PAC learning, No-Free-Lunch theorem, uniform convergence, advanced Chernoff, application to missing mass estimation

Master 2 Mathématiques Avancées

Aurélien Garivier 2024-2025

- 1. PAC learning
- 2. No-Free-Lunch theorems: when learning is not possible
- 3. Uniform convergence for infinite classes: VC dimension
- 4. More on Chernoff's method
- 5. Application: estimating the missing mass

PAC learning

Definition

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $n_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm $S \mapsto \hat{h}_n$ such that for every $\epsilon, \delta \in (0,1)$, for every distribution D_X on \mathcal{X} and for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathcal{H}, D_X, f then when $S = ((X_1, f(X_1)), \dots, (X_n, f(X_n)))$ with $(X_i)_{1 \le i \le n} \stackrel{iid}{\sim} D_X,$ $\mathbb{P}(L_{(D_X, f)}(\hat{h}_n) \ge \epsilon) \le \delta$

for all $n \ge n_{\mathcal{H}}(\epsilon, \delta)$. The smallest possible function $n_{\mathcal{H}}$ is called the *sample complexity* of learning \mathcal{H} .

Remark: Valiant's PAC requires also sample complexity and running time polynomial in $1/\epsilon$ and $1/\delta.$

The sample complexity of finite hypothese classes in the realizable case is smaller than $\frac{\log \frac{|\mathcal{H}|}{\delta}}{\epsilon}$:

Theorem

Let \mathcal{H} be a finite hypothesis class. Let $\epsilon, \delta \in (0, 1)$ and let m be an integer that satisfies

$$n \geq rac{\log rac{|\mathcal{H}|}{\delta}}{\epsilon}$$
 .

Then, for any labeling function f and for any distribution D_X on \mathcal{X} , under the realizability assumption, with probability at least $1 - \delta$ over the choice of iid sample S of size m, any ERM hypothesis \hat{h}_n is such that

$$L_{(D_X,f)}(\hat{h}_n) \leq \epsilon$$
.

Proof

The realizability assumption implies that an ERM \hat{h}_S has empirical risk $L_S(\hat{h}_S) = 0$. Hence, $\mathbb{P}\left(L(\hat{h}_{\mathcal{S}}) \geq \epsilon\right) = D_X^{\otimes n} \Big(\left\{ \mathcal{S} \in \mathcal{X}^n : \exists h \in \mathcal{H}, L_{\mathcal{S}}(h) = 0 \text{ and } L_D(h) \geq \epsilon \right\} \Big)$ $= D_X^{\otimes n} \left(\bigcup_{h: L_n(h) > \epsilon} S_h \right) \quad \text{where } S_h = \left\{ S \in \mathcal{X}^n : L_s(h) = 0 \right\}$ $\leq \sum D_X^{\otimes n}(S_h)$ $h:L_D(h) \ge \epsilon$ $=\sum_{h:L_D(h)\geq\epsilon}\prod_{i=1}^n\underbrace{D_X\big(\big\{x\in\mathcal{X}:h(x)=f(x)\big\}\big)}_{=1-L_D(h)\leq 1-\epsilon}$ $\leq \sum \prod (1-\epsilon) \leq |\mathcal{H}|(1-\epsilon)^n \leq |\mathcal{H}| \exp(-n\epsilon)$. $h: L_{(D_{Y},f)}(h) \ge \epsilon i = 1$ This quantity is smaller than δ for $n \ge \frac{\log \frac{|\mathcal{H}|}{\delta}}{2}$.

Agnostic PAC learnability

Definition

A hypothesis class \mathcal{H} is *agnostic PAC learnable* if there exists a function $n_{\mathcal{H}} : (0,1)^2 \to \mathbb{N}$ and a learning algorithm $S \mapsto \hat{h}_n$ such that for every $\epsilon, \delta \in (0,1)$, for every distribution D on $\mathcal{X} \times \mathcal{Y}$ when $S = ((X_1, Y_1), \dots, (X_n, Y_n)) \stackrel{iid}{\sim} D$,

$$\mathbb{P}\Big(L_D(\hat{h}_n) \geq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon\Big) \leq \delta$$

for all $m \ge n_{\mathcal{H}}(\epsilon, \delta)$.

The smallest possible function $n_{\mathcal{H}}$ is called the *sample complexity* of learning \mathcal{H} .

If the realizable assumption holds, boils down to PAC learnability. Otherwise, recall that the best Bayes classifier has a risk not larger than $\min_{h' \in \mathcal{H}} L_D(h')$.

Learning via uniform convergence

Definition

A training set S is called ϵ -representative (wrt domain $\mathcal{X} \times \mathcal{Y}$, hypothese class \mathcal{H} , loss function I and distribution D) if

$$\forall h \in \mathcal{H}, \left| L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h) \right| \leq \epsilon$$
.

Lemma

If S is $\epsilon/2$ -representative, then any ERM \hat{h}_n defined by $\hat{h}_n \in \arg\min_{h \in \mathcal{H}} L_S(h)$ satisfies:

 $L_D(\hat{h}_n) \leq \min_{h \in \mathcal{H}} L_D(h) + \epsilon$.

Proof: for every $h \in \mathcal{H}$,

$$L_D(\hat{h}_n) \leq L_S(\hat{h}_n) + \frac{\epsilon}{2} \leq L_S(h) + \frac{\epsilon}{2} \leq L_D(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

Definition

A hypothesis class \mathcal{H} has the uniform convergence property (wrt $\mathcal{X} \times \mathcal{Y}$ and *I*) if there exists a function $n_{\mathcal{H}}^{UC} : (0,1)^2 \to \mathbb{N}$ such that for every $\epsilon, \delta \in (0,1)$ and for every distribution D over $\mathcal{X} \times \mathcal{Y}$, a sample $S = ((X_1, Y_1), \dots, (X_n, Y_n)) \stackrel{iid}{\sim} D$ of size $m \ge n_{\mathcal{H}}^{UC}(\epsilon, \delta)$ has probability at least $1 - \delta$ to be ϵ -representative.

Corollary

If \mathcal{H} has the uniform convergence property with a function $n_{\mathcal{H}}^{UC}$, then \mathcal{H} is agnostically PAC learnable with a sample complexity $n_{\mathcal{H}}(\epsilon, \delta) \leq n_{\mathcal{H}}^{UC}(\frac{\epsilon}{2}, \delta)$. Furthermore, the ERM is a successful PAC learner for \mathcal{H} .

Theorem

Let \mathcal{H} be a finite hypothesis class. Then \mathcal{H} enjoys the uniform convergence property with sample complexity

$$\eta_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq \left\lceil \frac{\log \frac{2|\mathcal{H}|}{\delta}}{2\epsilon^2} \right\rceil$$

Moreover, \mathcal{H} is agnostically PAC learnable using an ERM algorithm with sample complexity

$$n_{\mathcal{H}}(\epsilon, \delta) \leq 2n_{\mathcal{H}}^{UC}\left(rac{\epsilon}{2}, \delta
ight) \leq \left\lceil rac{2\lograc{2|\mathcal{H}|}{\delta}}{\epsilon^2}
ight
ceil$$

Proof: Hoeffding's inequality and the union bound.

No-Free-Lunch theorems: when learning is not possible

Theorem

Let A be any learning algorithm for binary classification over a domain \mathcal{X} . If the training set size is $m \leq |\mathcal{X}|/2$, then there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ such that:

- there exists a function $f : \mathcal{X} \to \{0, 1\}$ with $L_D(f) = 0$;
- with probability at least 1/7 over the choice of $S\sim \mathcal{D}^{\otimes n}$,

$$L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$$

Note that the ERM over $\mathcal{H} = \{f\}$, or over any set \mathcal{H} such that $m \ge 8 \log(7|\mathcal{H}|/6)$, is a successful learner in that setting.

Proof

Let $n \in \mathbb{N}$ and $A : (\mathcal{X} \times \{0,1\})^n \to \{0,1\}^{\mathcal{X}}$ be a learning algorithm. By assumption, there exists $C \subset \mathcal{X}$ of size $|C| \ge 2n$. Let $\mathcal{F} = \{0,1\}^C$, and for every $f \in \mathcal{F}$ let $D_f \in \mathcal{M}_1(\mathcal{X} \times \{0,1\})$ be defined by: $D_f(\{x,y\}) = \begin{cases} \frac{1}{2n} \text{ if } y = f(x) , \\ 0 \text{ otherwise.} \end{cases}$

For every $f \in \mathcal{F}$, the marginal distribution of X under D_f is $\mathcal{U}(C)$, and the conditional distribution of Y given X is $\delta_{f(X)}$. Hence, $(X_1, \ldots, X_n) \sim \mathcal{U}(C^n)$. For every $s_X \in C^n$, define $s_X^f = (x, f(x))_{x \in s_X}$.

We will prove that
$$\max_{f \in \mathcal{F}} \mathbb{E}_{S \sim D_{f}^{\bigotimes n}} \left[L_{D_{f}} \left(A(S) \right) \right] \geq \frac{1}{4}, \text{ which is sufficient: if } \mathcal{P}(0 \leq Z \leq 1) = 1 \text{ and } \mathbb{E}[Z] \geq \frac{1}{4}, \text{ then}$$

$$\mathbb{P}\left(Z \geq \frac{1}{8} \right) \geq \frac{1}{7} \text{ as } \frac{1}{4} \leq \mathbb{E}[Z] \leq \frac{1}{8} \mathbb{P}\left(Z < \frac{1}{8} \right) + \mathbb{P}\left(Z \geq 1/8 \right) = \frac{1}{8} + \frac{7}{8} \mathbb{P}\left(Z \geq \frac{1}{8} \right).$$

$$\max_{f \in \mathcal{F}} \mathbb{E}_{S \sim D_{f}^{\bigotimes n}} \left[L_{D_{f}} \left(A(S) \right) \right] \geq \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \mathbb{E}_{S \sim D_{f}^{\bigotimes n}} \left[L_{D_{f}} \left(A(S) \right) \right] = \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} L_{D_{f}} \left(A(S) \right) = \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} L_{D_{f}} \left(A(s_{X}^{f}) \right)$$

$$= \frac{1}{|C^{n}|} \sum_{s_{X} \in C^{n}} \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} L_{D_{f}} \left(A(s_{X}^{f}) \right) \geq \min_{s_{X} \in C^{n}} \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} L_{D_{f}} \left(A(s_{X}^{f}) \right).$$

For every $s_X \in \mathbb{C}^n$, observe that

$$\begin{aligned} &\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} L_{D_f} \left(A(s_X^f) \right) = \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \frac{1}{|\mathcal{C}|} \sum_{x \in \mathcal{C}} \mathbbm{1} \left\{ A(s_X^f)(x) \neq f(x) \right\} \\ &= \frac{1}{|\mathcal{C}|} \sum_{x \in \mathcal{C}} \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \mathbbm{1} \left\{ A(s_X^f)(x) \neq f(x) \right\} \geq \frac{1}{|\mathcal{C}|} \sum_{x \in \mathcal{C} \setminus s_X} \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \mathbbm{1} \left\{ A(s_X^f)(x) \neq f(x) \right\} \end{aligned}$$

For $x \in C \setminus s_X$ and $y \in \{0, 1\}$, let $\mathcal{F}_X^y = \{f \in \mathcal{F} : f(x) = y\}$; for $f \in \mathcal{F}_X^0$ let $\tilde{f}_X \in \mathcal{F}_X^1$ be s.t. $\forall x' \neq x, \tilde{f}_X(x') = f(x')$.

$$\sum_{f \in \mathcal{F}} \mathbb{1}\left\{A(s_X^f)(x) \neq f(x)\right\} = \sum_{y \in \{0,1\}} \sum_{f \in \mathcal{F}_X^y} \mathbb{1}\left\{A(s_X^f)(x) \neq f(x)\right\} = \sum_{f \in \mathcal{F}_X^0} \mathbb{1}\left\{A(s_X^f)(x) \neq f(x)\right\} + \mathbb{1}\left\{A(s_X^f)(x) \neq \tilde{f}(x)\right\} = \frac{|\mathcal{F}|}{2}$$

since, as $x \notin s_X$, $s_X^{\tilde{f}_X} = s_X^f$ and hence $A(s_X^{\tilde{f}_X}) = A(s_X^f)$. The conclusion comes, as $|C \setminus s_X| \ge |C|/2$. 10

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for binary classification over a domain $\mathcal{X} = [0,1]^d$. If the training set size is $n \leq c^d/2$, then there exists a distribution \mathcal{D} over $[0,1]^d \times \{0,1\}$ such that:

- $\eta(x)$ is *c*-Lipschitz;
- the Bayes error of the distribution is 0;
- with probability at least 1/7 over the choice of $S\sim \mathcal{D}^{\otimes n}$,

$$L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$$
.

Uniform convergence for infinite classes: VC dimension

Shattering

Definition

Let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$ and let $C = \{c_1, \ldots, c_n\} \subset \mathcal{X}$. The *restriction* of \mathcal{H} to C is the set of functions

 $C \to \{0,1\}$ that can be derived from \mathcal{H} :

$$\mathcal{H}_{\mathcal{C}} = \left\{ (c_1, \ldots, c_n) \rightarrow (h(c_1), \ldots, h(c_n)) : h \in \mathcal{H} \right\}.$$

Shattering

A hypothesis class \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if $\mathcal{H}_{\mathcal{C}} = \{0, 1\}^{\mathcal{C}}$.

Example:

•
$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}.$$

• $\mathcal{H}^2_{rec} = \{h_{(a_1, b_1, a_2, b_2)} : a_1 \le b_1 \text{ and } a_2 \le b_2\}$ where
 $h_{(a_1, b_1, a_2, b_2)}(x_1, x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 \le b_1 \text{ and } a_2 \le x_2 \le b_2; \\ 0 & \text{otherwise}. \end{cases}$

Definition

The Vapnik Chervonenkis dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that $VCdim(\mathcal{H}) = \infty$.

Theorem

Let ${\mathcal H}$ be a class of infinite VC-dimension. Then ${\mathcal H}$ is not PAC-learnable.

Proof: for every training size *m*, there exists a set *C* of size 2m that is shattered by \mathcal{H} . By the NFL theorem, for every learning algorithm *A* there exists a probability distribution *D* over $\mathcal{X} \times \{0, 1\}$ such that $L_D(h) = 0$ but with probability at least 1/7 over the training set, we have $L_D(\mathcal{A}(S)) \ge 1/8$.

Outline

PAC learning

No-Free-Lunch theorems: when learning is not possible

Uniform convergence for infinite classes: VC dimension VC dimension and Sauer's lemma Finite VC dimension implies Uniform Convergence Finite VC-dimension implies learnability More on Chernoff's method

Example: Poisson distribution

Chernoff's bound for real-valued variables

Application: estimating the missing mass

Shattering

Definition

Let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$ and let $C = \{c_1, \ldots, c_n\} \subset \mathcal{X}$. The *restriction* of \mathcal{H} to C is the set of functions $C \to \{0,1\}$ that can be derived from \mathcal{H} :

$$\mathcal{H}_{\mathcal{C}} = \left\{ (c_1, \ldots, c_n) \rightarrow (h(c_1), \ldots, h(c_n)) : h \in \mathcal{H} \right\}.$$

Shattering

A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if $\mathcal{H}_C = \{0, 1\}^C$.

Example:

•
$$\mathcal{H} = \{ \mathbb{1}_{(-\infty,a]} : a \in \mathbb{R} \}.$$

• $\mathcal{H}^2_{\text{rec}} = \{ \mathbb{1}_{[a_1,b_1] \times [a_2,b_2]} : a_1 \le b_1 \text{ and } a_2 \le b_2 \}.$

Definition

The Vapnik Chervonenkis dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that $VCdim(\mathcal{H}) = \infty$.

Theorem

Let ${\mathcal H}$ be a class of infinite VC-dimension. Then ${\mathcal H}$ is not PAC-learnable.

Proof: for every training size *n*, there exists a set *C* of size 2*n* that is shattered by \mathcal{H} . By the NFL theorem, for every learning algorithm *A* there exists a probability distribution *D* over $\mathcal{X} \times \{0,1\}$ such that $L_D(h) = 0$ but with probability at least 1/7 over the training set, we have $L_D(\mathcal{A}(S)) \ge 1/8$.

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function of 0-1 loss. Then the following propositions are equivalent:

- 1. $\ensuremath{\mathcal{H}}$ has the uniform convergence property,
- 2. any ERM rule is a successful agnostic PAC learner for $\mathcal{H},$
- 3. ${\mathcal H}$ is agnostic PAC learnable,
- 4. \mathcal{H} is PAC learnable,
- 5. any ERM rule is a sucessful PAC learner for $\mathcal{H},$
- 6. ${\mathcal H}$ has finite VC-dimension.

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function of 0-1 loss. Assume thatVCdim $(\mathcal{H}) < \infty$. Then there exist constants C_1, C_2 such that:

1. $\ensuremath{\mathcal{H}}$ has the uniform convergence property with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon^2} \leq n_{\mathcal{H}}^{UC}(\epsilon,\delta) \leq C_2 rac{d + \log(1/\delta)}{\epsilon^2} \; ,$$

2. ${\mathcal H}$ is agnostic PAC learnable with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon^2} \leq n_{\mathcal{H}}(\epsilon, \delta) \leq C_2 rac{d + \log(1/\delta)}{\epsilon^2} \; ,$$

3. \mathcal{H} is PAC learnable with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon} \leq n_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq C_2 rac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Sauer's lemma

Definition

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as the maximal number of different functions that can be obtained by restricting \mathcal{H} to a set of size m:

$$\tau_{\mathcal{H}}(n) = \max_{C \subset X: |C|=n} |\mathcal{H}_C|.$$

Note: if $VCdim(\mathcal{H}) = d$, then for any $m \leq d$ we have $\tau_{\mathcal{H}}(m) = 2^n$.

Sauer's lemma

Let $\mathcal H$ be a hypothesis class with $d = \mathsf{VCdim}(\mathcal H) < \infty$. Then, for all $n \geq d$,

$$au_{\mathcal{H}}(n) \leq \sum_{i=0}^d \binom{n}{i} \leq \left(\frac{en}{d}\right)^d$$
.

Think of example: $\mathcal{H} = \{\mathbb{1}_{(-\infty,a]} : a \in \mathbb{R}\}$ with $d = \mathsf{VCdim}(\mathcal{H}) = 1$.

Proof of Sauer's lemma 1/2

In fact we prove the stronger claim:

$$|\mathcal{H}_{\mathcal{C}}| \leq |\{B \subset \mathcal{C} : \mathcal{H} \text{ shatters } B\}| \leq \sum_{i=0}^{d} {n \choose i} .$$

where the last inequality holds since no set of size larger than d is shattered by \mathcal{H} . The proof is by induction.

n=1: The empty set is always considered to be shattered by \mathcal{H} . Hence, either $|\mathcal{H}_{\mathcal{C}}| = 1$ and d = 0, inequality $1 \leq 1$, or $d \geq 1$ and the inequality is $2 \leq 2$.

Induction: Let $C = \{c_1, \ldots, c_n\}$, and let $C' = \{c_2, \ldots, c_n\}$. We note functions like vectors, and we define

$$\begin{split} &Y_0 = \left\{ (y_2, \, \ldots \, , \, y_n) : (0, \, y_2, \, \ldots \, , \, y_n) \, \in \, \mathcal{H}_{\mathcal{C}} \text{ or } (1, \, y_2, \, \ldots \, , \, y_n) \in \, \mathcal{H}_{\mathcal{C}} \right\}, \quad \text{and} \\ &Y_1 = \left\{ (y_2, \, \ldots \, , \, y_n) : (0, \, y_2, \, \ldots \, , \, y_n) \, \in \, \mathcal{H}_{\mathcal{C}} \text{ and} \, (1, \, y_2, \, \ldots \, , \, y_n) \in \, \mathcal{H}_{\mathcal{C}} \right\} \,. \end{split}$$

Then $|\mathcal{H}_{C}| = |Y_{0}| + |Y_{1}|$. Moreover, $Y_{0} = \mathcal{H}_{C'}$ and hence by the induction hypothesis:

$$|Y_0| \leq |\mathcal{H}_{\mathcal{C}'}| \leq |\{B \subset \mathcal{C}' : \mathcal{H} \text{ shatters } B\}| = |\{B \subset \mathcal{C} : c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}|$$

Next, define

$$\mathcal{H}' = \left\{ h \in \mathcal{H} : \exists h' \in \mathcal{H} \text{ s.t. } \forall 1 \leq i \leq n, h'(c_i) = \left\{ \begin{matrix} 1 - h(c_1) \text{ if } i = 1 \\ h(c_i) \text{ otherwise} \end{matrix} \right\} \right\}$$

Note that \mathcal{H}' shatters $B \subset C'$ iff \mathcal{H}' shatters $B \cup \{c_1\}$, and that $Y_1 = \mathcal{H}'_{C'}$. Hence, by the induction hypothesis,

$$\begin{split} |Y_1| &= |\mathcal{H}'_{\mathcal{C}'}| \leq |\{B \subset \mathcal{C}' : \mathcal{H}' \text{ shatters } B\}| = |\{B \subset \mathcal{C}' : \mathcal{H}' \text{ shatters } B \cup \{c_1\}\}| \\ &= |\{B \subset \mathcal{C} : c_1 \in B \text{ and } \mathcal{H}' \text{ shatters } B\}| \leq |\{B \subset \mathcal{C} : c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}| \end{split}$$

Overall,

$$|\mathcal{H}_{\mathcal{C}}| = |Y_0| + |Y_1| \leq \left|\{B \subset C : c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}\right| + \left|\{B \subset C : c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}\right| = \left|\{B \subset C : \mathcal{H} \text{ shatters } B\}\right| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \subset C : \mathcal{H} \text{ shatters } B\}| = |\{B \cap C : \mathcal{$$

Proof of Sauer's lemma 2/2

For the last inequality, one may observe that if $n \ge 2d$, defining $N \sim \mathcal{B}(n, 1/2)$, Chernoff's inequality and inequality $\log(u) \ge (u-1)/u$ yield

$$-\log \mathbb{P}(N \le d) \ge n \operatorname{kl}\left(\frac{d}{n}, \frac{1}{2}\right) \ge d \log \frac{2d}{n} + (n-d) \log \frac{2(n-d)}{n}$$
$$\ge n \log(2) + d \log \frac{d}{n} + (n-d) \frac{-d/n}{(n-d)/n}$$
$$= n \log(2) + d \log \frac{d}{en},$$

and hence

$$\sum_{i=0}^{d} \binom{n}{i} = 2^{n} \mathbb{P}(N \le d) \le \exp\left(-d\log\frac{d}{en}\right) = \left(\frac{en}{d}\right)^{d}$$

Besides, for the case $d \le n \le 2d$, the inequality is obvious since $(en/d)^d \ge 2^n$: indeed, function $f: x \mapsto -x \log(x/e)$ is increasing on [0, 1], and hence for all $d \le n \le 2d$:

$$rac{d}{n}\lograc{en}{d} = f(d/n) \ge f(1/2) = rac{1}{2}\log(2e) \ge \log(2) \; ,$$

which implies

$$\left(\frac{en}{d}\right)^d = \exp\left(d\log\frac{en}{d}\right) \ge \exp(n\log(2)) = 2^n$$
.

Alternately, you may simply observe that for all $n \ge d$,

$$\left(\frac{d}{n}\right)^d \sum_{i=0}^d \binom{n}{i} \le \sum_{i=0}^d \left(\frac{d}{n}\right)^i \binom{n}{i} \le \sum_{i=0}^n \left(\frac{d}{n}\right)^i \binom{n}{i} = \left(1 + \frac{d}{n}\right)^n \le e^d .$$

Outline

PAC learning

No-Free-Lunch theorems: when learning is not possible

Uniform convergence for infinite classes: VC dimension

VC dimension and Sauer's lemma

Finite VC dimension implies Uniform Convergence

Finite VC-dimension implies learnability

More on Chernoff's method

Example: Poisson distribution

Chernoff's bound for real-valued variables

Application: estimating the missing mass

Theorem

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every distribution D dans for every $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the choice of the sample $S \sim D^{\otimes n}$ we have

$$\sup_{h \in \mathcal{H}} \left| L_D(h) - L_S(h) \right| \leq \frac{1 + \sqrt{\log\left(2\tau_{\mathcal{H}}(2n)\right)}}{\delta\sqrt{n/2}}$$

Note: this result is sufficient to prove that finite VC-dim \implies learnable, but the dependency in δ is not correct at all: roughly speaking, the factor $1/\delta$ can be replaced by $\log(1/\delta)$.

Proof: symmetrization and Rademacher complexity (1/2)

We consider the 0-1 loss $\ell(h, (x, y)) = \mathbb{1}\{h(x) \neq y\}$, or any [0, 1]-valued loss ℓ . We denote $Z_i = (X_i, Y_i)$, and observe that $L_D(h) = \mathbb{E}_{Z_i}[\ell(h, Z_i)] = \mathbb{E}_{S'}[L_{S'}(h)]$ if $S' = Z'_1, \ldots, Z'_n$ denotes another iid sample of D. Hence,

$$\begin{split} \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \left| L_{D}(h) - L_{S}(h) \right| \right] &= \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \left| \mathbb{E}_{S'} [L_{S'}(h)] - L_{S}(h) \right| \right] = \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \left| \mathbb{E}_{S'} \left[L_{S'}(h) - L_{S}(h) \right] \right| \right] \\ &\leq \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \mathbb{E}_{S'} \left[\left| L_{S'}(h) - L_{S}(h) \right| \right] \right] \leq \mathbb{E}_{S} \left[\mathbb{E}_{S'} \left[\sup_{h \in \mathcal{H}} \left| L_{S'}(h) - L_{S}(h) \right| \right] \right] \\ &= \mathbb{E}_{S,S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} \ell(h, Z'_{i}) - \ell(h, Z_{i}) \right| \right] \\ &= \mathbb{E}_{S,S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_{i} (\ell(h, Z'_{i}) - \ell(h, Z_{i})) \right| \right] \quad \text{for all } \sigma \in \{\pm 1\}^{n} \\ &= \mathbb{E}_{\Sigma,S'} \mathbb{E}_{\Sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} \Sigma_{i} (\ell(h, Z'_{i}) - \ell(h, Z_{i})) \right| \right] \quad \text{if } \Sigma \sim \mathcal{U}(\{\pm 1\}^{n}) \\ &= \mathbb{E}_{S,S'} \mathbb{E}_{\Sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} \Sigma_{i} (\ell(h, Z'_{i}) - \ell(h, Z_{i})) \right| \right] \quad . \end{split}$$

Now, for every fixed $S = \{(X_i, Y_i) : 1 \le i \le n\}$ and $S' = \{(X_i, Y_i) : 1 \le i \le n\}$, the number of different $(\ell(h, Z'_i) - \ell(h, Z_i)) \in [-1, 1]$ is bounded by $\tau_{\mathcal{H}}(2n)$. Indeed, let $C = C_{S,S'} = \{X_1, \ldots, X_n\} \cup \{X'_1, \ldots, X'_n\}$. Then $\forall \sigma \in \{-1, 1\}^n$,

$$\sup_{h\in\mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_i \left(\ell(h, Z_i') - \ell(h, Z_i) \right) \right| = \max_{h\in\mathcal{H}_C} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_i \left(\ell(h, Z_i') - \ell(h, Z_i) \right) \right| .$$

Proof: symmetrization and Rademacher complexity (2/2)

Moreover, for every $h \in \mathcal{H}_{\mathcal{C}}$ let $Z_h = \frac{1}{n} \sum_{i=1}^{n} \Sigma_i (\ell(h, Z_i') - \ell(h, Z_i))$. Then $\mathbb{E}_{\Sigma}[Z_h] = 0$, each summand belongs to [-1, 1] and by Hoeffding's inequality, for every $\epsilon > 0$:

$$\mathbb{P}_{\Sigma}\left[|Z_{h}| \geq \epsilon\right] \leq 2 \exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

Hence, by the union bound,

$$\mathbb{P}_{\Sigma} igg[\max_{h \in \mathcal{H}_{\mathcal{C}}} |Z_h| \geq \epsilon igg] \leq 2 ig| \mathcal{H}_{\mathcal{C}} ig| \exp\left(-rac{n\epsilon^2}{2}
ight) \;.$$

The following lemma permits to deduce that

$$\mathbb{E}_{\Sigma} \left[\max_{h \in \mathcal{H}_{C}} |Z_{h}| \right] \leq \frac{1 + \sqrt{\log(|\mathcal{H}_{C}|)}}{\sqrt{n/2}} \leq \frac{1 + \sqrt{\log(2\tau_{\mathcal{H}}(2n))}}{\sqrt{n/2}}$$

Hence,

$$\mathbb{E}_{\mathcal{S}}\left[\sup_{h\in\mathcal{H}}\left|L_{\mathcal{D}}(h)-L_{\mathcal{S}}(h)\right|\right] \leq \mathbb{E}_{\mathcal{S},\mathcal{S}'}\mathbb{E}_{\Sigma}\left[\sup_{h\in\mathcal{H}}\frac{1}{n}\left|\sum_{i=1}^{n}\Sigma_{i}\left(\ell(h,Z_{i}')-\ell(h,Z_{i})\right)\right|\right] \leq \frac{1+\sqrt{\log(2\tau_{\mathcal{H}}(2n))}}{\sqrt{n/2}}$$

and we conclude by using Markov's inequality (poor idea! Better: McDiarmid's inequality).

Technical Lemma

Lemma

Let a > 0, $b \ge 1$, and let Z be a real-valued random variable such that for all $t \ge 0$, $\mathbb{P}(Z \ge t) \le 2b \exp\left(-\frac{t^2}{a^2}\right)$. Then $\mathbb{E}[Z] \le a\left(\sqrt{\log(2b)} + 1\right)$.

Proof:

$$\mathbb{E}[Z] \leq \int_0^\infty \mathbb{P}(Z \geq t) dt \leq a \sqrt{\log(2b)} + \int_{a\sqrt{\log(2b)}}^\infty 2b \exp\left(-\frac{t^2}{a^2}\right) dt$$
$$\leq a \sqrt{\log(2b)} + 2b \int_{a\sqrt{\log(2b)}}^\infty \frac{t}{a\sqrt{\log(2b)}} \exp\left(-\frac{t^2}{a^2}\right) dt$$
$$= a \sqrt{\log(2b)} + \frac{2b}{a\sqrt{\log(2b)}} \times \frac{a^2}{2} \exp\left(-\frac{(a\sqrt{\log(2b)})^2}{a^2}\right)$$
$$= a \sqrt{\log(2b)} + \frac{a}{2\sqrt{\log(2b)}}$$

and for all $b \ge 1$, $2\sqrt{\log(2b)} \ge 2\sqrt{\log(2)} > 1$.

Outline

PAC learning

No-Free-Lunch theorems: when learning is not possible

Uniform convergence for infinite classes: VC dimension

VC dimension and Sauer's lemma

Finite VC dimension implies Uniform Convergence

Finite VC-dimension implies learnability

More on Chernoff's method

Example: Poisson distribution

Chernoff's bound for real-valued variables

Application: estimating the missing mass

Application: Finite VC-dim classes are agnostically learnable

It suffices to prove that finite VC-dim implies the uniform convergence property. From Sauer's lemma, for all $n \ge d/2$ we have $\tau_{\mathcal{H}}(2n) \le (2en/d)^d$. With the previous theorem, this yields that with probability at least $1 - \delta$:

$$\sup_{h \in \mathcal{H}} \left| L_D(h) - L_S(h) \right| \le \frac{1 + \sqrt{d \log \left(4en/d \right)}}{\delta \sqrt{n/2}} \le \frac{1}{\delta} \sqrt{\frac{8d \log(4en/d)}{n}}$$

as soon as $\sqrt{d \log (4en/d)} \ge 1$. To ensure that this is at most ϵ , one may choose

$$n \geq \frac{8d\log(n)}{(\delta\epsilon)^2} + \frac{8d\log(4e/d)}{(\delta\epsilon)^2}$$

By the following lemma, it is sufficient that

$$n \geq \frac{32d \log\left(\frac{4d}{(\delta\epsilon)^2}\right)}{(\delta\epsilon)^2} + \frac{16d \log\left(\frac{4e}{d}\right)}{(\delta\epsilon)^2} \ .$$

Technical Lemma

Lemma

Let a > 0. Then

$x \ge 2a \log(a) \implies x \ge a \log(x)$.

Proof: For $a \le e$, true for every x > 0. Otherwise, for $a \ge \sqrt{e}$ we have $2a \log(a) \ge a$ and thus for every $t \ge 2a \log(a)$, as $f : t \mapsto t - a \log(t)$ is increasing on $[a, \infty)$, $f(t) \ge f(2a \log(a)) = a \log(a) - a \log(2 \log(a)) \ge 0$, since for every a > 0 it holds that $a \ge 2 \log(a)$.

Lemma

Let $a \ge 1, b > 0$. Then

 $x \ge 4a \log(2a) + 2b \implies x \ge a \log(x) + b$.

Proof: It suffices to check that $x \ge 2a \log(x)$ (given by the above lemma) and that $x \ge 2b$ (obvious since $4a \log(2a) \ge 0$).

More on Chernoff's method

Outline

PAC learning

No-Free-Lunch theorems: when learning is not possible

Uniform convergence for infinite classes: VC dimension

VC dimension and Sauer's lemma

Finite VC dimension implies Uniform Convergence

Finite VC-dimension implies learnability

More on Chernoff's method

Example: Poisson distribution

Chernoff's bound for real-valued variables

Application: estimating the missing mass

Chernoff's method for the Poisson distribution

Let
$$\mu > 0$$
 and let $X \sim \mathcal{P}(\mu)$. Then
 $\forall x \ge \mu$, $\mathbb{P}(X \ge x) \le \exp\left(-\left(x \ln \frac{x}{\mu} - (x - \mu)\right)\right)^{\frac{1}{2}}$,
 $\forall \epsilon \ge 0$, $\mathbb{P}(X \ge \mu + \epsilon) \le \exp\left(-\mu\varphi^*\left(\frac{\epsilon}{\mu}\right)\right)^{\frac{1}{2}}$,
and $\mathbb{P}(X \le \mu - \epsilon) \le \exp\left(-\mu\varphi^*\left(\frac{\epsilon}{\mu}\right)\right) \le \exp\left(-\frac{\epsilon^2}{2\mu}\right)$,
where $\varphi^*(u) = (1 + u) \ln(1 + u) - u = \frac{u^2}{2} \int_0^1 \frac{1}{1 + tu} 2(1 - t) dt$.

Observe that $KL(\mathcal{P}(x), \mathcal{P}(\mu)) = x \ln \frac{x}{\mu} - (x - \mu).$

Left tail: For u < 0, $\varphi^*(u) \geq \frac{u^2}{2}$ and

$$\mathbb{P}\left(X \leq \mu - \sqrt{2\mu \ln rac{1}{\delta}}
ight) \leq \delta$$
 .

Proof

The two bounds are equivalent, for $x = \mu + \epsilon$. The first one is obtained by remarking that for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}\left[e^{\lambda X}
ight] = \sum_{k=0}^{\infty} e^{-\mu} rac{\mu^k}{k} e^{\lambda k} = e^{-\mu} e^{\mu e^{\lambda}}$$

and hence

$$\mathbb{P}(X \ge x) \le rac{\mathbb{E}[\left[e^{\lambda X}
ight]}{e^{\lambda x}} = \exp\left(-\left(\lambda x - \mu\left(e^{\lambda} - 1
ight)
ight)
ight) ,$$

which yields the result for $\lambda = \ln \frac{x}{\mu}$.

Alternatively, $\ln \mathbb{E}\left[e^{\lambda(X-\mu)}\right] = \mu \varphi(\lambda)$ with $\varphi(\lambda) \stackrel{\triangle}{=} e^{\lambda} - \lambda - 1$, and

$$\sup_{\lambda>0}\lambda\epsilon-\mu\varphi(\lambda)=\mu\varphi^*\left(\frac{\epsilon}{\mu}\right)$$

with $\varphi^*(u) = (1+u)\ln(1+u) - u = \sup_{\lambda>0} \lambda u - \varphi(\lambda).$

Poisson right tails

Optimal path:

1.
$$(h^*)^* = h$$
 and hence the formula for h^*
2. $h^*(x + \sqrt{2x}) = x$ and hence the formula for $(h^*)^{-1}$
3. $\varphi(\lambda) \leq \varphi_1(\lambda)$ since $e^{\lambda} - \lambda - 1 = \frac{\lambda^2}{2} \left(1 + \frac{\lambda}{3} + \frac{\lambda^2}{3\chi 4} + \dots \right) \leq \frac{\lambda^2}{2} \left(1 + \frac{\lambda}{3} + \frac{\lambda^2}{3^2} + \dots \right) = \frac{\lambda^2/2}{1 - \lambda/3}$
4. recognize $\varphi_1(\lambda) = 9h(\lambda/3)$ and hence $\varphi_1^*(u) = 9h^*(u/3)$
5. hence $(\varphi_1^*)^{-1}(x) = 3(h^*)^{-1}(x/9) = \sqrt{2x} + \frac{\chi}{3}$

hence

$$\mathbb{P}\left(X \ge \mu + \sqrt{2\mu\ln\frac{1}{\delta}} + \frac{\ln\frac{1}{\delta}}{3}\right) \le \delta$$
.

Simpler but weaker bound (two proofs):

- For u > 0, $\varphi^*(u) \ge h^*(u) \stackrel{\triangle}{=} 1 + u \sqrt{1 + 2u}$ and $(\varphi^*)^{-1}(x) \le (h^*)^{-1}(x) = \sqrt{2x} + x$
- (personal) for u > 0, $\ln(1+u) \ge \frac{u}{1+u/2}$ and $\varphi^*(u) \ge \frac{(1+u)u-u(1+u/2)}{1+u/2} = \frac{u^2}{2+u} \stackrel{\triangle}{=} \varphi_2^*(u)$. Since $\varphi_2^*(\sqrt{2x}+x) = x \frac{2+x+2\sqrt{2x}}{2+x+\sqrt{2x}} \ge x$, $(\varphi^*)^{-1}(x) \le (\varphi_2^*)^{-1}(x) \le \sqrt{2x} + x$.

Outline

PAC learning

No-Free-Lunch theorems: when learning is not possible

Uniform convergence for infinite classes: VC dimension

VC dimension and Sauer's lemma

Finite VC dimension implies Uniform Convergence

Finite VC-dimension implies learnability

More on Chernoff's method

Example: Poisson distribution

Chernoff's bound for real-valued variables

Application: estimating the missing mass

The Log-Laplace function

Let X be a real-valued random variable with law P_X , expectation μ_X and variance σ_X^2 . $\lambda \mapsto \mathbb{E}\left[e^{\lambda X}\right]$ is finite on an interval $(\underline{\lambda}, \overline{\lambda})$ and we assume that it is non-empty, ie $0 \in (\underline{\lambda}, \overline{\lambda})$. Chernoff's bound states that for $x \ge \mu$,

$$\mathbb{P}(X \ge x) \le \exp\left(-\sup_{\lambda>0} \lambda x - \varphi_X(\lambda)\right) ,$$

where $\varphi_X(\lambda) \stackrel{\triangle}{=} \ln \mathbb{E} \left[e^{\lambda X} \right]$. For $\lambda \in (\underline{\lambda}, \overline{\lambda})$,

•
$$\varphi'_X(\lambda) = \mu_X(\lambda) \stackrel{\triangle}{=} \mathbb{E}^{\lambda}[X]$$
, where $\frac{d\mathbb{P}^{\lambda}_X}{d\mathbb{P}_X}(x) = \frac{e^{\lambda}x}{\mathbb{E}[e^{\lambda X}]}$.

•
$$\varphi_X''(\lambda) = \mu_X'(\lambda) = \sigma_X^2(\lambda) \stackrel{\triangle}{=} \mathbb{V}ar(P_X^\lambda) \ge 0,$$

• $\mu_X : (\underline{\lambda}, \overline{\lambda}) \to (\underline{x}, \overline{x}) \subset \text{Supp}(X)$ is increasing and \mathcal{C}^{∞} , with $\mu_X(0) = \mu_X$.

•
$$\varphi_X(\lambda) = \int_0^\lambda \sigma_X^2(\ell)(\lambda-\ell) \, d\ell = \frac{\lambda^2}{2} \int_0^1 \sigma_X^2(\lambda t) \, 2(1-t) \, dt$$
.

For all
$$x \in (\mu, \overline{x})$$
, since φ_X is smooth and convex
 $\varphi_X^*(x) = \sup_{\lambda > 0} \lambda x - \varphi_X(\lambda) = \lambda_X(x)x - \varphi_X(\lambda_X(x))$, where
 $\lambda_X(x) = \mu_X^{-1}(x)$.

•
$$\varphi_X^{\star \prime}(x) = \lambda(x) + x\lambda'_X(x) - \lambda'_X(x)\varphi'_X(\lambda(x)) = \lambda_X(x) = \mu_X^{-1}(x)$$
.
• $\varphi_X^{\star \prime \prime}(x) = \frac{1}{\mu'_X(\lambda_X(x))} = \frac{1}{\sigma_X^2(\mu_X^{-1}(x))}$.

$$\varphi^{*}{}_{X}(x) = \int_{\mu}^{x} \frac{x-u}{\sigma_{X}^{2}(\mu_{X}^{-1}(u))} \, du = \frac{(x-\mu)^{2}}{2} \int_{0}^{1} \frac{2(1-t) \, dt}{\sigma_{X}^{2}(\mu_{X}^{-1}(\mu+t(x-\mu)))} \, .$$

Example

If $\mathbb{P}(0 \leq X \leq 1)$, $\varphi_X(\lambda) \leq \varphi_\mu(\lambda) = \ln(1 - \mu + \mu e^{\lambda})$ with equality iff $X \sim \mathcal{B}(\mu)$, since by convexity of $u \mapsto e^{\lambda u}$, $\forall x \in [0, 1], e^{\lambda x} \leq (1 - x) + xe^{\lambda}$.

Since for all λ , $\mathbb{P}^{\lambda}_{X}([0,1]) = 1$, $\sigma^{2}_{X}(\lambda) \leq 1/4$ and $\varphi_{X}(\lambda) \leq \lambda \mu + \frac{\lambda^{2}}{8}$ and

• The upper-bound on φ_X yields a lower bound on $\varphi_X \star$:

$$\varphi_X^{\star}(\mu+\epsilon) = \sup_{\lambda>0} \lambda(\mu+\epsilon) - \varphi_X(\lambda) \ge \sup_{\lambda>0} \lambda\epsilon - \frac{\lambda^2}{8} = 2\epsilon^2$$

• The expression for φ_X^* permits to re-derive it directly:

$$\varphi_X^{\star}(\mu+\epsilon) = \frac{\epsilon^2}{2} \int_0^1 \frac{2(1-t)\,dt}{\sigma_X^2\left(\mu_X^{-1}(\mu+t\epsilon)\right)} \ge 2\epsilon^2 \,.$$

Connection to KL divergence

Observe that for all $\lambda \in (\underline{\lambda}, \overline{\lambda})$, KL $(P_X^{\lambda}, P_X) = \lambda \mu_X(\lambda) - \varphi_X(\lambda)$. Hence, KL $(P_X^{\lambda_X(x)}, P_X) = \lambda_X(x) \underbrace{\mu_X(\lambda_X(x))}_{=x} - \varphi_X(\lambda_X(x)) = \varphi_X^*(x)$.

Besides KL $(P_X^{\lambda_X(x)}, P_X) = \inf \{ KL(Q, P_X) : \mathbb{E}_Q[X] \ge x \}$. Indeed, For every $Q \ll P$ with $\mathbb{E}_Q[X] \ge x$,

$$\begin{split} \mathsf{KL}(Q, P_X) &= \int_{\mathbb{R}} \log\left(\frac{dQ}{dP_X}(x)\right) dQ(x) \\ &= \int_{\mathbb{R}} \log\left(\frac{dQ}{dP_X^{\lambda_X(x)}}(x)\frac{dP_X^{\lambda_X(x)}}{dP}(x)\right) dQ(x) \\ &= \mathsf{KL}(Q, P_X^{\lambda_X(x)}) + \int_{\mathbb{R}} \log\left(\frac{e^{\lambda_X(x)x}}{\mathbb{E}[e^{\lambda_X(x)}X]}\right) dQ(x) \\ &= \mathsf{KL}(Q, P_{\lambda_X(x)}) + \lambda_X(x)\mathbb{E}_Q[X] - \log\left(\mathbb{E}[e^{\lambda_X(x)}X]\right) \\ &\geq 0 + \lambda_X(x)x - \varphi_X(\lambda_X(x)) = \mathsf{KL}(P_X^{\lambda_X(x)}, P) \,. \end{split}$$

Case of a sum of independent variables

If
$$X = X_1 + \cdots + X_n$$
 where the $(X_i)_i$ are independent, then
 $\varphi_X = \sum_i \varphi_{X_i}, \ \mu_X = \sum_i \mu_{X_i} \stackrel{\triangle}{=} n\bar{\mu} \text{ and } \sigma_X^2 = \sum_i \sigma_{X_i}^2.$
Besides,

$$\varphi_X^*(nx) = \int_{\mu_X}^{nx} \frac{nx - u}{\sigma_X^2(\mu_X^{-1}(u))} du$$
$$= n \int_{\bar{\mu}}^x \frac{x - v}{\sigma_X^2(\mu_X^{-1}(u))} dv$$

Bennett's inequality for Bernoullis: if $\forall i, \forall \lambda > 0, \sigma_{X_i}^2(\lambda) \le \mu_{X_i}(\lambda)$ then $\sigma_X^2(\mu_X^{-1}(v)) = \sum_i \sigma_{X_i}^2(\mu_X^{-1}(v)) \le \sum_i \mu_{X_i}(\mu_X^{-1}(v)) = \mu_X(\mu_X^{-1}(v)) = v$

and

$$\varphi_X^*(nx) \ge n \int_{\bar{\mu}}^x \frac{x-v}{v} dv = n \left(x \ln \frac{x}{\bar{\mu}} - (x-\bar{\mu})\right)$$

or

$$\varphi_X^* \left(n \big(\bar{\mu} + \epsilon \big) \right) \ge \bar{\mu} \varphi^* \left(\frac{\epsilon}{\bar{\mu}} \right)$$
$$\varphi^* (u) = (1+u) \ln(1+u) - u = \frac{u^2}{2} \int_0^1 \frac{2(1-t) dt}{1+ut} \ge \frac{u^2}{2} \frac{1}{1+u \int_0^1 2(1-t) dt} = \frac{u^2}{2\left(1+\frac{u}{3}\right)}.$$
39

Bennett's inequality for bounded variables

Let X_1, \ldots, X_n be independent random variables with $\mathbb{P}(X_i \leq 1) = M$ and $\mathbb{E}[X_i^2] \leq \sigma^2$. Then, if $\bar{\mu} = (\mathbb{E}[X_1] + \mathbb{E}[X_n])/n$,

$$\mathbb{P}(\bar{X}_n \ge \bar{\mu} + \epsilon) \le \exp\left(-\frac{n\sigma^2}{M^2}\varphi^*\left(\frac{M\,\epsilon}{\sigma^2}\right)\right) \le \exp\left(-\frac{n\,\epsilon^2}{2\left(\sigma^2 + \frac{M\epsilon}{3}\right)}\right) \;.$$

Since for x > 0, $(\varphi^*)^{-1}(x) \le \sqrt{2x} + \frac{x}{3}$,

$$\mathbb{P}\left(X \ge \mu + \sqrt{\frac{2\sigma^2 \ln \frac{1}{\delta}}{n}} + \frac{M \ln \frac{1}{\delta}}{3n}\right) \le \delta \; .$$

Proof

We first prove the result for M = 1. Since $\frac{e^u - u - 1}{u^2/2} = \int_0^1 e^{ut} 2(1 - t) dt$ increases with u, for all $x \le 1$ $e^{\lambda x} - \lambda x - 1 \le x^2 \varphi(\lambda)$ with $\varphi(\lambda) = e^{\lambda} - \lambda - 1$ and since $\mathbb{E}[X_i^2] \le \sigma^2$:

$$\ln \mathbb{E}\left[e^{\lambda\left(X_i - \mathbb{E}[X_i]\right)}\right] \leq \ln\left(1 + \lambda \mathbb{E}[X_i] + \sigma^2 \varphi(\lambda)\right) - \lambda \mathbb{E}[X_i] \leq \sigma^2 \varphi(\lambda) \ .$$

Consequently, if $X = X_1 + \dots + X_n$ then for all $\epsilon > 0$

$$I_{X-\mathbb{E}[X]}(n\epsilon) = \sup_{\lambda>0} \lambda\epsilon - \sigma^2 \varphi(\lambda) = \sigma^2 \sup_{\lambda>0} \lambda \frac{\epsilon}{\sigma^2} - \varphi(\lambda) = \sigma^2 \varphi^*\left(\frac{\epsilon}{\sigma^2}\right)$$

and

$$\mathbb{P}(X \ge \mathbb{E}[X] + \epsilon) \le \exp\left(-\sigma^2 \varphi^*\left(\frac{\epsilon}{\sigma^2}\right)\right) \le \exp\left(-\frac{\epsilon^2}{2\left(\sigma^2 + \frac{\epsilon}{3}\right)}\right)$$

Finally, if $M \neq 1$ apply the result to the $Y_i = X_i/M$ which have a variance bounded by σ^2/M^2 .

Theorem

If for all $k \geq 3$, $\mathbb{E}[X^k] \leq 1/2k!\sigma^2 b^{k-2}$, then for all $\lambda \in (0, 1/b)$:

$$\mathbb{E}\left[e^{\lambda X}
ight] \leq \exp\left(rac{\lambda^2\sigma^2}{2(1-\lambda b)}
ight)$$

Hence, if $X = X_1 + \cdots + X_n$ where the (X_i) are independent and $\forall k \geq 3$, $\mathbb{E}[X_i^k] \leq 1/2k!\sigma_i^2 b^{k-2}$, then for every x > 0,

$$\mathbb{P}(X > x) \le \exp\left(-\frac{x^2}{2(\sigma^2 + xb)}\right)$$

with $\sigma^2 = \sum_{i=1}^n \sigma_i^2$.

Proof: choose $\lambda = x/(\sigma^2 + xb)$

Remark: Bennett's condition is stronger since it implies $\mathbb{E}[X^k] \leq \mathbb{E}[X^2b^{k-2}] \leq \sigma^2 b^{k-2}.$

Appl: fast rates in binary classification under margin condition

- Binary classification on \mathcal{X} with $\eta(x) = \mathbb{P}(Y = 1 | X = x)$, finite hypothesis class \mathcal{H}
- Bayes classifier h^* with Bayes risk L_D^* , empirical risk minimizer $\hat{h}_n \in \arg\min_{h \in \mathcal{H}} L_S(h)$
- Excess risk: $\forall h \in \mathcal{H}, L_D(h) L_D^* = \mathbb{E}[|2\eta(X) 1|\mathbb{1}\{h(X) \neq h^*(X)\}]$
- Massart's margin condition: $|2\eta(X) 1| \ge 2\gamma > 0$ almost surely
- Then $L_D(h) L_D^* \geq 2\gamma \mathbb{P}(h(X) \neq h^*(X))$
- But for all $h \in \mathcal{H}$, since $L_D(h) = \mathbb{E}[L_S(h)]$:

$$L_{D}(h) - L_{D}^{*} = L_{D}(h) - L_{S}(h) + L_{S}(h) - L_{S}(h^{*}) + L_{S}(h^{*}) - L_{D}(h^{*})$$

$$= \underbrace{L_{S}(h) - L_{S}(h^{*})}_{\leq 0 \text{ for } h = \hat{h}_{n}} + \underbrace{L_{S}(h^{*}) - L_{S}(h) - \mathbb{E}[L_{S}(h^{*}) - L_{S}(h)]}_{\triangleq \frac{1}{n} \sum_{i=1}^{n} Z_{i} - \mathbb{E}[Z_{i}]$$

where $Z_i = \mathbb{1}\{h^*(X_i) \neq Y_i\} - \mathbb{1}\{h(X_i) \neq Y_i\}$

- $Z_i \mathbb{E}[Z_i] \leq 2$ and $\mathbb{E}[Z_i^2] = \mathbb{P}(h(X_i) \neq h^*(X_i)) \leq \frac{L_D(h) L_D^*}{2\gamma}$
- By Bernstein's inequality, with probability $\geq 1-\delta/|\mathcal{H}|$ one has

$$L_D(\hat{h}_n) - L_D^* \le \frac{2\log\frac{|\mathcal{H}|}{\delta}}{3n} + \sqrt{\frac{2\mathbb{E}[Z_1^2]\ln\frac{|\mathcal{H}|}{\delta}}{n}} \le \frac{2\log\frac{|\mathcal{H}|}{\delta}}{3n} + \sqrt{\frac{(L_D(\hat{h}_n) - L_D^*)\ln\frac{|\mathcal{H}|}{\delta}}{\gamma n}}$$

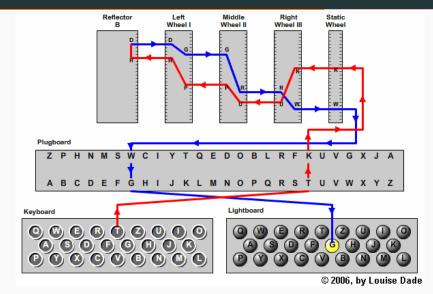
• Lemma: if $x \leq \frac{2\alpha}{3} + \sqrt{\frac{\alpha x}{\gamma}} \stackrel{\triangleq}{=} g(x)$ then $x \leq \frac{2\alpha}{\gamma}$, since $g(2\alpha/\gamma) \leq 2\alpha/\gamma$ for $\gamma \leq 1/2$ • Hence $\mathbb{P}\left(L_D(\hat{h}_n) - L_D^* \leq \frac{2\ln \frac{|\mathcal{H}|}{\delta}}{\gamma n}\right) \geq 1 - \delta$ and $n_{\mathcal{H}}(\epsilon, \delta) \leq \frac{2\ln \frac{|\mathcal{H}|}{\delta}}{\gamma \epsilon}$.

Application: estimating the missing mass

Enigma

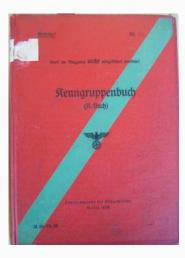
- Electro-mechanical rotor cipher machines, 26 characters
- Invented at the end of WW1 by Arthur Scherbius
- Commercial use, then German Army during WW2
- First cracked by Marian Rejewski in the 1930s (Bomb), then improved to 3. 10¹¹⁴ configurations
- Read Simon Singh, The Code Book

Enigma



Src: http://enigma.louisedade.co.uk/

Battle of the Atlantic



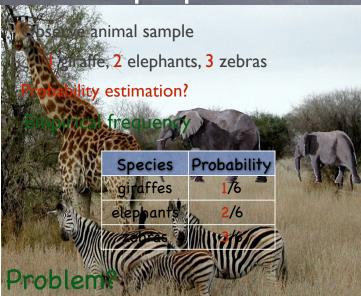
- Massively used by the German Kriegsmarine and Luftwaffe
- weakness: 3-letters setting to initiate communication, taken from the *Kenngruppenbuch*
- Government Code and Cypher School: Bletchley Park (on the train line between Cambridge and Oxford)
- Colossus (first programmable computers) in 1943

- Discrete alphabet A.
- Unknown probability P on A
- Sample X_1, \ldots, X_n of independent draws of P.
- Goal : use the sample estimate P(a) for all $a \in A$.

Natural idea:

$$\hat{P}(a) = \frac{N(a)}{n}$$
, where $N(a) = \#\{i : X_i = a\}$

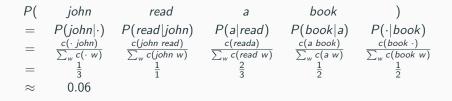
Safari preparation



[Src: https://nlp.stanford.edu/~wcmac]

Learning set: john read moby dick mary read a different book she read a book by cher

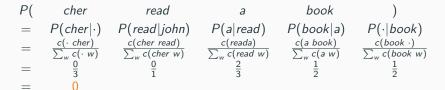
$$egin{aligned} & \mathcal{P}(w_i|w_{i-1}) = rac{c(w_{i-1}w_i)}{\sum_w c(w_{i-1}w)} \ & \mathcal{P}(s) = \prod_{i=1}^{l+1} p(w_i|w_{i-1}) \end{aligned}$$



[Src: https://nlp.stanford.edu/~wcmac]

Learning set: john read moby dick mary read a different book she read a book by cher

$$egin{aligned} P(w_i | w_{i-1}) &= rac{c(w_{i-1}w_i)}{\sum_w c(w_{i-1}w)} \ P(s) &= \prod_{i=1}^{l+1} p(w_i | w_{i-1}) \end{aligned}$$



⇒ useless, the unseen **must** be treated correctly.

Pierre-Simon de Laplace (1749-1827), Thomas Bayes (1702-1761) Will the sun rise tomorrow?

$$\hat{P}(a) = \frac{N(a) + 1}{n + |A|}$$

- good for small alphabets and many samples
- very bad when lots of items seen once (ex: DNA sequences)
- |A| can be very large (or even infinite), but P concentrated on few items
- \implies not a satisfying solution to the problem

Alan Turing

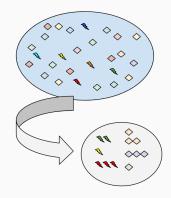
Irving John Good

1912-1954 student of Godfrey Harold Hardy in Cambridge PhD from Princeton with Alonzo Church

1916-2009 Graduated in Cambridge Academic carrer in Bayesian statistics in Manchester and then in the University of Virginia (USA)

 X_1, \ldots, X_n independent draws of $P \in \mathfrak{M}_1(A)$.

$$O_n(x) = \sum_{m=1}^n \mathbb{1}\{X_m = x\}$$



How to 'estimate' the total mass of the unseen items

$$R_n = \sum_{x \in A} P(x) \mathbb{1} \{ O_n(x) = 0 \} ?$$

The Good-Turing Estimator

See [I.J. Good, 1953], credits idea to A. Turing

Idea: in order to estimate the mass of the unseen

$$R_n = \sum_{x \in \mathcal{A}} P(x) \mathbb{1}\{O_n(x) = 0\},$$

use the number of **hapaxes** = items seen only once (linguistic)

$$\hat{R}_n = \frac{U_n}{n}$$
, where $U_n = \sum_{x \in A} \mathbb{1}\{O_n(x) = 1\}$

Lemma [Good '53]: For every distribution P,

 $0 \leq \mathbb{E}[\hat{R}_n] - \mathbb{E}[R_n] \leq \frac{1}{n}$

Completely non-parametric: no assumption on P

$$\mathbb{E}[\hat{R}_{n}] - \mathbb{E}[R_{n}] = \frac{1}{n} \sum_{x \in A} \mathbb{P}(O_{n}(x) = 1) - \sum_{x \in A} P(x) \mathbb{P}(O_{n}(x) = 0)$$

$$= \frac{1}{n} \sum_{x \in A} n P(x) (1 - P(x))^{n-1} - \sum_{x \in A} P(x) (1 - P(x))^{n}$$

$$= \sum_{x \in A} P(x) (1 - P(x))^{n-1} (1 - (1 - P(x)))$$

$$= \frac{1}{n} \sum_{x \in A} P(x) \times n P(x) (1 - P(x))^{n-1}$$

$$= \frac{1}{n} \sum_{x \in A} P(x) \mathbb{P}(O_{n}(x) = 1)$$

$$= \frac{1}{n} \mathbb{E}\left[\sum_{x \in A} P(x) \mathbb{I}\{O_{n}(x) = 1\}\right] \in \left[0, \frac{1}{n}\right]$$

Jackknife interpretation

If we had additionnal samples, we would estimate R_n by the proportion of unseen elements in X_{n+1}, X_{n+2}, \ldots

We have no additionnal samples, **but** we keep every observation as a "test", pretending that the samples was made of everything else:

$$\hat{\mathsf{R}}_{n} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ x_{i} \notin \{ x_{j} : j \neq i \} \}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ O_{n}(x_{i}) = 1 \}$$
$$= \frac{1}{n} \sum_{x \in \mathcal{A}} \mathbb{1} \{ O_{n}(x) = 1 \}$$

Remark: jackknife is a **resampling method**, related to **bootstrap** and **crossvalidation** (of great use in Machine Learning).

Proposition: With probability at least $1 - \delta$ for every *P*,

$$\hat{R}_n - rac{1}{n} - (1+\sqrt{2})\sqrt{rac{\log(4/\delta)}{n}} \leq R_n \leq \hat{R}_n + (1+\sqrt{2})\sqrt{rac{\log(4/\delta)}{n}}$$

See [McAllester and Schapire '00, McAllester and Ortiz '03]:

- deviations of \hat{R}_n : McDiarmid's inequality
- deviations of R_n : negative association

Other tool: Poissonization [see Optimal Probability Estimation with Applications to Prediction and Classification, by Acharya, Jafarpour, Orlitsky Suresh, Colt 2013]

Negative Association - Definition, Properties, and Applications, by David Wajc https: //www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf

Balls and Bins:A Study in Negative Dependence, by Balls and Bins:A Study in Negative Dependence, https://www.brics.dk/RS/96/25/BRICS-RS-96-25.pdf Intuitively: X_1, \ldots, X_n are negatively associated when, if a subset I a variables is "high", a disjoint subset J has to be "low".

Definition

A set of real-valued random variables $X_1, X_2, ..., X_n$ is said to be negatively associated (NA) if for any two disjoint index sets $I, J \subset [n]$ and two functions f, g both monotone increasing or both monotone decreasing, it holds

$$\mathbb{E}\Big[f(X_i:i\in I)\,g\big(X_j:j\in J\big)\Big] \leq \mathbb{E}\big[f(X_i:i\in I)\Big]\,\mathbb{E}\Big[g\big(X_j:j\in J\big)\Big]$$

NB: *f* is monotone increasing if $\forall i \in I, x_i \leq x'_i$ implies $f(x) \leq f(x')$.

First properties

Let $X_1, X_2, ..., X_n$ be NA.

- For all $i \neq j$, $\mathbb{E}[X_i X_j] \leq \mathbb{E}[X_i] \mathbb{E}[X_j]$ i.e. $\operatorname{Cov}(X_i, X_j) \leq 0$.
- For any disjoints subsets I, J ⊂ [n] and all x₁,..., x_n

 $\mathbb{P}(X_i \ge x_i : i \in I \cup J) \le \mathbb{P}(X_i \ge x_i : i \in I) \mathbb{P}(X_j \ge x_j : j \in J) \text{ and} \\ \mathbb{P}(X_i \le x_i : i \in I \cup J) \le \mathbb{P}(X_i \le x_i : i \in I) \mathbb{P}(X_j \le x_j : j \in J)$

For all monotone increasing functions f₁,..., f_k depending on disjoint subsets of the (X_i)_i,

$$\mathbb{E}\Big[\prod_j f_j(X)\Big] \leq \prod_j \mathbb{E}\big[f_j(X)\big]$$

• For all x_1, \dots, x_n , $\mathbb{P}\left(\bigcap_i \{X_i \ge x_i\right) \le \prod_i \mathbb{P}(X_i \ge x_i)$ and $\mathbb{P}\left(\bigcap_i \{X_i \le x_i\}\right) \le \prod_i \mathbb{P}(X_i \le x_i)$ For Chernoff's method (which relies on exponential moments), NA variables can simply be treated as independent!

In particular:

Chernoff-Hoeffding bound

Let X_1, \ldots, X_n be NA random variables with $X_i \in [a_i, b_i]$ a.s. Then $S = X_1 + \cdots + X_n$ satifies Hoeffding's tail bound: for all $t \ge 0$,

$$\mathbb{P}\Big[\big|S - E[S]\big| \ge t\Big] \le 2\exp\left(-\frac{2t^2}{\sum_i(b_i - a_i)^2}\right)$$

- Independent variables...
- 0-1 principle If X₁,... X_n are Bernoulli variables and ∑_i X_i ≤ 1 a.s., then they are NA.

Let f and g are monotically increasing and depend on disjoint subsets of indices. $\mathbb{E}[f(X)g(X)] \leq \mathbb{E}[f(X)]\mathbb{E}[g(X)] \iff \mathbb{E}[\tilde{f}(X)] \leq \mathbb{E}[\tilde{f}(X)]\mathbb{E}[\tilde{g}(X)]$, where $\tilde{f}(X) = f(X) - f(\tilde{0})$ and $\tilde{g}(X) = g(X) - g(\tilde{0})$. But $\tilde{f}(X)g(X) = 0$ always, while $\tilde{f}(X) \geq 0$ and $\tilde{g}(X) \geq 0$.

- **Permutation distributions** If $x_1 \leq \cdots \leq x_n$ and if X_1, \ldots, X_n are random variables such that $\{X_1, \ldots, X_n\} = \{x_1, \ldots, x_n\}$ a.s., with all assignments equally likely, then they are NA.
- Sampling without replacement If X₁,..., X_n are sample without replacement from {x₁,..., x_N} (with N ≥ n), then they are NA.

Union

If the $\{X_i : i \in I\}$ are NA, if $\{Y_j : j \in J\}$ are NA, and if the $\{X_i\}$ are independent from the $\{Y_j\}$, then the $\{X_i, Y_j : i \in I, j \in J\}$ are NA.

Concordant monotone

If the $\{X_i : i \in I\}$ are NA, if $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ are all monotonically increasing and depend on different subsets of [n], then $\{f_j(X) : 1 \le j \le k\}$ are NA. The same holds if $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ are all monotonically decreasing.

Bins and balls

The standard bins and balls process consists of m balls and n bins.

- each ball *b* is independently placed in bin *i* with probability $p_{b,i}$: $X_b \stackrel{indep}{\sim} \mathcal{M}ulti(p_{b,\cdot}).$
- occupancy number $B_i = \sum_{b=1}^n \mathbb{1}\{X_b = i\}$ number of balls in bin *i*.

In particular
$$\sum_{i=1}^{n} B_i = m$$
.

Prop: The B_i are NA.

Let $X_{b,i} = 1$ {ball b fell into bin i}. By the 0 - 1 principle, for all $1 \le b \le m$ the $\{X_{b,i} : 1 \le i \le n\}$ are NA. By independence and closure under union, so are the $\{X_{b,i} : 1 \le b \le m, 1 \le i \le n\}$. By closure under concordant monotone functions, the $B_i = \sum_{b=1}^n X_{b,i}$ are NA.

Consequence: Concentration of the number $N = \sum_{i} \mathbb{1}\{B_i = 0\}$ of empty bins, since the $(\mathbb{1}\{B_i = 0\})_i$ are NA.

If $p_{b,i} = 1/n$, then the number N of empty bins satisfies $N = n e^{-m/n} \pm O(\sqrt{n e^{-m/n}}).$ R_n is better concentrated than $S_n = \sum_{x \in A} P(x) B_x$ where the $B_x \sim \mathcal{B}(((1 - P(x))^n))$ are independent.

Hence

$$\mathbb{V}ar[R_n] \le \sum_{x} P(x)^2 e^{-nP(x)} \le \sum_{x} P(x) \max_{0 \le u \le 1} u e^{-nu} = \frac{1}{ne}$$

and

$$\mathbb{P}(R_n \geq \mathbb{E}[R_n] - \epsilon) \leq \exp\left(-\frac{n\epsilon^2}{2e}\right) \;.$$