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PAC learning



PAC learnability: “probably approximately correct”

Definition

A hypothesis class H is PAC learnable if there exists a function

nH : (0, 1)2 → N and a learning algorithm S 7→ ĥn such that for every

ϵ, δ ∈ (0, 1), for every distribution DX on X and for every labelling

function f : X → {0, 1}, if the realizable assumption holds with respect

to H,DX , f then when S =
(
(X1, f (X1)), . . . , (Xn, f (Xn)

)
with

(Xi )1≤i≤n
iid∼ DX ,

P
(
L(DX ,f )

(
ĥn
)
≥ ϵ
)
≤ δ

for all n ≥ nH(ϵ, δ).

The smallest possible function nH is called the sample complexity of

learning H.

Remark: Valiant’s PAC requires also sample complexity and running time

polynomial in 1/ϵ and 1/δ.
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Finite hypothese classes are PAC-learnable

The sample complexity of finite hypothese classes in the realizable case is

smaller than
log |H|

δ

ϵ
:

Theorem

Let H be a finite hypothesis class. Let ϵ, δ ∈ (0, 1) and let m be an

integer that satisfies

n ≥
log |H|

δ

ϵ
.

Then, for any labeling function f and for any distribution DX on X ,

under the realizability assumption, with probability at least 1− δ over

the choice of iid sample S of size m, any ERM hypothesis ĥn is such

that

L(DX ,f )(ĥn) ≤ ϵ .
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Proof

The realizability assumption implies that an ERM ĥS has empirical risk

LS
(
ĥS
)
= 0. Hence,

P
(
L
(
ĥS
)
≥ ϵ
)
= D⊗n

X

({
S ∈ X n : ∃h ∈ H, LS(h) = 0 and LD(h) ≥ ϵ

})
= D⊗n

X

 ⋃
h:LD (h)≥ϵ

Sh

 where Sh =
{
S ∈ X n : Ls(h) = 0

}
≤

∑
h:LD (h)≥ϵ

D⊗n
X

(
Sh
)

=
∑

h:LD (h)≥ϵ

n∏
i=1

DX

({
x ∈ X : h(x) = f (x)

})︸ ︷︷ ︸
=1−LD (h)≤1−ϵ

≤
∑

h:L(DX ,f )(h)≥ϵ

n∏
i=1

(1− ϵ) ≤
∣∣H∣∣(1− ϵ)n ≤

∣∣H∣∣ exp(−nϵ) .

This quantity is smaller than δ for n ≥
log |H|

δ

ϵ
.
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Agnostic PAC learnability

Definition

A hypothesis class H is agnostic PAC learnable if there exists a function

nH : (0, 1)2 → N and a learning algorithm S 7→ ĥn such that for every

ϵ, δ ∈ (0, 1), for every distribution D on X × Y when

S =
(
(X1,Y1), . . . , (Xn,Yn)

) iid∼ D,

P
(
LD
(
ĥn
)
≥ min

h′∈H
LD(h

′) + ϵ
)
≤ δ

for all m ≥ nH(ϵ, δ).

The smallest possible function nH is called the sample complexity of

learning H.

If the realizable assumption holds, boils down to PAC learnability.

Otherwise, recall that the best Bayes classifier has a risk not larger than

minh′∈H LD(h
′).
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Learning via uniform convergence

Definition

A training set S is called ϵ-representative (wrt domain X × Y,

hypothese class H, loss function l and distribution D) if

∀h ∈ H,
∣∣LS(h)− LD(h)

∣∣ ≤ ϵ .

Lemma

If S is ϵ/2-representative, then any ERM ĥn defined by

ĥn ∈ argminh∈H LS(h) satisfies:

LD
(
ĥn
)
≤ min

h∈H
LD(h) + ϵ .

Proof: for every h ∈ H,

LD
(
ĥn
)
≤ LS

(
ĥn
)
+

ϵ

2
≤ LS

(
h
)
+

ϵ

2
≤ LD

(
h
)
+

ϵ

2
+

ϵ

2
.
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Uniform Convergence Property

Definition

A hypothesis class H has the uniform convergence property (wrt X ×Y
and l) if there exists a function nUCH : (0, 1)2 → N such that for every

ϵ, δ ∈ (0, 1) and for every distribution D over X × Y, a sample

S =
(
(X1,Y1), . . . , (Xn,Yn)

) iid∼ D of size m ≥ nUCH (ϵ, δ) has probability

at least 1− δ to be ϵ-representative.

Corollary

If H has the uniform convergence property with a function nUCH , then H
is agnostically PAC learnable with a sample complexity

nH(ϵ, δ) ≤ nUCH
(
ϵ
2 , δ
)
. Furthermore, the ERM is a successful PAC

learner for H.
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Finite classes are agnostically PAC-learnable

Theorem

Let H be a finite hypothesis class. Then H enjoys the uniform

convergence property with sample complexity

nUCH (ϵ, δ) ≤

⌈
log 2|H|

δ

2ϵ2

⌉
.

Moreover, H is agnostically PAC learnable using an ERM algorithm

with sample complexity

nH(ϵ, δ) ≤ 2nUCH

( ϵ
2
, δ
)
≤

⌈
2 log 2|H|

δ

ϵ2

⌉
.

Proof: Hoeffding’s inequality and the union bound.
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No-Free-Lunch theorems: when

learning is not possible



The No-Free-Lunch theorem

Theorem

Let A be any learning algorithm for binary classification over a domain

X . If the training set size is m ≤ |X |/2, then there exists a distribution

D over X × {0, 1} such that:

• there exists a function f : X → {0, 1} with LD(f ) = 0;

• with probability at least 1/7 over the choice of S ∼ D⊗n,

LD
(
A(S)

)
≥ 1

8
.

Note that the ERM over H = {f }, or over any set H such that

m ≥ 8 log(7|H|/6), is a successful learner in that setting.
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Proof

Let n ∈ N and A :
(
X × {0, 1}

)n → {0, 1}X be a learning algorithm. By assumption, there exists C ⊂ X of size |C| ≥ 2n. Let

F = {0, 1}C , and for every f ∈ F let Df ∈ M1
(
X × {0, 1}

)
be defined by: Df

(
{x, y}

)
=

 1
2n

if y = f (x) ,

0 otherwise.

For every f ∈ F , the marginal distribution of X under Df is U(C), and the conditional distribution of Y given X is δf (X ). Hence,

(X1, . . . , Xn) ∼ U(Cn). For every sX ∈ Cn , define sfX =
(
x, f (x)

)
x∈sX

.

We will prove that max
f∈F

E
S∼D

⊗n
f

[
LDf

(
A(S)

)]
≥

1

4
, which is sufficient: if P(0 ≤ Z ≤ 1) = 1 and E[Z ] ≥ 1

4
, then

P
(
Z ≥ 1

8

)
≥ 1

7
as 1

4
≤ E[Z ] ≤ 1

8
P
(
Z < 1

8

)
+ P (Z ≥ 1/8) = 1

8
+ 7

8
P
(
Z ≥ 1

8

)
.

max
f∈F

E
S∼D

⊗n
f

[
LDf

(
A(S)

)]
≥

1

|F|

∑
f∈F

E
S∼D

⊗n
f

[
LDf

(
A(S)

)]
=

1

|F|

∑
f∈F

1∣∣Cn
∣∣ ∑
sX∈Cn

LDf

(
A(sfX )

)

=
1∣∣Cn
∣∣ ∑
sX∈Cn

1

|F|

∑
f∈F

LDf

(
A(sfX )

)
≥ min

sX∈Cn

1

|F|

∑
f∈F

LDf

(
A(sfX )

)
.

For every sX ∈ Cn , observe that

1

|F|

∑
f∈F

LDf

(
A(sfX )

)
=

1

|F|

∑
f∈F

1

|C|

∑
x∈C

1
{
A(sfX )(x) ̸= f (x)

}

=
1

|C|

∑
x∈C

1

|F|

∑
f∈F

1
{
A(sfX )(x) ̸= f (x)

}
≥

1

|C|

∑
x∈C\sX

1

|F|

∑
f∈F

1
{
A(sfX )(x) ̸= f (x)

}

For x ∈ C \ sX and y ∈ {0, 1}, let Fy
x = {f ∈ F : f (x) = y}; for f ∈ F0

x let f̃x ∈ F1
x be s.t. ∀x′ ̸= x, f̃x (x

′) = f (x′).

∑
f∈F

1
{
A(sfX )(x) ̸= f (x)

}
=

∑
y∈{0,1}

∑
f∈Fy

x

1
{
A(sfX )(x) ̸= f (x)

}
=

∑
f∈F0

x

1
{
A(sfX )(x) ̸= f (x)

=0

}
+1
{
A(s

f̃x
X

)(x) ̸= f̃x (x)
=1

}
=

∣∣F∣∣
2

since, as x /∈ sX , s
f̃x
X

= sfX and hence A(s
f̃x
X

) = A(sfX ). The conclusion comes, as
∣∣C \ sX

∣∣ ≥ |C|/2. 10



Consequence: Curse of Dimensionality

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for

binary classification over a domain X = [0, 1]d . If the training set size is

n ≤ cd/2, then there exists a distribution D over [0, 1]d × {0, 1} such

that:

• η(x) is c-Lipschitz;

• the Bayes error of the distribution is 0;

• with probability at least 1/7 over the choice of S ∼ D⊗n,

LD
(
A(S)

)
≥ 1

8
.
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Uniform convergence for infinite

classes: VC dimension



Shattering

Definition

Let H be a class of functions X → {0, 1} and let

C = {c1, . . . , cn} ⊂ X . The restriction of H to C is the set of functions

C → {0, 1} that can be derived from H:

HC =
{
(c1, . . . , cn) →

(
h(c1), . . . , h(cn)

)
: h ∈ H

}
.

Shattering

A hypothesis class H shatters a finite set C ⊂ X if HC = {0, 1}C .

Example:

• H =
{
ha : a ∈ R}.

• H2
rec =

{
h(a1,b1,a2,b2) : a1 ≤ b1 and a2 ≤ b2

}
where

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2 ;

0 otherwise .
12



VC dimension

Definition

The Vapnik Chervonenkis dimension VCdim(H) of a hypothesis class H
is the maximal size of a set C ⊂ X that can be shattered by H. If H
can shatter sets of arbitrarily large size we say that VCdim(H) = ∞.

Theorem

Let H be a class of infinite VC-dimension. Then H is not

PAC-learnable.

Proof: for every training size m, there exists a set C of size 2m that is

shattered by H. By the NFL theorem, for every learning algorithm A

there exists a probability distribution D over X × {0, 1} such that

LD(h) = 0 but with probability at least 1/7 over the training set, we have

LD
(
A(S)

)
≥ 1/8.
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Shattering

Definition

Let H be a class of functions X → {0, 1} and let

C = {c1, . . . , cn} ⊂ X . The restriction of H to C is the set of functions

C → {0, 1} that can be derived from H:

HC =
{
(c1, . . . , cn) →

(
h(c1), . . . , h(cn)

)
: h ∈ H

}
.

Shattering

A hypothesis class H shatters a finite set C ⊂ X if HC = {0, 1}C .

Example:

• H =
{
1(−∞,a] : a ∈ R}.

• H2
rec =

{
1[a1,b1]×[a2,b2] : a1 ≤ b1 and a2 ≤ b2

}
.
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VC dimension

Definition

The Vapnik Chervonenkis dimension VCdim(H) of a hypothesis class H
is the maximal size of a set C ⊂ X that can be shattered by H. If H
can shatter sets of arbitrarily large size we say that VCdim(H) = ∞.

Theorem

Let H be a class of infinite VC-dimension. Then H is not

PAC-learnable.

Proof: for every training size n, there exists a set C of size 2n that is

shattered by H. By the NFL theorem, for every learning algorithm A

there exists a probability distribution D over X × {0, 1} such that

LD(h) = 0 but with probability at least 1/7 over the training set, we have

LD
(
A(S)

)
≥ 1/8.
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Fundamental theorem of PAC learning

Let H be a hypothesis class of functions from a domain X to {0, 1} and

let the loss function of 0− 1 loss. Then the following propositions are

equivalent:

1. H has the uniform convergence property,

2. any ERM rule is a successful agnostic PAC learner for H,

3. H is agnostic PAC learnable,

4. H is PAC learnable,

5. any ERM rule is a sucessful PAC learner for H,

6. H has finite VC-dimension.
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Fundamental theorem of PAC learning (quantitative version)

Let H be a hypothesis class of functions from a domain X to {0, 1} and

let the loss function of 0− 1 loss. Assume thatVCdim(H) < ∞. Then

there exist constants C1,C2 such that:

1. H has the uniform convergence property with sample complexity

C1
d + log(1/δ)

ϵ2
≤ nUCH (ϵ, δ) ≤ C2

d + log(1/δ)

ϵ2
,

2. H is agnostic PAC learnable with sample complexity

C1
d + log(1/δ)

ϵ2
≤ nH(ϵ, δ) ≤ C2

d + log(1/δ)

ϵ2
,

3. H is PAC learnable with sample complexity

C1
d + log(1/δ)

ϵ
≤ nUCH (ϵ, δ) ≤ C2

d log(1/ϵ) + log(1/δ)

ϵ
.
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Sauer’s lemma

Definition

Let H be a hypothesis class. Then the growth function of H, denoted

τH : N → N, is defined as the maximal number of different functions

that can be obtained by restricting H to a set of size m:

τH(n) = max
C⊂X :|C |=n

∣∣HC

∣∣ .
Note: if VCdim(H) = d , then for any m ≤ d we have τH(m) = 2n.

Sauer’s lemma

Let H be a hypothesis class with d = VCdim(H) < ∞. Then, for all

n ≥ d ,

τH(n) ≤
d∑

i=0

(
n

i

)
≤
(en
d

)d
.

Think of example: H =
{
1(−∞,a] : a ∈ R} with d = VCdim(H) = 1.
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Proof of Sauer’s lemma 1/2

In fact we prove the stronger claim: ∣∣HC
∣∣ ≤ ∣∣{B ⊂ C : H shatters B}

∣∣ ≤ d∑
i=0

(n
i

)
.

where the last inequality holds since no set of size larger than d is shattered by H. The proof is by induction.

n=1: The empty set is always considered to be shattered by H. Hence, either |HC | = 1 and d = 0, inequality 1 ≤ 1, or d ≥ 1 and

the inequality is 2 ≤ 2.

Induction: Let C = {c1, . . . , cn}, and let C′ = {c2, . . . , cn}. We note functions like vectors, and we define

Y0 =
{
(y2, . . . , yn) : (0, y2, . . . , yn) ∈ HC or (1, y2, . . . , yn) ∈ HC

}
, and

Y1 =
{
(y2, . . . , yn) : (0, y2, . . . , yn) ∈ HC and (1, y2, . . . , yn) ∈ HC

}
.

Then |HC | = |Y0| + |Y1|. Moreover, Y0 = HC′ and hence by the induction hypothesis:

|Y0| ≤
∣∣HC′

∣∣ ≤ ∣∣{B ⊂ C′ : H shatters B}
∣∣ = ∣∣{B ⊂ C : c1 /∈ B and H shatters B}

∣∣
Next, define

H′ =

{
h ∈ H : ∃h′ ∈ H s.t. ∀1 ≤ i ≤ n, h′(ci ) =

{
1 − h(c1) if i = 1

h(ci ) otherwise

}

Note that H′ shatters B ⊂ C′ iff H′ shatters B ∪ {c1}, and that Y1 = H′
C′ . Hence, by the induction hypothesis,

|Y1| =
∣∣H′

C′
∣∣ ≤ ∣∣{B ⊂ C′ : H′ shatters B}

∣∣ = ∣∣{B ⊂ C′ : H′ shatters B ∪ {c1}}
∣∣

=
∣∣{B ⊂ C : c1 ∈ B and H′ shatters B}

∣∣ ≤ ∣∣{B ⊂ C : c1 ∈ B and H shatters B}
∣∣ .

Overall,∣∣HC
∣∣ = |Y0| + |Y1| ≤

∣∣{B ⊂ C : c1 /∈ B and H shatters B}
∣∣ + ∣∣{B ⊂ C : c1 ∈ B and H shatters B}

∣∣ = ∣∣{B ⊂ C : H shatters B}
∣∣ .
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Proof of Sauer’s lemma 2/2

For the last inequality, one may observe that if n ≥ 2d , defining N ∼ B(n, 1/2), Chernoff’s

inequality and inequality log(u) ≥ (u − 1)/u yield

− log P(N ≤ d) ≥ n kl

(
d

n
,
1

2

)
≥ d log

2d

n
+ (n − d) log

2(n − d)

n

≥ n log(2) + d log
d

n
+ (n − d)

−d/n

(n − d)/n

= n log(2) + d log
d

en
,

and hence
d∑

i=0

(n
i

)
= 2nP(N ≤ d) ≤ exp

(
−d log

d

en

)
=

(
en

d

)d

.

Besides, for the case d ≤ n ≤ 2d , the inequality is obvious since (en/d)d ≥ 2n: indeed, function

f : x 7→ −x log(x/e) is increasing on [0, 1], and hence for all d ≤ n ≤ 2d :

d

n
log

en

d
= f (d/n) ≥ f (1/2) =

1

2
log(2e) ≥ log(2) ,

which implies (
en

d

)d

= exp

(
d log

en

d

)
≥ exp(n log(2)) = 2n .

Alternately, you may simply observe that for all n ≥ d ,(
d

n

)d d∑
i=0

(n
i

)
≤

d∑
i=0

(
d

n

)i (n
i

)
≤

n∑
i=0

(
d

n

)i (n
i

)
=

(
1 +

d

n

)n

≤ ed .
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Finite VC dimension implies Uniform Convergence

Theorem

Let H be a class and let τH be its growth function. Then, for every

distribution D dans for every δ ∈ (0, 1), with probability at least 1− δ

over the choice of the sample S ∼ D⊗n we have

sup
h∈H

∣∣LD(h)− LS(h)
∣∣ ≤ 1 +

√
log
(
2τH(2n)

)
δ
√
n/2

.

Note: this result is sufficient to prove that finite VC-dim =⇒ learnable,

but the dependency in δ is not correct at all: roughly speaking, the factor

1/δ can be replaced by log(1/δ).
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Proof: symmetrization and Rademacher complexity (1/2)

We consider the 0-1 loss ℓ(h, (x, y)) = 1{h(x) ̸= y}, or any [0, 1]−valued loss ℓ. We denote

Zi = (Xi ,Yi ), and observe that LD (h) = EZi
[ℓ(h, Zi )] = ES′ [LS′ (h)] if S

′ = Z ′
1 , . . . , Z

′
n denotes

another iid sample of D. Hence,

ES

[
sup
h∈H

∣∣LD (h) − LS (h)
∣∣] = ES

[
sup
h∈H

∣∣ES′ [LS′ (h)] − LS (h)
∣∣] = ES

[
sup
h∈H

∣∣∣ES′
[
LS′ (h) − LS (h)

]∣∣∣]
≤ ES

[
sup
h∈H

ES′
[∣∣LS′ (h) − LS (h)

∣∣]] ≤ ES

[
ES′
[
sup
h∈H

∣∣LS′ (h) − LS (h)
∣∣]]

= ES,S′

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

ℓ(h, Z ′
i ) − ℓ(h, Zi )

∣∣∣∣∣
]

= ES,S′

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)∣∣∣∣∣
]

for all σ ∈ {±1}n

= EΣES,S′

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)∣∣∣∣∣
]

if Σ ∼ U
(
{±1}n)

= ES,S′EΣ

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)∣∣∣∣∣
]

.

Now, for every fixed S =
{
(Xi ,Yi ) : 1 ≤ i ≤ n

}
and S′ =

{
(Xi ,Yi ) : 1 ≤ i ≤ n

}
, the number of

different
(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)
∈ [−1, 1] is bounded by τH(2n). Indeed, let

C = CS,S′ =
{
X1, . . . ,Xn} ∪ {X ′

1 , . . . ,X
′
n}. Then ∀σ ∈ {−1, 1}n,

sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)∣∣∣∣∣ = max

h∈HC

1

n

∣∣∣∣∣
n∑

i=1

σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)∣∣∣∣∣ .
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Proof: symmetrization and Rademacher complexity (2/2)

Moreover, for every h ∈ HC let Zh = 1
n

∑n
i=1 Σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)
. Then EΣ[Zh] = 0, each

summand belongs to [−1, 1] and by Hoeffding’s inequality, for every ϵ > 0:

PΣ

[
|Zh| ≥ ϵ

]
≤ 2 exp

(
−

nϵ2

2

)
.

Hence, by the union bound,

PΣ

[
max

h∈HC

|Zh| ≥ ϵ
]
≤ 2
∣∣HC

∣∣ exp(−
nϵ2

2

)
.

The following lemma permits to deduce that

EΣ

[
max

h∈HC

|Zh|
]
≤

1 +
√

log(|HC |)√
n/2

≤
1 +

√
log(2τH(2n))√

n/2
.

Hence,

ES

[
sup
h∈H

∣∣LD (h) − LS (h)
∣∣] ≤ ES,S′EΣ

[
sup
h∈H

1

n

∣∣∣∣∣
n∑

i=1

Σi

(
ℓ(h, Z ′

i ) − ℓ(h, Zi )
)∣∣∣∣∣
]

≤
1 +

√
log(2τH(2n))√

n/2
,

and we conclude by using Markov’s inequality (poor idea! Better: McDiarmid’s inequality).
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Technical Lemma

Lemma

Let a > 0, b ≥ 1, and let Z be a real-valued random variable such that

for all t ≥ 0, P(Z ≥ t) ≤ 2b exp

(
− t2

a2

)
. Then

E[Z ] ≤ a
(√

log(2b) + 1
)

.

Proof:

E[Z ] ≤
∫ ∞

0

P(Z ≥ t)dt ≤ a
√

log(2b) +

∫ ∞

a
√

log(2b)

2b exp

(
−

t2

a2

)
dt

≤ a
√

log(2b) + 2b

∫ ∞

a
√

log(2b)

t

a
√

log(2b)
exp

(
−

t2

a2

)
dt

= a
√

log(2b) +
2b

a
√

log(2b)
×

a2

2
exp

(
−
(
a
√

log(2b)
)2

a2

)

= a
√

log(2b) +
a

2
√

log(2b)

and for all b ≥ 1, 2
√

log(2b) ≥ 2
√

log(2) > 1.
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Application: Finite VC-dim classes are agnostically learnable

It suffices to prove that finite VC-dim implies the uniform convergence

property. From Sauer’s lemma, for all n ≥ d/2 we have

τH(2n) ≤ (2en/d)d . With the previous theorem, this yields that with

probability at least 1− δ:

sup
h∈H

∣∣LD(h)− LS(h)
∣∣ ≤ 1 +

√
d log

(
4en/d

)
δ
√

n/2
≤ 1

δ

√
8d log(4en/d)

n

as soon as
√
d log

(
4en/d

)
≥ 1. To ensure that this is at most ϵ, one

may choose

n ≥ 8d log(n)

(δϵ)2
+

8d log(4e/d)

(δϵ)2
.

By the following lemma, it is sufficient that

n ≥
32d log

(
4d

(δϵ)2

)
(δϵ)2

+
16d log

(
4e
d

)
(δϵ)2

.
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Technical Lemma

Lemma

Let a > 0. Then

x ≥ 2a log(a) =⇒ x ≥ a log(x) .

Proof: For a ≤ e, true for every x > 0. Otherwise, for a ≥
√
e we have

2a log(a) ≥ a and thus for every t ≥ 2a log(a), as f : t 7→ t − a log(t) is

increasing on [a,∞), f (t) ≥ f (2a log(a)) = a log(a)− a log(2 log(a)) ≥ 0,

since for every a > 0 it holds that a ≥ 2 log(a).

Lemma

Let a ≥ 1, b > 0. Then

x ≥ 4a log(2a) + 2b =⇒ x ≥ a log(x) + b .

Proof: It suffices to check that x ≥ 2a log(x) (given by the above

lemma) and that x ≥ 2b (obvious since 4a log(2a) ≥ 0). 29



More on Chernoff’s method
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Chernoff’s method for the Poisson distribution

Let µ > 0 and let X ∼ P(µ). Then

∀x ≥ µ, P(X ≥ x) ≤ exp

(
−
(
x ln

x

µ
− (x − µ)

))
∀ϵ ≥ 0, P(X ≥ µ+ ϵ) ≤ exp

(
−µφ∗

(
ϵ

µ

))
and P(X ≤ µ− ϵ) ≤ exp

(
−µφ∗

(
ϵ

µ

))
≤ exp

(
− ϵ2

2µ

)
,

where φ∗(u) = (1 + u) ln(1 + u)− u =
u2

2

∫ 1

0

1

1 + tu
2(1− t)dt.

Observe that KL(P(x),P(µ)) = x ln x
µ − (x − µ).

Left tail: For u < 0, φ∗(u) ≥ u2

2 and

P

(
X ≤ µ−

√
2µ ln

1

δ

)
≤ δ .
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Proof

The two bounds are equivalent, for x = µ+ ϵ. The first one is obtained

by remarking that for all λ ∈ R,

E
[
eλX

]
=

∞∑
k=0

e−µµ
k

k
eλk = e−µeµe

λ

and hence

P(X ≥ x) ≤
E[
[
eλX

]
eλx

= exp
(
−
(
λx − µ

(
eλ − 1

)))
,

which yields the result for λ = ln x
µ .

Alternatively, lnE
[
eλ(X−µ)

]
= µφ(λ) with φ(λ)

△
= eλ − λ− 1, and

sup
λ>0

λϵ− µφ(λ) = µφ∗
(
ϵ

µ

)
with φ∗(u) = (1 + u) ln(1 + u)− u = sup

λ>0
λu − φ(λ).
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Poisson right tails

φ(λ) = φ1(λ) = φ2(λ) = use φ1 h(λ) =

eλ − λ − 1 Taylor λ2

2
(
1−λ

3

) = 9h
(
λ
3

)
4h∗

(
−λ

2

)
λ2

2(1−λ)

↓ compute ↓ use h∗ ↑ compute(h∗)∗

φ∗(u) = φ∗
1 (u) = ln(1 + u) ≥ φ∗

2 (u) = differentiate twice h∗(u) =

(1 + u) ln(1 + u) − u 9h∗
(
u
3

)
u

1+ u
2

u2

2+u
= 4h

(
− u

2

)
φ∗ − h∗ ≥ 0 1 + u −

√
1 + 2u

↓ use (h∗)−1 ↓ h∗(
√

2x + x) = x

(φ∗)−1(x) (φ∗
1 )−1(x) = (φ∗

2 )−1(x) (h∗)−1(x)√
2x + x

3
φ∗
2 (

√
2x + x) ≥ x

√
2x + x

Optimal path:

1. (h∗)∗ = h and hence the formula for h∗

2. h∗(x +
√

2x) = x and hence the formula for (h∗)−1

3. φ(λ) ≤ φ1(λ) since eλ − λ − 1 = λ2

2

(
1 + λ

3
+ λ2

3×4
+ . . .

)
≤ λ2

2

(
1 + λ

3
+ λ2

32
+ . . .

)
=

λ2/2
1−λ/3

4. recognize φ1(λ) = 9h(λ/3) and hence φ∗
1 (u) = 9h∗(u/3)

5. hence (φ∗
1 )−1(x) = 3(h∗)−1(x/9) =

√
2x + x

3

hence

P
(
X ≥ µ +

√
2µ ln

1

δ
+

ln 1
δ

3

)
≤ δ .

Simpler but weaker bound (two proofs):

• For u > 0, φ∗(u) ≥ h∗(u)
△
= 1 + u −

√
1 + 2u and (φ∗)−1(x) ≤ (h∗)−1(x) =

√
2x + x

• (personal) for u > 0, ln(1 + u) ≥ u
1+u/2 and φ∗(u) ≥ (1+u)u−u(1+u/2)

1+u/2 = u2

2+u

△
= φ∗

2 (u).

Since φ∗
2 (

√
2x + x) = x 2+x+2

√
2x

2+x+
√

2x
≥ x , (φ∗)−1(x) ≤ (φ∗

2 )
−1(x) ≤

√
2x + x . 33
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The Log-Laplace function

Let X be a real-valued random variable with law PX , expectation µX and

variance σ2
X . λ 7→ E

[
eλX

]
is finite on an interval (λ, λ) and we assume

that it is non-empty, ie 0 ∈ (λ, λ). Chernoff’s bound states that for

x ≥ µ,

P(X ≥ x) ≤ exp

(
− sup

λ>0
λx − φX (λ)

)
,

where φX (λ)
△
= lnE

[
eλX

]
. For λ ∈ (λ, λ),

• φ′
X (λ) = µX (λ)

△
= Eλ[X ], where

dPλ
X

dPX
(x) =

eλx

E [eλX ]
.

• φ′′
X (λ) = µ′

X (λ) = σ2
X (λ)

△
= Var(Pλ

X ) ≥ 0,

• µX : (λ, λ) → (x , x) ⊂ Supp(X ) is increasing and C∞, with

µX (0) = µX .

• φX (λ) =

∫ λ

0

σ2
X (ℓ)(λ− ℓ) dℓ =

λ2

2

∫ 1

0

σ2
X (λt) 2(1− t) dt .

35



Its Fenchel-Legendre transform

For all x ∈ (µ, x), since φX is smooth and convex

φ⋆
X (x) = supλ>0 λx − φX (λ) = λX (x)x − φX

(
λX (x)

)
, where

λX (x) = µ−1
X (x).

• φ⋆
X
′(x) = λ(x) + xλ′

X (x)− λ′
X (x)φ

′
X

(
λ(x)

)
= λX (x) = µ−1

X (x) .

• φ⋆
X
′′(x) = 1

µ′
X

(
λX (x)

) = 1

σ2
X

(
µ−1
X (x)

) .

φ⋆
X (x) =

∫ x

µ

x − u

σ2
X

(
µ−1
X (u)

) du =
(x − µ)2

2

∫ 1

0

2(1− t) dt

σ2
X

(
µ−1
X

(
µ+ t(x − µ)

)) .
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Example

If P(0 ≤ X ≤ 1), φX (λ) ≤ φµ(λ) = ln
(
1− µ+ µeλ

)
with equality iff

X ∼ B(µ), since by convexity of u 7→ eλu , ∀x ∈ [0, 1], eλx ≤ (1 − x) + xeλ.

Since for all λ, Pλ
X ([0, 1]) = 1, σ2

X (λ) ≤ 1/4 and φX (λ) ≤ λµ+ λ2

8 and

• The upper-bound on φX yields a lower bound on φX⋆:

φ⋆
X (µ+ ϵ) = sup

λ>0
λ(µ+ ϵ)− φX (λ) ≥ sup

λ>0
λϵ− λ2

8
= 2ϵ2

• The expression for φ⋆
X permits to re-derive it directly:

φ⋆
X (µ+ ϵ) =

ϵ2

2

∫ 1

0

2(1− t) dt

σ2
X

(
µ−1
X

(
µ+ tϵ

)) ≥ 2ϵ2 .
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Connection to KL divergence

Observe that for all λ ∈ (λ, λ), KL
(
Pλ
X ,PX

)
= λµX (λ)− φX (λ). Hence,

KL
(
P

λX (x)
X ,PX

)
= λX (x)µX (λX (x))︸ ︷︷ ︸

=x

−φX (λX (x)) = φ⋆
X (x) .

Besides KL
(
P

λX (x)
X ,PX

)
= inf

{
KL(Q,PX ) : EQ [X ] ≥ x

}
. Indeed, For

every Q ≪ P with EQ [X ] ≥ x ,

KL(Q,PX ) =

∫
R
log

(
dQ

dPX
(x)

)
dQ(x)

=

∫
R
log

(
dQ

dP
λX (x)
X

(x)
dP

λX (x)
X

dP
(x)

)
dQ(x)

= KL(Q,P
λX (x)
X ) +

∫
R
log

(
eλX (x)x

E[eλX (x)X ]

)
dQ(x)

= KL(Q,PλX (x)) + λX (x)EQ [X ]− log
(
E[eλX (x)X ]

)
≥ 0 + λX (x)x − φX (λX (x)) = KL(P

λX (x)
X ,P) .
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Case of a sum of independent variables

If X = X1 + · · ·+ Xn where the (Xi )i are independent, then

φX =
∑

i φXi , µX =
∑

i µXi

△
= nµ̄ and σ2

X =
∑

i σ
2
Xi
.

Besides,

φ⋆
X (nx) =

∫ nx

µX

nx − u

σ2
X

(
µ−1
X (u)

) du
= n

∫ x

µ̄

x − v

σ2
X

(
µ−1
X (u)

) dv .

Bennett’s inequality for Bernoullis: if ∀i ,∀λ > 0, σ2
Xi
(λ) ≤ µXi (λ) then

σ2
X

(
µ−1
X (v)

)
=
∑
i

σ2
Xi

(
µ−1
X (v)

)
≤
∑
i

µXi

(
µ−1
X (v)

)
= µX

(
µ−1
X (v)

)
= v

and

φ⋆
X (nx) ≥ n

∫ x

µ̄

x − v

v
dv = n

(
x ln

x

µ̄
− (x − µ̄)

)
or

φ⋆
X

(
n(µ̄+ ϵ)

)
≥ µ̄φ∗

(
ϵ

µ̄

)
φ∗(u) = (1 + u) ln(1 + u) − u = u2

2

∫ 1
0

2(1−t) dt
1+ut ≥ u2

2
1

1+u
∫ 1
0

2(1−t) dt
= u2

2
(
1+ u

3

) . 39



Bennett’s inequality: the other way

Bennett’s inequality for bounded variables

Let X1, . . . ,Xn be independent random variables with P(Xi ≤ 1) = M

and E[X 2
i ] ≤ σ2. Then, if µ̄ = (E[X1] + E[Xn])/n,

P(X̄n ≥ µ̄+ ϵ) ≤ exp

(
−nσ2

M2
φ∗
(
M ϵ

σ2

))
≤ exp

(
− n ϵ2

2
(
σ2 + Mϵ

3

)) .

Since for x > 0, (φ∗)−1(x) ≤
√
2x + x

3 ,

P

X ≥ µ+

√
2σ2 ln 1

δ

n
+

M ln 1
δ

3n

 ≤ δ .
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Proof

We first prove the result for M = 1. Since eu−u−1
u2/2 =

∫ 1

0
eut2(1− t)dt

increases with u, for all x ≤ 1 eλx − λx − 1 ≤ x2φ(λ) with

φ(λ) = eλ − λ− 1 and since E[X 2
i ] ≤ σ2:

lnE
[
eλ
(
Xi−E[Xi ]

)]
≤ ln

(
1 + λE[Xi ] + σ2φ(λ)

)
− λE[Xi ] ≤ σ2φ(λ) .

Consequently, if X = X1 + · · ·+ Xn then for all ϵ > 0

IX−E[X ](nϵ) = sup
λ>0

λϵ− σ2φ(λ) = σ2 sup
λ>0

λ
ϵ

σ2
− φ(λ) = σ2φ∗

( ϵ

σ2

)
and

P(X ≥ E[X ] + ϵ) ≤ exp
(
−σ2φ∗

( ϵ

σ2

))
≤ exp

(
− ϵ2

2
(
σ2 + ϵ

3

)) .

Finally, if M ̸= 1 apply the result to the Yi = Xi/M which have a

variance bounded by σ2/M2.
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Bernstein’s inequality can be more general

Theorem

If for all k ≥ 3,E[X k ] ≤ 1/2k!σ2bk−2, then for all λ ∈ (0, 1/b):

E
[
eλX

]
≤ exp

(
λ2σ2

2(1− λb)

)
.

Hence, if X = X1 + · · ·+ Xn where the (Xi ) are independent and

∀k ≥ 3,E[X k
i ] ≤ 1/2k!σ2

i b
k−2, then for every x > 0,

P(X > x) ≤ exp

(
− x2

2 (σ2 + xb)

)
with σ2 =

∑n
i=1 σ

2
i .

Proof: choose λ = x/(σ2 + xb)

Remark: Bennett’s condition is stronger since it implies

E[X k ] ≤ E[X 2bk−2] ≤ σ2bk−2.
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Appl: fast rates in binary classification under margin condition

• Binary classification on X with η(x) = P(Y = 1|X = x), finite hypothesis class H
• Bayes classifier h∗ with Bayes risk L∗

D , empirical risk minimizer ĥn ∈ arg minh∈H LS (h)

• Excess risk: ∀h ∈ H, LD (h) − L∗
D = E

[
|2η(X ) − 1|1

{
h(X ) ̸= h∗(X )

}
]

• Massart’s margin condition: |2η(X ) − 1| ≥ 2γ > 0 almost surely

• Then LD (h) − L∗
D ≥ 2γP

(
h(X ) ̸= h∗(X )

)
• But for all h ∈ H, since LD (h) = E

[
LS (h)

]
:

LD (h) − L∗
D = LD (h) − LS (h) + LS (h) − LS (h

∗) + LS (h
∗) − LD (h

∗)

= LS (h) − LS (h
∗)︸ ︷︷ ︸

≤ 0 for h = ĥn

+ LS (h
∗) − LS (h) − E

[
LS (h

∗) − LS (h)
]︸ ︷︷ ︸

△
=

1

n

n∑
i=1

Zi − E[Zi ]

where Zi = 1{h∗(Xi ) ̸= Yi} − 1{h(Xi ) ̸= Yi}
• Zi − E[Zi ] ≤ 2 and E[Z 2

i ] = P
(
h(Xi ) ̸= h∗(Xi )

)
≤ LD (h)−L∗D

2γ

• By Bernstein’s inequality, with probability ≥ 1 − δ/|H| one has

LD

(
ĥn
)
− L∗

D ≤
2 log |H|

δ

3n
+

√
2E[Z 2

1 ] ln
|H|
δ

n
≤

2 log |H|
δ

3n
+

√
(LD

(
ĥn
)
− L∗

D ) ln
|H|
δ

γn

• Lemma: if x ≤ 2α
3 +

√
αx
γ

△
= g(x) then x ≤ 2α

γ , since g(2α/γ) ≤ 2α/γ for γ ≤ 1/2

• Hence P
(
LD

(
ĥn
)
− L∗

D ≤
2 ln

|H|
δ

γn

)
≥ 1 − δ and nH(ϵ, δ) ≤

2 ln
|H|
δ

γϵ .

43



Application: estimating the

missing mass



Enigma

• Electro-mechanical

rotor cipher machines,

26 characters

• Invented at the end of

WW1 by Arthur

Scherbius

• Commercial use, then

German Army during

WW2

• First cracked by

Marian Rejewski in

the 1930s (Bomb),

then improved to

3. 10114 configurations

• Read Simon Singh,

The Code Book 44



Enigma

Src: http://enigma.louisedade.co.uk/
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Battle of the Atlantic

• Massively used by the

German Kriegsmarine and

Luftwaffe

• weakness: 3-letters setting to

initiate communication,

taken from the

Kenngruppenbuch

• Government Code and

Cypher School: Bletchley

Park (on the train line

between Cambridge and

Oxford)

• Colossus (first programmable

computers) in 1943

46



Estimating probabilities

• Discrete alphabet A.

• Unknown probability P on A

• Sample X1, . . . ,Xn of independent draws of P.

• Goal : use the sample estimate P(a) for all a ∈ A.

Natural idea:

P̂(a) =
N(a)

n
, where N(a) = #

{
i : Xi = a

}

47



: 43

Safari preparation
Observe animal sample

1 giraffe, 2 elephants, 3 zebras

Probability estimation?

Empirical frequency

3

Species Probability
giraffes 1/6

elephants 2/6
zebras 3/6

Problem?

[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]

47
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[Src: Alon Orlitsky, https://ic.epfl.ch/files/content/sites/ic/files/Inka/Orlitsky%20Talk%202016.pdf]
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Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick

mary read a different book

she read a book by cher

P(wi |wi−1) =
c(wi−1wi )∑
w c(wi−1w)

P(s) =
l+1∏
i=1

p(wi |wi−1)

P( john read a book )

= P(john|·) P(read |john) P(a|read) P(book|a) P(·|book)
= c(· john)∑

w c(· w)
c(john read)∑

w c(john w)
c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 1
3

1
1

2
3

1
2

1
2

≈ 0.06
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Bigram Model for NLP [Src: https://nlp.stanford.edu/~wcmac]

Learning set:
john read moby dick

mary read a different book

she read a book by cher

P(wi |wi−1) =
c(wi−1wi )∑
w c(wi−1w)

P(s) =
l+1∏
i=1

p(wi |wi−1)

P( cher read a book )

= P(cher |·) P(read |john) P(a|read) P(book|a) P(·|book)
= c(· cher)∑

w c(· w)
c(cher read)∑

w c(cher w)
c(reada)∑
w c(read w)

c(a book)∑
w c(a w)

c(book ·)∑
w c(book w)

= 0
3

0
1

2
3

1
2

1
2

= 0

=⇒ useless, the unseen must be treated correctly.
48
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Bayesian Approach: Laplace Estimator

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761)

Will the sun rise tomorrow?

P̂(a) =
N(a) + 1

n + |A|

• good for small alphabets and many samples

• very bad when lots of items seen once (ex: DNA sequences)

• |A| can be very large (or even infinite), but P concentrated on few

items

=⇒ not a satisfying solution to the problem
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Alan Turing Irving John Good

1912-1954

student of Godfrey Harold Hardy

in Cambridge

PhD from Princeton with Alonzo

Church

1916-2009

Graduated in Cambridge

Academic carrer in Bayesian statis-

tics in Manchester and then in the

University of Virginia (USA)
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Missing mass estimation

X1, . . . ,Xn independent draws of P ∈ M1(A).

On(x) =
n∑

m=1

1{Xm = x}

How to ’estimate’ the total mass of the unseen items

Rn =
∑
x∈A

P(x) 1{On(x) = 0} ?
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The Good-Turing Estimator

See [I.J. Good, 1953], credits idea to A. Turing

Idea: in order to estimate the mass of the unseen

Rn =
∑
x∈A

P(x) 1{On(x) = 0} ,

use the number of hapaxes = items seen only once (linguistic)

R̂n =
Un

n
, where Un =

∑
x∈A

1{On(x) = 1}

Lemma [Good ’53]: For every distribution P,

0 ≤ E
[
R̂n

]
− E

[
Rn

]
≤ 1

n

Completely non-parametric: no assumption on P
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Bias of the Good-Turing Estimator

E
[
R̂n

]
− E

[
Rn

]
=

1

n

∑
x∈A

P
(
On(x) = 1

)
−
∑
x∈A

P(x) P
(
On(x) = 0

)
=

1

n

∑
x∈A

n P(x)
(
1− P(x)

)n−1 −
∑
x∈A

P(x)
(
1− P(x)

)n
=
∑
x∈A

P(x)
(
1− P(x)

)n−1
(
1−

(
1− P(x)

))
=

1

n

∑
x∈A

P(x)× n P(x)
(
1− P(x)

)n−1

=
1

n

∑
x∈A

P(x) P
(
On(x) = 1

)
=

1

n
E

[∑
x∈A

P(x)1
{
On(x) = 1

}]
∈
[
0,

1

n

]
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Jackknife interpretation

If we had additionnal samples, we would estimate Rn by the proportion of

unseen elements in Xn+1,Xn+2, . . .

We have no additionnal samples, but we keep every observation as a

”test”, pretending that the samples was made of everything else:

R̂n =
1

n

n∑
i=1

1
{
xi /∈ {xj : j ̸= i}

}
=

1

n

∑
i=1

1
{
On(xi ) = 1

}
=

1

n

∑
x∈A

1
{
On(x) = 1

}
Remark: jackknife is a resampling method, related to bootstrap and

crossvalidation (of great use in Machine Learning).
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Deviation Bounds

Proposition: With probability at least 1− δ for every P,

R̂n −
1

n
− (1 +

√
2)

√
log(4/δ)

n
≤ Rn ≤ R̂n + (1 +

√
2)

√
log(4/δ)

n

See [McAllester and Schapire ’00, McAllester and Ortiz ’03]:

• deviations of R̂n: McDiarmid’s inequality

• deviations of Rn: negative association

Other tool: Poissonization [see Optimal Probability Estimation with Applications to Prediction and Classification,

by Acharya, Jafarpour, Orlitsky Suresh, Colt 2013]
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References For Negative Association

Negative Association - Definition, Properties, and Applications, by David

Wajc https:

//www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf

Balls and Bins:A Study in Negative Dependence, by Balls and Bins:A

Study in Negative Dependence,

https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf
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Definition

Intuitively: X1, . . . ,Xn are negatively associated when, if a subset I a

variables is ”high”, a disjoint subset J has to be ”low”.

Definition

A set of real-valued random variables X1,X2, ...,Xn is said to be

negatively associated (NA) if for any two disjoint index sets I , J ⊂ [n]

and two functions f , g both monotone increasing or both monotone

decreasing, it holds

E
[
f (Xi : i ∈ I ) g

(
Xj : j ∈ J

)]
≤ E

[
f (Xi : i ∈ I )

]
E
[
g
(
Xj : j ∈ J

)]

NB: f is monotone increasing if ∀i ∈ I , xi ≤ x ′i implies f (x) ≤ f (x ′).
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First properties

Let X1,X2, ...,Xn be NA.

• For all i ̸= j , E[XiXj ] ≤ E[Xi ]E[Xj ] i.e. Cov(Xi ,Xj) ≤ 0.

• For any disjoints subsets I , J ⊂ [n] and all x1, . . . , xn,

P
(
Xi ≥ xi : i ∈ I ∪ J

)
≤ P

(
Xi ≥ xi : i ∈ I

)
P
(
Xj ≥ xj : j ∈ J

)
and

P
(
Xi ≤ xi : i ∈ I ∪ J

)
≤ P

(
Xi ≤ xi : i ∈ I

)
P
(
Xj ≤ xj : j ∈ J

)
• For all monotone increasing functions f1, . . . , fk depending on

disjoint subsets of the (Xi )i ,

E
[∏

j

fj(X )
]
≤
∏
j

E
[
fj(X )

]
• For all x1, . . . , xn,

P

(⋂
i

{
Xi ≥ xi

)
≤
∏
i

P
(
Xi ≥ xi

)
and P

(⋂
i

{
Xi ≤ xi

})
≤
∏
i

P
(
Xi ≤ xi

)
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Consequence: NA concentrates better than independent

For Chernoff’s method (which relies on exponential moments), NA

variables can simply be treated as independent!

In particular:

Chernoff-Hoeffding bound

Let X1, . . . ,Xn be NA random variables with Xi ∈ [ai , bi ] a.s. Then

S = X1 + · · ·+ Xn satifies Hoeffding’s tail bound: for all t ≥ 0,

P
[∣∣S − E [S ]

∣∣ ≥ t
]
≤ 2 exp

(
− 2t2∑

i (bi − ai )2

)
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Examples of NA variables

• Independent variables...

• 0-1 principle If X1, . . .Xn are Bernoulli variables and
∑

i Xi ≤ 1 a.s.,

then they are NA.
Let f and g are monotically increasing and depend on disjoint subsets of indices. E[f (X )g(X )] ≤
E[f (X )]E[g(X )] ⇐⇒ E[f̃ (X )g̃(X )] ≤ E[f̃ (X )]E[g̃(X )], where f̃ (X ) = f (X )− f (⃗0) and g̃(X ) = g(X )− g (⃗0).

But f̃ (X )g̃(X ) = 0 always, while f̃ (X ) ≥ 0 and g̃(X ) ≥ 0.

• Permutation distributions If x1 ≤ · · · ≤ xn and if X1, . . . ,Xn are

random variables such that
{
X1, . . . ,Xn

}
=
{
x1, . . . , xn

}
a.s., with

all assignments equally likely, then they are NA.

• Sampling without replacement If X1, . . . ,Xn are sample without

replacement from {x1, . . . , xN} (with N ≥ n), then they are NA.
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Closure properties

Union

If the {Xi : i ∈ I} are NA, if {Yj : j ∈ J} are NA, and if the {Xi} are

independent from the {Yj}, then the {Xi ,Yj : i ∈ I , j ∈ J} are NA.

Concordant monotone

If the {Xi : i ∈ I} are NA, if f1, . . . , fk : Rn → R are all monotonically

increasing and depend on different subsets of [n], then{
fj(X ) : 1 ≤ j ≤ k

}
are NA.

The same holds if f1, . . . , fk : Rn → R are all monotonically decreasing.
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Bins and balls

The standard bins and balls process consists of m balls and n bins.

• each ball b is independently placed in bin i with probability pb,i :

Xb
indep∼ Multi(pb,·).

• occupancy number Bi =
∑n

b=1 1{Xb = i} number of balls in bin i .

In particular
n∑

i=1

Bi = m.

Prop: The Bi are NA.

Let Xb,i = 1{ball b fell into bin i}. By the 0 − 1 principle, for all 1 ≤ b ≤ m the {Xb,i : 1 ≤ i ≤ n} are NA. By independence and

closure under union, so are the {Xb,i : 1 ≤ b ≤ m, 1 ≤ i ≤ n}. By closure under concordant monotone functions, the Bi =
n∑

b=1

Xb,i

are NA.

Consequence: Concentration of the number N =
∑

i 1{Bi = 0} of

empty bins, since the (1{Bi = 0})i are NA.

If pb,i = 1/n, then the number N of empty bins satisfies

N = n e−m/n ± O
(√

n e−m/n
)
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Deviations of the missing mass Rn

Rn is better concentrated than Sn =
∑

x∈A P(x)Bx where the

Bx ∼ B
((

(1− P(x)
)n)

are independent.

Hence

Var [Rn] ≤
∑
x

P(x)2e−nP(x) ≤
∑
x

P(x) max
0≤u≤1

u e−nu =
1

ne

and

P
(
Rn ≥ E[Rn]− ϵ

)
≤ exp

(
−nϵ2

2e

)
.
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