
CONCENTRATION OF MEASURE IN PROBABILITY AND

HIGH-DIMENSIONAL STATISTICAL LEARNING

– MASTER 2 – HOMEWORK 2

Problem

In this problem we consider a non-negative loss function (z, h) 7→ `(z, h) defined on
Z ×H, where H is a hypothesis class. Given a learning algorithm A and a training sample
s = (z1, . . . , zn), we denote hs = A(s) the hypothesis hs ∈ H returned by A when applied
on sample s. Recall that if Z1, . . . , Zn are i.i.d. random variables on the sample set X
with some fixed (but unknown) probability distribution P, the empirical risk R̂S(h) of a
hypothesis h on the random sample S = (Z1, . . . , Zn) and its true risk R(h) are given by

R̂S(h) =
1

n

n∑
i=1

`(Zi, h), and R(h) = EZ∼P
[
`(Z, h)

]
.

1. Part 1

We consider as learning algorithm A satisfying the following property: if two samples s
and s′ differ by a single point (e.g., if s = (z1, . . . , zn) and s′ = (z′1, z2, . . . , zn)) then

(K) ∀z ∈ Z,
∣∣`(z, hs)− `(z, hs′)∣∣ ≤ β .

The goal is to control the true risk of hS (with high probability) by its empirical risk.

(1) Consider s = (z1, . . . , zn) and s′ = (z1, . . . , zn−1, z
′
n). Show that∣∣R(hs)−R(hs′)

∣∣ ≤ β .
(2) Show that if the loss ` is bounded by M ≥ 0 then we also have∣∣R̂s(hs)− R̂s′(hs′)

∣∣ ≤ β +
M

n
.

(3) Consider the function f : s = (z1, . . . , zn) 7→ R(hs)− R̂s(hs). Show that if the loss
is bounded by M then

P
(
f(S) ≥ ε+ ES

[
f(S)

])
≤ exp

(
− 2nε2

(2nβ +M)2

)
.

(4) Here the goal is to prove the bound
∣∣∣ES

[
f(S)

]∣∣∣ ≤ β.

(a) Show that ES

[
R(hS)

]
= E(S,Z)∼Pn+1

[
`(Z, hS)

]
.

(b) Show that ES

[
R̂S(hS)

]
= ES∼Pn

[
`(Z1, hS)

]
.
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(c) Given a sample s = (z1, . . . , zn) and z ∈ Z define s′ = g(s, z) = (z, z2, . . . , zn).

Show that E(S,Z)∼Pn+1

[
`(Z, hS′)

]
= ES

[
R̂S(hS)

]
.

(d) Show that
∣∣∣ES

[
f(S)

]∣∣∣ ≤ β.

(5) Given a fixed risk 0 < δ < 1 (for example δ = 5%), deduce from the previous
questions an upper bound Un on R(hS) such that P

(
R(hS) ≤ Un

)
≥ 1− δ.

2. Part 2

In this section we exhibit an algorithm that satisfies the Hypothesis (K) used in Part 1.
Consider ‖·‖ the Euclidean norm on Rd, X the unit Euclidean ball of Rd, Y = {−1,+1}, and
let the hypothesis class H be the set of linear forms h : Rd → R (identified with elements of

Rd) with Euclidean norm bounded by B. For z = (x, y) and h ∈ H let `(z, h) :=
(
y−h(x)

)2
.

Fix λ > 0. For a sample s = (z1, . . . , zn) ∈ Zn define Fs(h) = R̂s(h) + λ‖h‖22. Let hs be a
minimizer of Fs and let A be the algorithm that outputs hs when applied to sample s.

(1) Show that there exists σ > 0 such that for every z = (x, y) ∈ X × Y and every
h1, h2 ∈ H: ∣∣`(z, h1)− `(z, h2)∣∣ ≤ σ∣∣h1(x)− h2(x)

∣∣ .
(2) Show that if f : Rd → R and λ > 0 are such that x 7→ f(x)− λ‖x‖2 is convex, and

if u is a minimizer of f , then ∀w ∈ Rd, f(w)− f(u) ≥ λ‖w − u‖2.
(3) Explain why Fs admits a minimizer on H.
(4) Consider two samples s, s′ differing but exactly one point (e.g. zn = (xn, yn) and

z′n = (x′n, y
′
n)). Let h be a minimizer of Fs and h′ be a minimizer of Fs′ .

(a) Show that
[
Fs(h

′)− Fs(h)
]
−
[
Fs′(h

′)− Fs′(h)
]
≥ 2λ‖h′ − h‖2.

(b) Deduce a lower bound on
[
R̂s(h

′)− R̂s(h)
]
−
[
R̂s′(h

′)− R̂s′(h)
]
.

(c) Show that[
R̂s(h

′
s)− R̂s(hs)

]
−
[
R̂s′(h

′
s)− R̂s′(hs)

]
≤ σ

n

(∣∣h′(xn)− h(xn)
∣∣+
∣∣h′(x′n)− h(x′n)

∣∣) .
(d) Deduce that 2λ‖h′ − h‖2 ≤ 2σ

n
‖h′ − h‖.

(e) Prove that there exists β such that: for each z ∈ Z,∣∣`(z, h′)− `(z, h)
∣∣ ≤ β .

(5) How does the value of β obtained in the previous question depend on n ? Combined
with the main conclusion of Part 1, how does the upper bound Un depend on n ?
Is it expected ?

(6) Can the result be adapted when H is the set of all linear forms (i.e. B =∞) ?
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Exercise 1
We denote by | · | the Euclidean norm on Rn, and by Bn the corresponding unit ball.

Recall that if G ∼ N(0, Idn), then for every 1-Lipschitz function f : (Rn, | · |) → R and
t ≥ 0,

(O) P
(
f(G) ≥ E

[
f(G)

]
+ t
)
≤ exp(−t2/2).

We consider a Gaussian cloud (Gi)1≤i≤N where Gi are i.i.d. N(0, Idn) random vectors
and N � n. Let K be the convex hull of {Gi : 1 ≤ i ≤ N}.

(1) Show that P
(
|G| ≥

√
n+ t

)
≤ exp(−t2/2). Deduce that if N ≥ en, then

P
(
K ⊂ 3

√
logNBn

)
≥ 1− 1

N
.

(2) Show that if (Xi)1≤i≤N are i.i.d. N(0, 1) random variables, then

E
[

max
1≤i≤N

Xi

]
≥ c
√

logN

for some constant c > 0.
(3) Deduce from (2) and (O) that for every x ∈ Sn−1,

P

(
sup
y∈K
〈x, y〉 ≤ c

2

√
logN

)
≤ N−c2/8.

(4) Let 0 < ε < 1. Show that if P ⊂ Sn−1 is an ε-separated set (with respect to the
induced Euclidean distance), then

εn card(P ) ≤ (1 + ε)n .

Conclude that Sn−1 contains a ε-net (ε-dense) with cardinality ≤ (1 + 2/ε)n ≤
(3/ε)n.

(5) Choose a number α ≥ e such that αc2/8 > 36/c. Show that if N ≥ αn then
c

4

√
logNBn ⊂ K ⊂ 3

√
logNBn

with large probability.
Hint: Use (3) for x in a c

12 -net of Sn−1, and the union bound.

Exercise 2
An airline defines a suitcase (identified as a parallepiped) to be admissible if the sum of

its dimensions (length+width+height) does not exceed 115 centimeters. Is it possible to
hide a non-admissible suitcase inside an admissible suitcase?

Hint: Consider one of the notions introduced in Lecture 13.


