Problem sheet # 1

The number of **b** symbols is proportional to the amount of coffee needed to solve each question. Do not hesitate to contact aubrun@math.univ-lyon1.fr for hints.

Exercise 1.1 A proof of the Brunn–Minkowski inequality

This exercise gives a proof of the Brunn–Minkowski inequality: if A, B are nonempty subsets of \mathbb{R}^n such that A, B and A + B are measurable, then

$$\operatorname{vol}(A+B)^{1/n} \ge \operatorname{vol}(A)^{1/n} + \operatorname{vol}(B)^{1/n}.$$
 (1)

- 1. Show (1) when A and B are boxes (=rectangular parallelepipeds whose sides are parallel to the coordinate hyperplanes).
- 2. Show (1) when A is the union of M disjoint boxes and B is the union of N disjoint boxes, by induction on M + N. For the induction step, use the following trick. Consider an axis parallel hyperplane H cutting \mathbb{R}^n into half-spaces H^- and H^+ , and reduce to the case where (1) $A \cap H^$ and $A \cap H^+$ are both the union of $\langle M$ disjoint boxes and (2) $\frac{\operatorname{vol}(A \cap H^-)}{\operatorname{vol}(A)} = \frac{\operatorname{vol}(B \cap H^-)}{\operatorname{vol}(B)}$; then use the inequality $\operatorname{vol}(A + B) \ge \operatorname{vol}((A \cap H^+) + (B \cap H^+)) + \operatorname{vol}((A \cap H^-) + (B \cap H^-))$.
- 3. ****** If you know enough about measure theory, prove (1) in the general case.

Exercise 1.2 Brunn–Minkoswki, variant

- Show the equivalence of the following statements
- 1. For every non-empty compact sets A, B in \mathbb{R}^n , we have $\operatorname{vol}(A+B)^{1/n} \ge \operatorname{vol}(A)^{1/n} + \operatorname{vol}(B)^{1/n}$.
- 2. For every compact sets A, B in \mathbb{R}^n and $t \in]0,1[$, we have $\operatorname{vol}(tA + (1-t)B) \ge \operatorname{vol}(A)^t \operatorname{vol}(B)^{1-t}$.

 $1 \Longrightarrow 2 \text{ is not hard } \text{; for } 2 \Longrightarrow 1 \text{ set } a = \operatorname{vol}(A)^{1/n} \text{ and } b = \operatorname{vol}(B)^{1/n} \text{ and write the set } A + B \text{ as } (a+b)\left[\frac{a}{a+b}\frac{A}{a} + \frac{b}{a+b}\frac{B}{b}\right]$

Exercise 1.3 Speed of convergence for the centroid algorithm

You can use (or ******** prove) the following result: if X is a log-concave random variable, then $\mathbf{P}(X \ge \mathbf{E}X) \ge 1/e$.

- 1. Let K be a convex body (=convex compact set with non-empty interior) in \mathbb{R}^n . The centroid (or barycenter) of K is defined as $c(K) = \frac{1}{\operatorname{vol} K} \int_K x \, dx$. Show that if H is a half-space with $c(K) \in \partial H$, then $\frac{1}{e} \operatorname{vol}(K) \leq \operatorname{vol}(K \cap H) \leq (1 \frac{1}{e}) \operatorname{vol}(K)$.
- 2. Let $f: K \to [-B, B]$ a convex function and m be its minimum on K. Pick x_0 such that $f(x_0) = m$. Our goal is to devise an algorithm which approximates m. We may call an oracle which, given $x \in K$, outputs a *subgradient*, i.e. a linear form ℓ_x such that $f(y) \ge f(x) + \ell_x(y - x)$ for every $y \in K$.
 - (a) \clubsuit Why is the problem solved if $\ell_x = 0$?
 - (b) Define by induction a sequence (K_j) of convex bodies by $K_1 = K$, $c_j = c(K_j)$ and $K_{j+1} = K_j \cap H$ where H is the half-space $\{y : \ell_{c_j}(y c_j) \leq 0\}$. Show that $\operatorname{vol}(K_j) \leq (1 1/e)^j \operatorname{vol}(K)$ and that $x_0 \in K_j$.
 - (c) For $0 < \varepsilon < 1$, consider the set $K_{(\varepsilon)} = (1 \varepsilon)x_0 + \varepsilon K$. Suppose that there is a point $y \in K_{(\varepsilon)} \setminus K_j$. Show that $f(c_j) < f(y) \leq m + 2\varepsilon B$.
 - (d) \clubsuit Compare the volume of the sets $K_{(\varepsilon)}$ and K_j and conclude that that $O(n \log(2B/\delta))$ oracle queries suffice to approximate m up to additive error δ .
 - (e) What concern could you have about the computational complexity of this algorithm?

Exercise 1.4 Kissing numbers

For $n \ge 1$, let K_n be the maximal number of unit balls in \mathbb{R}^n with pairwise disjoint interiors which are tangent to B_n . So Compute K_1 and K_2 , so the check that $K_3 \ge 12$ (there is equality) and so prove the bounds

$$\left(\frac{2}{\sqrt{3}} + o(1)\right)^n \leqslant K_n \leqslant (2 + o(1))^n$$

by considering an equivalent packing problem on S^{n-1} .

Remark. The exact value of K_n is known only for $n \in \{1, 2, 3, 4, 8, 24\}$.

Exercise 1.5 Nets and convex hull

Let $\mathcal{N} \subset S^{n-1}$ and $\theta \in (0, \pi/2)$. $\blacksquare \blacksquare$ Show that \mathcal{N} is a θ -net in (S^{n-1}, g) if and only if $(\cos \theta)B_n \subset \operatorname{conv} \mathcal{N}$.

Exercise 1.6 Isoperimetry: sphere vs Euclidean space

where Why can the isoperimetric inequality on \mathbb{R}^{n-1} be deduced from the isoperimetric inequality on S^{n-1} ?

Exercise 1.7 Packing and covering in the discrete cube

You can use or W prove the following inequality: for integers $0 \leq k \leq n$ we have

$$\frac{1}{n+1}2^{nH(k/n)} \leqslant \sum_{j=0}^{k} \binom{n}{j} \leqslant 2^{nH(k/n)}$$

where $H(t) = -t \log_2 t - (1-t) \log_2 (1-t)$ is the binary entropy function.

1. Let $Q_n = \{0,1\}^n$. For $x, y \in Q_n$, define $d(x,y) = \frac{1}{n} \operatorname{card} \{i \ x_i \neq y_i\}$. For $\varepsilon \in (0,1)$, denote by $N(Q_n, \varepsilon)$ and $P(Q_n, \varepsilon)$ the covering and packing numbers for the metric space (Q_n, d) . For $0 < \varepsilon < 1/2$, show that

$$1 - H(\varepsilon) \leq \limsup_{n \to \infty} n^{-1} \log_2 P(Q_n, \varepsilon) \leq 1 - H(\varepsilon/2)$$

2. We For $0 < \varepsilon < 1/2$, show by a random covering argument that

$$\lim_{n \to \infty} n^{-1} \log_2 N(Q_n, \varepsilon) = 1 - H(\varepsilon)$$