Concentration of measure in probability and high-dimensional statistical learning -Master 2 – Homework 1

November 2020

In this problem, we denote by $\mathcal{B}(n,p)$ the binomial distribution with parameters $n \in \mathbb{N}$ and $p \in [0,1]$ and by 1 the indicator function. We assume that k and m are integers, and that $n = m \times (2k - 1)$. We assume that X_1, \ldots, X_n are i.i.d. random variables on \mathbb{R} with expectation μ and finite variance σ^2 , but we do not assume that X_1 has finite exponential moments.

Given a fixed risk δ (for example $\delta = 1\%$), we want to construct a confidence interval I_n for μ , that is a $\sigma(X_1, \ldots, X_n)$ -measurable interval $I_n = [L_n, U_n]$ such that $\mathbb{P}(\mu \in I_n) \ge 1 - \delta$.

- 1. What confidence interval can you propose using the deviation inequalities you already know? How does its width depend on δ ?
- 2. If you know that there exists s > 0 such that $\mathbb{P}(-s \le X_1 \le s) = 1$, what better confidence interval can you propose? How does its width depend on δ ?
- 3. Let ℓ be a positive integer, let $0 \le p \le q \le 1$, let $Y \sim \mathcal{B}(\ell, p)$ and $Z \sim \mathcal{B}(\ell, q)$. Show that for every $x \ge 0$, $\mathbb{P}(Y \ge x) \le \mathbb{P}(Z \ge x)$.
- 4. Let k be a positive integer and let $0 \le p \le 1/4$. Show that if $T \sim \mathcal{B}(2k-1,p)$,

$$P(T \ge k) \le \left(\frac{3}{4}\right)^k$$
.

For every $j \in \{1, \dots, 2k-1\}$, we define $M_j = \frac{X_{(j-1)m+1} + X_{(j-1)m+2} + \dots + X_{jm}}{m}$. Let $(M_{(j)})_{1 \le j \le 2k-1}$ be an order statistics of $(M_{(j)})_{1 \le j \le 2k-1}$, that is a 2k-1-uple of random variables such that

 $\{M_{(j)} : 1 \le j \le 2k - 1\} = \{M_j : 1 \le j \le 2k - 1\} \text{ and } M_{(1)} \le M_{(2)} \le \dots \le M_{(2k-1)}.$ Finally, let $\hat{\mu}_{k,m} = M_{(k)}$.

5. Show that for every $j \in \{0, ..., 2k - 2\},\$

$$\mathbb{P}\left(\left|M_j-\mu\right| \geq \frac{2\sigma}{\sqrt{m}}\right) \leq \frac{1}{4}.$$

6. Show that

$$|\hat{\mu}_{k,m} - \mu| \ge \frac{2\sigma}{\sqrt{m}} \implies \sum_{j=1}^{2k-1} \mathbb{1}\left\{ |M_j - \mu| \ge \frac{2\sigma}{\sqrt{m}} \right\} \ge k .$$

7. Show that

$$\mathbb{P}\left(\left|\hat{\mu}_{k,m} - \mu\right| \geq \frac{2\sigma}{\sqrt{m}}\right) \leq \left(\frac{3}{4}\right)^k \; .$$

8. Show that for every $\delta \leq e^{-2}$ and every $n \geq 16 \ln(1/\delta)$, one can find integers k and m such that $n \geq m \times (2k-1)$ and

$$\mathbb{P}\left(\left|\hat{\mu}_{k,m}-\mu\right| \geq 8\sigma \sqrt{\frac{\log \frac{1}{\delta}}{n}}\right) \leq \delta \; .$$

- 9. Deduce from the last question a confidence interval I_n for μ . How does it compare with the one proposed in Question 1? and with the one proposed in Question 2?
- 10. Is it possible to improve the result obtained in Question 8?