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Dimensionality reduction

-
X1

e Data: X = : € Mpp(R), p> 1.

xT

n
e Dimensionality reduction: replace x; with y; = Wkx;, where
W e Mdyp(R), d < p.
e Hopefully, we do not loose too much by replacing x; by y;.
2 approaches:
e Quasi-invertibility: there exists a recovering matrix U € M, 4(R)

such that for all i € {1,...,n},
X = Uyi = x; .
e More modest goal: distance-preserving property
Vi<ij<n, yi—yll=lx—xll

e Neural networks permit to go beyond linear encoders/decoders.



Dimensionality reduction: PCA



PCA

PCA aims at finding the compression matrix W and the recovering
matrix U such that the total squared distance between the original and
the recovered vectors is minimal:

i — UWxi||” .
e BT S U]

Property. A solution (W, U) is such that UTU = Iy and W = UT.

Proof. Let W € Mg, ,(R), U € M, 4(R), and let R = {UWx : x € RP}. dim(R) < d, and we
can assume that dim(R) = d. Let V = ( v ‘ o ‘ Vg ) € M, q(R) be an orthogonal basis of
R, hence V'V = I; and for every X € R there exists y € RY such that % = Vy. Hence, for every
x € RP there exists y such that UWx = Vy and
2 2 2 T\,T 2 2 T\, T 2
lIx = UWKI" = lIx = Vy[I” = [IxII” =2y " V' x + IVy[l” = [IxII” =2y Vix + Iyl
=<+ lly = VxI? = x" W > Ix]? = xT W Tx = [Ix — v x])?

with equality iff y = V7 x, and thus the pair (W, U) is never better than (VT V) for each point

X;, even more so for their sum.



The PCA solution

Corollary: the optimization problem can be rewritten

arg min Z Hx, UUTx,-H2 = arg min Z ||x, — HUUTX,‘H2

UeM, 4(R):UTU=1ly 5 UEM, 4(R):UTU=ly "5

uuT
pon BT ,EH Al

n

= arg max ZTr (UTX,-X,-TU)
UGMp,d(R):UTU:/d il

n
= arg max Tr UTZXIX,'TU 3
UeUeM, 4(R):UT U=y i=1

Let A=Y"", xix;", so that the criterion to maximize is Tr (UT AU).
Note that if U = (u1]. .. |uq), Tr (UT L XiX; U) >S9  ul Au;: the case d = 1 is obvious.

Let A= VDV be its spectral decomposition: D is diagonal, with
Dig>-->Dpp>0and VIV =WT=],



Solving PCA by SVD

Theorem Let A = Zle x,-x,-T, and let uy, ..., uy be the eigenvectors of
A corresponding to the d largest eigenvalues of A. Then the solution to
the PCA optimization problem is U = ( Uy ‘ ‘ Uy ) and W=UT".

Proof. Let U € M, 4(R) be such that UT U = Iy, and let B = VT U. Then VB = U, and
UTAU = B"VTVDVT VB = BT DB, hence

P d
Tr(UTAU)=>"D;; > B
j=1 i=1

Since BB = UTwWTU = I, the columns of B are orthonormal and ij’zl 7:1 Bf,. =d.

In addition, completing the columns of B to an orthonormal basis of RP one gets B such that
BTB = Ip, and for every j one has 3°7 5’2 =1, hence E ;<L

Thus,
P

d
Tr (UTAU) < max DB =S "D;,
( )< peo P umugd; e Jg‘ ”

which can be reached if U is made of the d leading eigenvectors of A.



Interpretation: PCA aims at max-

imizing the projected variance.

Often, the quality of the result is

measured by the proportion of the
variance explained by the d princi-

d
Zi:l Di,i -4
pal components: S
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[Src: wikipedia.org]

In practice: if p > n, it is cheaper to diagonalize B = XXT € M,(R),
since if u is such that Bu = Au then for v = X Tu/|| X" u|| one has
Av = Av.

This remark is also at the basis of kernel PCA.


wikipedia.org

Dimensionality reduction:
random projections




Johnson-Lindenstrauss Lemma

Theorem

4 log(n)

Let x9,...,x, € RP, and let ¢ > 0. Then, for every d > —————,
e —log(1+¢)

there exists a matrix A € My ,(R) such that

vi<i<i<n (1ol < [JAx— Al < 1+ x5

Remark 1: d is independent of p (!)

Remark 1: on the dependence on ¢

4log(n) 8log(n) €\?2
eflog(1+e)§ €2 (1+ ) '

Remark 2: how to find such a matrix A?
4log(n) + 2log(1/9)
e —log(l+¢)
with entries A; ; XN (0, %) satisfies the lemma is larger than 1 —§.

For every d >

, the probability that a random matrix



Proof of the Johnson-Lindenstrauss Lemma

Method: (constructive) probabilistic method: we choose A;j ~ A/ (0, 1). Let

yeRPand Y =Ay. ThenV1< k<d, Yy = ZA”WNN( Hde).
=i

Hence E[||Y||°] = |ly||>. Besides, by the deviation bound for the x*
distribution given in the next slide,

POW%NHMHﬁ—P@:CGW>zﬂLHOSWMcw&DSi
k=1

llyll
. 1
and similarly P( | Y]> < (1 =€)yl ) < exp (—dg¢™(e)) < R
Applying this result to all y;; = x; — xj, 1 < i < j < n, we obtain the
conclusion by the union bound:

( U {lla6s =)l ¢ [O—GM—MIO+QM—&WH>

1<i<j<n

n(n—1)

< <1,

and hence there exists at least a matrix A for which the lemma holds.



Deviations of the Y2 distribution: rate func

Lemma

If U~ N(0,1) and X = U? — 1, then

x — log(1 + x) - x2
T

¢*(x) =supAx — log E [eAX] =
A

Proof: For every A < 1/2,

-

2 1-2))u?
E[e’\x] = i e’\(”271)e77du: ¢ /ef( 2 ) du:ef’\é .
V2r Jr V2r Jr V1—2X\

Hence ¢(\) = log E [eAX] = —Llog(1 — 2)\) — X. The concave function X — Ax — ¢(A) is

maximized at A\* s.t. x = ¢'(A*) = 25+ — 1, thatisat A" = 3 (1 - ﬁ) = s Hence

e z oy _ X —log(1+x)

8700 = A"x — p(x") = TER

The last inequality is obtained by "Pollard’s trick” applied to g(x) = x — log(1 + x): since
g(0) = g’(0) = 0 and since g’’/(x) = 1/(1 + x)? is convex, by Jensen’s inequality

%ﬁﬂ = ./01 g"(sx)2(1 — s)ds > g” (x /015 2(1 — 5)d5> =47 (g) ]



Deviations of the x?(d) distribution

dist

By Chernoff's method, if Z ~ x2(d) =" U2 + - - - + U2 where U; % N/(0,1):

2
P(Z > d(1+€)) <exp(—dp*(e)) < exp <774 (ft 5)2>
3

Moreover, since ¢*(—¢) = — E1=9 — 157 €0 > L5 (~1)F g = ¢7(e),
P(Z < d(1—¢€)) < exp(—dp*(c)) and since ¢*(—¢) = 7%(1_6) > /4,
P(Z <d(1—¢€)) <exp <7dT€2>
Note: the Laurent-Massart inequality states that for every u > 0,
P(Z > d+2Vdu+2u) <exp(—u) .

It can be deduced from the previous bound by noting that for every x > 0
1 2%)?
" (2vx +2x) = x + 5 <2f—|og <1+2\/§+ @))

> x+ %(2f — log (exp(2x/?))) = x,and

P(Z > d+2Vdu+2u) =P(3 30 (U7 —1) > 2/Z+24) < exp(—dg*(2,/T +24)) < e "

The proof of Laurent and Massart (which takes elements from Birgé and Massart 1998) is a bit different: they note that

1 o (ax)k o 42x)t > A2
H(A) = ——log(1 —2x) — A= > T = »? — <Ny enf = ., and deduce that
2 = 2k i=h2Ae+2) = 1—2x
2
A x+1— 2 +1
¢™(x) > ¥ (x) = sup Ax — = ——  whilex > 0and 9 *(x) = uimplies x = 2y/u + 2u. Also note in
X 1—2x 2

2

B 10
a(14+2¢)%/?

passing that by Pollard’s trick ¢™ (x) > ™ (x) >



Beyond linear methods:
auto-encoders




Auto-encoders: neural networks emulating identity

Xo = X
Xip1 = o (Wi x;)
6= (Wo, Wi, ...)

NN
N7
]

x€R’ D(E(x)) € R

Minimize reconstruction error

11
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