  

✓ Expectation 

✓ Variance 

✓ Rescaled variance 

• example where variance is infinite ? 

23

Var(Xi) = �2 < 1, 1  i  nXi ⇠ P

= ????

= ????

= ????

E(X̄n)

Var(X̄n)

Var[
p
n(X̄n � E(X))]
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Example: Histograms with binomial variables

24

Source  [github](https://github.com/resendedaniel/math/tree/master/17-central-limit-theorem) 
Daniel Resende (Creative Commons Attribution-Share Alike 4.0 International license)

n = 1

n = 512

https://github.com/resendedaniel/math/tree/master/17-central-limit-theorem
https://github.com/resendedaniel/math/tree/master/17-central-limit-theorem
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Central Limit Theorem (CLT)

• Consider i.i.d. samples with finite variance  

• Theorem 
✓ the distribution of the empirical average converges to a 

Gaussian distribution 
✓ mathematical expression 

25

�2

8a, b, lim
n!1

P (
p
n(X̄n � E(X)) 2 [a, b]) =

Z b

a

1p
2⇡�2

e�
t2

2�2 dt



R. GRIBONVAL - CONCENTRATION OF MEASURE AND HIGH-DIMENSIONAL LEARNING

Central Limit Theorem (CLT)

• Consider i.i.d. samples with finite variance  

• Theorem 
✓ the distribution of the empirical average converges to a 

Gaussian distribution 
✓ mathematical expression 

25

�2

= ????

8a, b, lim
n!1

P (
p
n(X̄n � E(X)) 2 [a, b]) =

Z b

a

1p
2⇡�2

e�
t2

2�2 dt

lim
n!1

P (|X̄n � E(X)| > tp
n
)
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Complementary error function

• Definition 

• Property 
✓ see [1]

26

erfc(z) := 2p
⇡
·
Z +1

z
e�u2

du

erfc(z)  e�z2

, 8z > 0
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Complementary error function

• Definition 

• Property 
✓ see [1]

• Consequence of CLT 
✓ for n “large  enough” 

26

erfc(z) := 2p
⇡
·
Z +1

z
e�u2

du

erfc(z)  e�z2

, 8z > 0

P (|X̄n � E(X)| > ✏p
n
) ⇡ 2

Z +1

✏

1p
2⇡�2

e�
t2

2�2 dt
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Complementary error function

• Definition 

• Property 
✓ see [1]

• Consequence of CLT 
✓ for n “large  enough” 

26

erfc(z) := 2p
⇡
·
Z +1

z
e�u2

du

erfc(z)  e�z2

, 8z > 0

= 2p
⇡
·
Z +1

✏
�
p
2

e�u2

duP (|X̄n � E(X)| > ✏p
n
) ⇡ 2

Z +1

✏

1p
2⇡�2

e�
t2

2�2 dt
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Complementary error function

• Definition 

• Property 
✓ see [1]

• Consequence of CLT 
✓ for n “large  enough” 
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Complementary error function

• Definition 

• Property 
✓ see [1]

• Consequence of CLT 
✓ for n “large  enough” 

• Asymptotically: exponential decay with n 
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Complementary error function

• Definition 

• Property 
✓ see [1]

• Consequence of CLT 
✓ for n “large  enough” 

• Asymptotically: exponential decay with n 
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Complementary error function

• Definition 

• Property 
✓ see [1]

• Consequence of CLT 
✓ for n “large  enough” 

• Asymptotically: exponential decay with n 
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Need for finite-sample results

• Probability of a given deviation 

• Will be achieved with a series of tools to control 

✓ with various assumptions on the random variable Z 
✓ applied to certain random variables  

27

P (Z � E(Z) + t)

P (X̄n � E(X) + t) ?

Z = f(X̄n)
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Overview

• Law of large numbers 

• Central Limit Theorem 

• Markov / Chebyshev / Chernoff / Hoeffding  
• Summary

28
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Markov’s inequality 
(due to Chebyshev, Markov’s teacher)

• Property  
✓ For a non-negative random variable Z we have for any t>0 

• Remark: decay                 , not exponential 

29

Andreï A. Markov 
1856-1922 

Russian

Crédit photo: domaine public

P (Z > t)  E(Z)

t

O(1/t)
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Proof of Markov’s inequality

• Blackboard

30
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Chebyshev’s inequality  
(Exercise)

• Property 
✓ Consider a random variable Z with finite variance 

✓ Then for any t>0 

• Proof:  
• Remark: decay                   , still not exponential 
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�2 = Var(Z) < 1

= ????

Pafnouti Tchebychev 
1821-1894 

Russian

Crédit photo: domaine public

P (|Z � E(Z)| > t)  Var(Z)

t2

O(1/t2)
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Proof of Chebyshev’s inequality

• Exercise

32
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Beyond Chebyshev’s inequality ?

• Can you propose extensions of Chebyshev’s 
inequality that yield faster ‘concentration’ to the 
mean (under stronger assumptions) ?

33
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Chernoff bound 
(due to Herman Rubin)

• Property 
✓ For any                we have 

• Remark: exponential decay ! 
✓ need to assume that (for small enough   ) we have 

34

Herman Chernoff 
Born 1923 
American

Crédit photo: licence Creative Commons Attribution-Share Alike 4.0 International (Pburka on Wikimedia)

in 2015

t,� > 0

P (Z > t)  E(e�Z)
e�t

�

E(e�Z) < 1
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Chernoff bound 
(due to Herman Rubin)

• Property 
✓ For any                we have 

• Remark: exponential decay ! 
✓ need to assume that (for small enough   ) we have 
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Herman Chernoff 
Born 1923 
American

Crédit photo: licence Creative Commons Attribution-Share Alike 4.0 International (Pburka on Wikimedia)

in 2015
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P (Z > t)  E(e�Z)
e�t
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E(e�Z) < 1
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Historical note

35

In working on an artificial example, I discovered that I was using the Central Limit Theorem for large deviations where it 
did not apply. This led me to derive the asymptotic upper and lower bounds that were needed for the tail probabilities. 
Rubin claimed he could get these bounds with much less work and I challenged him. He produced a rather simple 
argument, using the Markov inequality, for the upper bound. Since that seemed to be a minor lemma in the ensuing paper 
I published (Chernoff, 1952), I neglected to give him credit. I now consider it a serious error in judgment, especially 
because his result is stronger, for the upper bound, than the asymptotic result I had derived. 

Shannon had published a paper using the Central Limit Theorem as an approximation for large deviations and had been 
criticized for that. My paper permitted him to modify his results and led to a great deal of publicity in the computer science 
literature for the so-called Chernoff bound which was really Rubin’s result. 

Lin, X., Genest, C., Banks, D., Molenberghs, G., Scott, D., & Wang, J.-L. (Eds.). 
(2014). Past, Present and Future of Statistical Science (pp. 1–1). Chapman and 
Hall/CRC. http://doi.org/10.1201/b16720-2
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Proof of Chernoff’s inequality

• Exercise

36



R. GRIBONVAL - CONCENTRATION OF MEASURE AND HIGH-DIMENSIONAL LEARNING

Example: Bounded Random Variable

• Property 1:  
✓ Consider a bounded random variable 

✓ Denote 

✓ For any           we have 

37

a  Z  b

µ := E(Z)

� > 0

E(e�(Z�µ))  e
�2(b�a)2

8

Proof: next time



R. GRIBONVAL - CONCENTRATION OF MEASURE AND HIGH-DIMENSIONAL LEARNING

Hoeffding's inequality

• Theorem 
✓ Consider independent bounded random variables with 

common expectation  

✓ For any n and any t>0 the empirical average                                  
satisfies  

38

a  Xi  b E(Xi) = µ

Wassily Hoeffding 
1914-1991 

Born in Finland 
American

Crédit photo: licence inconnue, https://www.nap.edu/read/11429/chapter/12 The National Academies Press

X̄n = 1
n

nX

i=1

Xi

P (|X̄n � µ| > t)  2e
� 2nt2

(b�a)2

https://www.nap.edu/read/11429/chapter/12
https://www.nap.edu/read/11429/chapter/12
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Proof: Hoeffding’s inequality (1) 
• Step 1 

• Step 2: Chernoff’s bound 

39

E(e�(X̄n�µ)) = E(e
�
n

Pn
i=1(Xi�µ))

= ⇧n
i=1E(e

�
n (Xi�µ))

 ⇧n
i=1 exp

⇣
�2(b�a)2

8n2

⌘

= e
�2(b�a)2

8n

P (X̄n � µ > t)  E(e�(X̄n�µ))

e�t  e
�2(b�a)2

8n ��t



R. GRIBONVAL - CONCENTRATION OF MEASURE AND HIGH-DIMENSIONAL LEARNING

Proof: Hoeffding’s inequality (2) 

• Step 3: optimize            for bound                             

✓ achieved for  

• Step 4: repeat with 

40

 e
�2(b�a)2

8n ��t
� > 0

min
�>0

⇢
�2(b� a)2

8n
� �t

�

� =
4nt

(b� a)2

X 0
i = �Xi

= � 2nt2

(b� a)2
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Overview

• Law of large numbers 

• Central Limit Theorem 

• Markov / Chebyshev / Chernoff / Hoeffding  

• Summary
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Summary: Chernoff’s method

• Theorem (sometimes known as Chernoff’s bound) 
✓ For any random variable Z, with 

• Definitions:  
✓ Moment-generating function 

✓ Cumulant-generating function

42

logP (Z � µ > t)  � sup
�>0

n
�t� logE(e�(Z�µ))

o
µ := E(Z)

MZ(�) := E(e�Z)

KZ(�) := logE(e�Z)
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Summary: measure concentration

• Nature of the results:  
✓ probability bounds valid for any finite n 
✓ exponential decay with number n of samples 

• Technical ingredients:  
✓ Chernoff’s method 
✓ Bounds on cumulant generating function 

• Hoeffding’s inequality 
✓ valid for independent & bounded random variables 

• Other tools: 
✓ beyond boundedness: sub-Gaussian/sub-exponential r.v.  
✓ beyond empirical average: McDiarmid’s inequality 
✓ Lipschitz functions of Gaussian random variables 
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That’s all folks !
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