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Dimensionality reduction

• Data: X =

 xT1
...

xTn

 ∈ Mn,p(R), p ≫ 1.

• Dimensionality reduction: replace xi with yi = Wxi , where

W ∈ Md,p(R), d ≪ p.

• Hopefully, we do not loose too much by replacing xi by yi .

2 approaches:

• Quasi-invertibility: there exists a recovering matrix U ∈ Mp,d(R)
such that for all i ∈ {1, . . . , n},

x̃i = Uyi ≈ xi .

• More modest goal: distance-preserving property

∀1 ≤ i , j ≤ n, ∥yi − yj∥ ≈ ∥xi − xj∥

• Neural networks permit to go beyond linear encoders/decoders.
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Dimensionality reduction: PCA



PCA

PCA aims at finding the compression matrix W and the recovering

matrix U such that the total squared distance between the original and

the recovered vectors is minimal:

argmin
W∈Md,p(R),U∈Mp,d (R)

n∑
i=1

∥∥xi − UWxi
∥∥2 .

Property. A solution (W ,U) is such that UTU = Id and W = UT .

Proof. Let W ∈ Md,p(R),U ∈ Mp,d (R), and let R =
{
UWx : x ∈ Rp

}
. dim(R) ≤ d , and we

can assume that dim(R) = d . Let V =
(

v1 . . . vd
)
∈ Mp,d (R) be an orthogonal basis of

R, hence V TV = Id and for every x̃ ∈ R there exists y ∈ Rd such that x̃ = Vy . Hence, for every

x ∈ Rp there exists y such that UWx = Vy and

∥x − UWx∥2 = ∥x − Vy∥2 = ∥x∥2 − 2yTV T x + ∥Vy∥2 = ∥x∥2 − 2yTV T x + ∥y∥2

= ∥x∥2 + ∥y − V T x∥2 − xTVV T x ≥ ∥x∥2 − xTVV T x = ∥x − VV T x∥2

with equality iff y = V T x , and thus the pair (W ,U) is never better than (V T ,V ) for each point

xi , even more so for their sum.
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The PCA solution

Corollary: the optimization problem can be rewritten

argmin
U∈Mp,d (R):UTU=Id

n∑
i=1

∥∥xi − UUT xi
∥∥2 = argmin

U∈Mp,d (R):UTU=Id

n∑
i=1

∥∥xi∥∥2 − ∥∥UUT xi
∥∥2

= argmax
U∈Mp,d (R):UTU=Id

n∑
i=1

∥∥UUT xi
∥∥2

= argmax
U∈Mp,d (R):UTU=Id

n∑
i=1

Tr
(
UT xix

T
i U
)

= argmax
U∈U∈Mp,d (R):UTU=Id

Tr

(
UT

n∑
i=1

xix
T
i U

)
.

Let A =
∑n

i=1 xix
T
i , so that the criterion to maximize is Tr

(
UTAU

)
.

Note that if U = (u1| . . . |ud ),Tr
(
UT ∑n

i=1 xix
T
i U
)

=
∑d

i=1 u
T
i Aui : the case d = 1 is obvious.

Let A = VDV T be its spectral decomposition: D is diagonal, with

D1,1 ≥ · · · ≥ Dp,p ≥ 0 and V TV = VV T = Ip.
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Solving PCA by SVD

Theorem Let A =
∑n

i=1 xix
T
i , and let u1, . . . , ud be the eigenvectors of

A corresponding to the d largest eigenvalues of A. Then the solution to

the PCA optimization problem is U =
(

u1 . . . ud

)
, and W = UT .

Proof. Let U ∈ Mp,d (R) be such that UTU = Id , and let B = V TU. Then VB = U, and

UTAU = BTV TVDV TVB = BTDB, hence

Tr
(
UTAU) =

p∑
j=1

Dj,j

d∑
i=1

B2
j,i .

Since BTB = UTVV TU = Id , the columns of B are orthonormal and
∑p

j=1

∑d
i=1 B

2
j,i = d .

In addition, completing the columns of B to an orthonormal basis of Rp one gets B̃ such that

B̃T B̃ = Ip , and for every j one has
∑p

i=1 B̃
2
j,i = 1, hence

∑d
i=1 B

2
j,i ≤ 1.

Thus,

Tr
(
UTAU

)
≤ max
β∈[0,1]p :∥β∥1≤d

p∑
j=1

Dj,jβj =
d∑

j=1

Dj,j ,

which can be reached if U is made of the d leading eigenvectors of A.
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PCA: comments

Interpretation: PCA aims at max-

imizing the projected variance.

Often, the quality of the result is

measured by the proportion of the

variance explained by the d princi-

pal components:

∑d
i=1 Di,i∑p
i=1 Di,i

.

[Src: wikipedia.org]

In practice: if p ≥ n, it is cheaper to diagonalize B = XXT ∈ Mn(R),
since if u is such that Bu = λu then for v = XTu/∥XTu∥ one has

Av = λv .

This remark is also at the basis of kernel PCA.
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Dimensionality reduction:
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Johnson-Lindenstrauss Lemma

Theorem

Let x1, . . . , xn ∈ Rp, and let ϵ > 0. Then, for every d ≥ 4 log(n)

ϵ− log(1 + ϵ)
,

there exists a matrix A ∈ Md,p(R) such that

∀1 ≤ i < j ≤ n,
(
1− ϵ

)∥∥xi − xj
∥∥2 ≤ ∥∥Axi −Axj

∥∥2 ≤ (1+ ϵ
)∥∥xi − xj

∥∥2 .
Remark 1: d is independent of p (!)

Remark 1: on the dependence on ϵ

4 log(n)

ϵ− log(1 + ϵ)
≤ 8 log(n)

ϵ2

(
1 +

ϵ

3

)2
.

Remark 2: how to find such a matrix A?

For every d ≥ 4 log(n) + 2 log(1/δ)

ϵ− log(1 + ϵ)
, the probability that a random matrix

with entries Ai,j
iid∼ N

(
0, 1

d

)
satisfies the lemma is larger than 1− δ.
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Proof of the Johnson-Lindenstrauss Lemma

Method: (constructive) probabilistic method: we choose Ai,j
iid∼ N

(
0, 1

d

)
. Let

y ∈ Rp and Y = Ay . Then ∀1 ≤ k ≤ d , Yk =

p∑
ℓ=1

Ak,ℓyℓ ∼ N
(
0,

∥y∥2

d

)
.

Hence E
[
∥Y ∥2

]
= ∥y∥2. Besides, by the deviation bound for the χ2

distribution given in the next slide,

P
(
∥Y ∥2 ≥ (1+ϵ)∥y∥2

)
= P

(
d∑

k=1

(√
dYk

∥y∥

)2

≥ d(1 + ϵ)

)
≤ exp

(
−d ϕ∗(ϵ)

)
≤ 1

n2

and similarly P
(
∥Y ∥2 ≤ (1− ϵ)∥y∥2

)
≤ exp

(
− d ϕ∗(ϵ)

)
≤ 1

n2
.

Applying this result to all yi,j = xi − xj , 1 ≤ i < j ≤ n, we obtain the

conclusion by the union bound:

P
( ⋃

1≤i<j≤n

{∥∥A(xi − xj)
∥∥2 /∈

[
(1− ϵ)∥xi − xj∥2, (1 + ϵ)∥xi − xj∥2

]})

≤ n(n − 1)

n2
< 1 ,

and hence there exists at least a matrix A for which the lemma holds.
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Deviations of the χ2 distribution: rate function

Lemma

If U ∼ N (0, 1) and X = U2 − 1, then

ϕ∗(x) = sup
λ

λx − logE
[
eλX

]
=

x − log(1 + x)

2
≥ x2

4
(
1 + x

3

)2 .

Proof: For every λ < 1/2,

E
[
eλX
]
=

1
√
2π

∫
R
eλ(u

2−1)e−
u2

2 du =
e−λ
√
2π

∫
R
e−

(1−2λ)u2

2 du = e−λ
1

√
1 − 2λ

.

Hence ϕ(λ) = log E
[
eλX
]
= − 1

2 log(1 − 2λ) − λ. The concave function λ 7→ λx − ϕ(λ) is

maximized at λ∗ s.t. x = ϕ′(λ∗) = 1
1−2λ∗ − 1, that is at λ∗ = 1

2

(
1 − 1

1+x

)
= x

2(1+x) . Hence

ϕ
∗(x) = λ

∗x − ϕ(λ∗) =
x − log(1 + x)

2
.

The last inequality is obtained by ”Pollard’s trick” applied to g(x) = x − log(1 + x): since

g(0) = g ′(0) = 0 and since g ′′(x) = 1/(1 + x)2 is convex, by Jensen’s inequality

x − log(1 + x)

x2/2
=

∫ 1

0

g ′′(sx)2(1 − s)ds ≥ g ′′
(
x

∫ 1

0

s 2(1 − s)ds

)
= g ′′

(
x

3

)
.
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Deviations of the χ2(d) distribution

By Chernoff’s method, if Z ∼ χ2(d)
dist
= U2

1 + · · · + U2
d where Ui

iid∼ N (0, 1):

P
(
Z ≥ d(1 + ϵ)

)
≤ exp

(
− dϕ∗(ϵ)

)
≤ exp

(
−

dϵ2

4
(
1 + ϵ

3

)2
)

.

Moreover, since ϕ∗(−ϵ) = − ϵ+log(1−ϵ)
2 = 1

2

∑
k≥2

ϵk

k ≥ 1
2

∑
k≥2(−1)k ϵ

k

k = ϕ∗(ϵ),

P
(
Z ≤ d(1 − ϵ)

)
≤ exp(−dϕ∗(ϵ)) and since ϕ∗(−ϵ) = − ϵ+log(1−ϵ)

2 ≥ ϵ2/4,

P
(
Z ≤ d(1 − ϵ)

)
≤ exp

(
−

dϵ2

4

)
.

Note: the Laurent-Massart inequality states that for every u > 0,

P
(
Z ≥ d + 2

√
du + 2u

)
≤ exp

(
− u
)
.

It can be deduced from the previous bound by noting that for every x > 0

ϕ
∗(2√x + 2x

)
= x +

1

2

(
2
√
x − log

(
1 + 2

√
x +

(
2
√
x
)2

2

))

≥ x +
1

2

(
2
√
x − log

(
exp(2

√
x)
))

= x , and

P
(
Z ≥ d +2

√
du+2u

)
= P
(

1
d

∑d
i=1(U

2
i − 1) ≥ 2

√
u
d +2 u

d ) ≤ exp(−dϕ∗(2
√

u
d +2 u

d )) ≤ e−u .

The proof of Laurent and Massart (which takes elements from Birgé and Massart 1998) is a bit different: they note that

ϕ(λ) = −
1

2
log(1 − 2λ) − λ =

∞∑
k=2

(2λ)k

2k
= λ2

∞∑
ℓ=0

4(2λ)ℓ

2(ℓ + 2)
≤ λ

2
∞∑
ℓ=0

(2λ)ℓ =
λ2

1 − 2λ
, and deduce that

ϕ
∗(x) ≥ ψ

∗(x) = sup
λ
λx −

λ2

1 − 2λ
=

x + 1 −
√

2x + 1

2
, while x > 0 and ψ∗(x) = u implies x = 2

√
u + 2u. Also note in

passing that by Pollard’s trick ϕ∗(x) ≥ ψ∗(x) ≥ x2

4
(
1+ 2x

3

)3/2 . 10



Beyond linear methods:

auto-encoders



Auto-encoders: neural networks emulating identity

encoder dec
ode

r

x ∈ Rp

E(x) ∈ Rd

D
(
E(x)

)
∈ Rp

x0 = x

xi+1 = σ
(
Wi xi

)
θ = (W0,W1, . . . )

Minimize reconstruction error

min
D,E

1

n

n∑
i=1

∥∥∥xi−D
(
E (xi )

)∥∥∥2
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