Problem sheet # 3

The number of **w** symbols is proportional to the amount of coffee needed to solve each question. Do not hesitate to contact aubrun@math.univ-lyon1.fr for hints.

Exercise 1.1 Subgaussian random variables

Let X be a random variable. Define the following quantities

$$||X||_{\psi_2} = \sup_{p\geqslant 1} \frac{||X||_{L^p}}{\sqrt{p}},$$

$$||X||'_{\psi_2} = \inf\{t \ge 0 : \mathbf{E} \exp(|X/t|^2) \le 2\},$$

$$Tail(X) = \inf\{K > 0 : \mathbf{P}(|X| \ge t) \le 2\exp(-t^2/K^2) \text{ for every } t \ge 0\}$$

1. Show that these 3 quantities are equivalent, in the sense that

$$\|\cdot\|_{\psi_2} \leqslant C_1 \|\cdot\|_{\psi_2}', \|\cdot\|_{\psi_2}' \leqslant C_2 Tail(\cdot), Tail(\cdot) \leqslant C_3 \|\cdot\|_{\psi_2}$$

for some absolute constants C_1, C_2, C_3 .

2. $\blacksquare \blacksquare \blacksquare$ Show that if (X_i) are independent subgaussian random variables with mean zero, then

$$\left\| \sum X_i \right\|_{\psi_2} \leqslant C \left(\sum \|X_i\|_{\psi_2}^2 \right)^{1/2}$$

for some absolute constant C.

3. $\blacksquare \blacksquare$ Show that if X_1, \ldots, X_N are subgaussian random variables, then

$$\mathbf{E} \sup_{1 \leqslant i \leqslant N} X_i \leqslant C \sqrt{\log N} \sup_{1 \leqslant i \leqslant N} \|X_i\|_{\psi_2}$$

for some absolute constant C.

Exercise 1.2 Nets and packing in the sphere.

 $\blacksquare \blacksquare$ Show that if (T,d) is a metric space, then for every $\varepsilon > 0$,

$$P(T, d, 2\varepsilon) \leqslant N(T, d, \varepsilon) \leqslant P(T, d, \varepsilon).$$

Let d be the distance on S^{n-1} induced from the Euclidean distance. Show that if $0 < \varepsilon < 1$, then

$$N(S^{n-1}, d, \varepsilon) \leqslant \left(1 + \frac{2}{\varepsilon}\right)^n \leqslant (3/\varepsilon)^n$$

(to bound the cardinality of an ε -separated set $P \subset S^{n-1}$, consider the volume of the union of n-dimensional balls of radius ε centered at P)

Exercise 1.3 An example where Dudley inequality is not sharp.

Let (Z_k) be a sequence of i.i.d. N(0,1) random variables and set $X_k = Z_k/\sqrt{1 + \log k}$. Show that $\mathbf{E} \sup X_k$ is finite, but that the upper bound given by Dudley's integral is of order $\log \log n$ for the Gaussian process $(X_k)_{1 \leq k \leq n}$.

Exercise 1.4 Concentration on a subspace via the Dudley integral

Let $f: S^{n-1} \to \mathbf{R}$ be a 1-Lipschitz function with mean zero. Let $O \in \mathsf{O}(n)$ be a random matrix distributed according to the Haar measure. Let E_0 be a fixed subspace of dimension k, and $E = O(E_0)$; then E is distributed according the to uniform measure $\mu_{n,k}$.

1. Let \mathcal{N} be a ε -net in the unit sphere of E_0 . \blacksquare Show that

$$\mathbf{P}(\exists x \in S^{n-1} \cap E_0, |f(O(x))| > \varepsilon) \leq \mathbf{P}(\exists x \in \mathcal{N}, |f(O(x))| > 2\varepsilon) \leq (\operatorname{card} \mathcal{N}) 2 \exp(-cn\varepsilon^2)$$

(you need to realize that for every $x \in S^{n-1}$, the distribution of O(x) is σ) and conclude that with high probability, the supremum of |f| on a random k-dimensional subspace is $\leq \varepsilon$ whenever $k \leq c\varepsilon^2 \log(1/\varepsilon)n$.

2. In order to improve the above analysis, we now use the Dudley integral. Let (S,d) the unit sphere in E_0 equipped with the induced Euclidean distance. Show that the process $(X_s)_{s\in S}$ defined by $X_s=f(O(s))$ is subgaussian with constant C/\sqrt{n} . Deduce that

$$\mathbf{E} \sup_{x \in S} X_s \leqslant \frac{C}{\sqrt{n}} \int_0^\infty \sqrt{\log N(S, d, \varepsilon)} \, \mathrm{d}\varepsilon \leqslant C' \sqrt{k/n}$$

and \clubsuit conclude that the factor $\log(1/\varepsilon)$ can be removed from the conclusion in question 1.