Problem sheet # 2

Exercise 2.1 Tricks with concentration

Let X be random variable and $a \in \mathbf{R}$ such that for every $t \ge 0$,

$$\mathbf{P}(|X-a| \ge t) \le C \exp(-\alpha t^2)$$

- **b** Show the following inequalities, where C_i and $\alpha_i > 0$ depend only on C and α
 - 1. $\mathbf{P}(|X \mathbf{E}X| \ge t) \le C_1 \exp(-\alpha_1 t^2),$
 - 2. $\mathbf{P}(|X M_X| \ge t) \le C_2 \exp(-\alpha_2 t^2)$, where M_X is a median of X,
 - 3. (assuming $X \ge 0$) $\mathbf{P}(|X \sqrt{\mathbf{E}X^2}| \ge t) \le C_3 \exp(-\alpha_3 t^2)$.

Exercise 2.2 Stochastic domination

Let X, Y be random variables. \blacksquare Show that the following inequalities are equivalent

- For every $t \in \mathbf{R}$, $\mathbf{P}(X \ge t) \le \mathbf{P}(Y \ge t)$,
- For every increasing function $f: \mathbf{R} \to \mathbf{R}$ such that f(X) and f(Y) are integrable, $\mathbf{E}f(X) \leq \mathbf{E}f(Y)$,
- There is a probability space Ω and random variables X', Y' defined on Ω such that X' has the same law as X, Y' as the same law as Y and $\mathbf{P}(X' \leq Y') = 1$.

Exercise 2.3 An alternative argument for Gaussian concentration

The goal of this exercise is to show that the following: if $G = (G_1, \ldots, G_n)$ are i.i.d. N(0, 1) random variables and $f : \mathbf{R}^n \to \mathbf{R}$ is 1-Lipschitz, then for every $t \ge 0$,

$$\mathbf{P}\left(\left|f(G) - \mathbf{E}f(G)\right| \ge t\right) \le 2e^{-\frac{2t^2}{\pi^2}}.$$

- 1. Show that we can assume that f is C^1 and $\mathbf{E}f(G) = 0$.
- 2. Let *H* be an independent copy of *G*, and for $0 \le \theta \le \pi/2$, define $G_{\theta} = G\sin(\theta) + H\cos(\theta)$. Show that for every θ , $(G_{\theta}, \frac{d}{d\theta}G_{\theta})$ has the same distribution as (G, H).
- 3. Show that for every convex function $\psi : \mathbf{R} \to \mathbf{R}$ we have

$$\mathbf{E}\left[\psi(f(G))\right] \leqslant \mathbf{E}\left[\psi(f(G) - f(H))\right] = \mathbf{E}\left[\psi\left(\int_{0}^{\pi/2} \langle \nabla f(G_{\theta}), \frac{\mathrm{d}}{\mathrm{d}\theta}G_{\theta} \rangle \,\mathrm{d}\theta\right)\right] \leqslant \mathbf{E}\left[\psi\left(\frac{\pi}{2} \langle \nabla f(G), H \rangle\right)\right].$$

4. Subscripts the previous inequality to $\psi: x \mapsto \exp(\lambda x)$ for $\lambda \ge 0$, and deduce that

$$\mathbf{E}\left[\exp(\lambda f(G))\right] \leq \exp(\pi^2 \lambda^2/8).$$

5. 🛎 🛎 Conclude.

Exercise 2.4 Symmetric Gaussian matrices

Denote by $\lambda_1(A)$ the largest eigenvalue of a symmetric matrix A. Let G be a $n \times n$ random matrix with independent N(0,1) entries and $H = \frac{G+G^t}{2}$ the symmetric part of G.

- 1. September 1. It is the using Slepian's lemma, show that $\mathbf{E}\lambda_1(H) \leq \sqrt{2n}$.
- 2. \clubsuit Check on a software that this result is sharp for large n. Plot the whole spectrum of H. What can you see?

Exercise 2.5 Ehrhard inequality

Denote $\Phi(t) = \mathbf{P}(X \leq t)$ for $X \sim N(0, 1)$. The following inequality is true and called the Ehrhard inequality: for any Borel sets $A, B \subset \mathbf{R}^n$ and $t \in [0, 1]$,

$$\Phi^{-1}(\gamma_n(((1-t)A+tB) \ge (1-t)\Phi^{-1}(\gamma_n(A)) + t\Phi^{-1}(\gamma_n(B)).$$
(1)

- 1. \blacksquare Check that there is equality when A and B are half-spaces with $A \subset B$ or $B \subset A$.
- 2. Solution the Gaussian isoperimetric inequality from (1) by choosing $B = \frac{r}{t}B_2^n$ and taking $t \to 0$.
- 3. We are going to show that for any convex function $F : \mathbf{R}^n \to \mathbf{R}$, if G is a standard Gaussian vector in \mathbf{R}^n , then $M_{F(G)} \leq \mathbf{E}F(G)$, where $M_{F(G)}$ denotes the median.
 - (a) Using (1), show that the function $g: t \mapsto \Phi^{-1}(\mathbf{P}(F(G) \leq t))$ is concave on \mathbf{R} .
 - (b) Deduce that there exists $\alpha > 0$ such that $g(t) \leq \alpha(t M_{F(G)})$ for every $t \in \mathbf{R}$.
 - (c) Conclude that $M_{F(G)} \leq \mathbf{E}F(G)$.