CONCENTRATION OF MEASURE IN PROBABILITY AND HIGH-DIMENSIONAL STATISTICAL LEARNING – MASTER 2 – HOMEWORK 2

Problem

In this problem we consider a non-negative loss function $(z,h) \mapsto \ell(z,h)$ defined on $\mathcal{Z} \times \mathcal{H}$, where \mathcal{H} is a hypothesis class. Given a learning algorithm \mathcal{A} and a training sample $s = (z_1, \ldots, z_n)$, we denote $h_s = \mathcal{A}(s)$ the hypothesis $h_s \in \mathcal{H}$ returned by \mathcal{A} when applied on sample s. Recall that if Z_1, \ldots, Z_n are i.i.d. random variables on the sample set \mathcal{X} with some fixed (but unknown) probability distribution \mathbb{P} , the empirical risk $\hat{\mathcal{R}}_S(h)$ of a hypothesis h on the random sample $S = (Z_1, \ldots, Z_n)$ and its true risk $\mathcal{R}(h)$ are given by

$$\hat{\mathcal{R}}_S(h) = \frac{1}{n} \sum_{i=1}^n \ell(Z_i, h), \text{ and } \mathcal{R}(h) = \mathbb{E}_{Z \sim \mathbb{P}} [\ell(Z, h)].$$

1. Part 1

We consider as learning algorithm \mathcal{A} satisfying the following property: if two samples s and s' differ by a single point (e.g., if $s = (z_1, \ldots, z_n)$ and $s' = (z'_1, z_2, \ldots, z_n)$) then

$$(\bigstar) \qquad \qquad \forall z \in \mathcal{Z}, \left| \ell(z, h_s) - \ell(z, h_{s'}) \right| \le \beta$$

The goal is to control the true risk of h_S (with high probability) by its empirical risk.

(1) Consider $s = (z_1, ..., z_n)$ and $s' = (z_1, ..., z_{n-1}, z'_n)$. Show that

$$\mathcal{R}(h_s) - \mathcal{R}(h_{s'}) \Big| \leq \beta$$
.

(2) Show that if the loss ℓ is bounded by $M \ge 0$ then we also have

$$\left|\hat{\mathcal{R}}_{s}(h_{s}) - \hat{\mathcal{R}}_{s'}(h_{s'})\right| \leq \beta + \frac{M}{n}.$$

(3) Consider the function $f: s = (z_1, \ldots, z_n) \mapsto \mathcal{R}(h_s) - \hat{\mathcal{R}}_s(h_s)$. Show that if the loss is bounded by M then

$$\mathbb{P}\Big(f(S) \ge \epsilon + \mathbb{E}_S\big[f(S)\big]\Big) \le \exp\left(-\frac{2n\epsilon^2}{(2n\beta + M)^2}\right).$$

- (4) Here the goal is to prove the bound $\left|\mathbb{E}_{S}[f(S)]\right| \leq \beta$.
 - (a) Show that $\mathbb{E}_S[\mathcal{R}(h_S)] = \mathbb{E}_{(S,Z)\sim\mathbb{P}^{n+1}}[\ell(Z,h_S)].$
 - (b) Show that $\mathbb{E}_S[\hat{\mathcal{R}}_S(h_S)] = \mathbb{E}_{S \sim \mathbb{P}^n}[\ell(Z_1, h_S)].$

Date: November 2020.

CONCENTRATION OF MEASURE, HOMEWORK 2

- (c) Given a sample $s = (z_1, \ldots, z_n)$ and $z \in \mathbb{Z}$ define $s' = g(s, z) = (z, z_2, \ldots, z_n)$. Show that $\mathbb{E}_{(S,Z)\sim\mathbb{P}^{n+1}}\left[\ell(Z,h_{S'})\right] = \mathbb{E}_{S}\left[\hat{\mathcal{R}}_{S}(h_{S})\right].$
- (d) Show that $\left|\mathbb{E}_{S}[f(S)]\right| \leq \beta$.
- (5) Given a fixed risk $0 < \delta < 1$ (for example $\delta = 5\%$), deduce from the previous questions an upper bound U_n on $\mathcal{R}(h_S)$ such that $\mathbb{P}(\mathcal{R}(h_S) \leq U_n) \geq 1 - \delta$.

2. PART 2

In this section we exhibit an algorithm that satisfies the Hypothesis (\star) used in Part 1. Consider $\|\cdot\|$ the Euclidean norm on \mathbb{R}^d , \mathcal{X} the unit Euclidean ball of \mathbb{R}^d , $\mathcal{Y} = \{-1, +1\}$, and let the hypothesis class \mathcal{H} be the set of linear forms $h: \mathbb{R}^d \to \mathbb{R}$ (identified with elements of \mathbb{R}^d) with Euclidean norm bounded by B. For z = (x, y) and $h \in \mathcal{H}$ let $\ell(z, h) := (y - h(x))^2$. Fix $\lambda > 0$. For a sample $s = (z_1, \ldots, z_n) \in \mathbb{Z}^n$ define $F_s(h) = \hat{\mathcal{R}}_s(h) + \lambda \|h\|_2^2$. Let h_s be a minimizer of F_s and let \mathcal{A} be the algorithm that outputs h_s when applied to sample s.

(1) Show that there exists $\sigma > 0$ such that for every $z = (x, y) \in \mathcal{X} \times \mathcal{Y}$ and every $h_1, h_2 \in \mathcal{H}$:

$$|\ell(z,h_1) - \ell(z,h_2)| \le \sigma |h_1(x) - h_2(x)|.$$

- (2) Show that if $f : \mathbb{R}^d \to \mathbb{R}$ and $\lambda > 0$ are such that $x \mapsto f(x) \lambda \|x\|^2$ is convex, and if u is a minimizer of f, then $\forall w \in \mathbb{R}^d$, $f(w) - f(u) \ge \lambda ||w - u||^2$.
- (3) Explain why F_s admits a minimizer on \mathcal{H} .
- (4) Consider two samples s, s' differing but exactly one point (e.g. $z_n = (x_n, y_n)$ and $\begin{aligned} z'_n &= (x'_n, y'_n)). \text{ Let } h \text{ be a minimizer of } F_s \text{ and } h' \text{ be a minimizer of } F_{s'}. \\ \text{(a) Show that } \left[F_s(h') - F_s(h)\right] - \left[F_{s'}(h') - F_{s'}(h)\right] \geq 2\lambda \|h' - h\|^2. \end{aligned}$

 - (b) Deduce a lower bound on $\left[\hat{\mathcal{R}}_{s}(h') \hat{\mathcal{R}}_{s}(h)\right] \left[\hat{\mathcal{R}}_{s'}(h') \hat{\mathcal{R}}_{s'}(h)\right]$.
 - (c) Show that

$$\left[\hat{\mathcal{R}}_{s}(h'_{s}) - \hat{\mathcal{R}}_{s}(h_{s})\right] - \left[\hat{\mathcal{R}}_{s'}(h'_{s}) - \hat{\mathcal{R}}_{s'}(h_{s})\right] \le \frac{o}{n} \left(\left|h'(x_{n}) - h(x_{n})\right| + \left|h'(x'_{n}) - h(x'_{n})\right|\right).$$

- (d) Deduce that $2\lambda \|h' h\|^2 \le \frac{25}{n} \|h' h\|$.
- (e) Prove that there exists β such that: for each $z \in \mathbb{Z}$,

$$\ell(z,h') - \ell(z,h) \le \beta$$
.

- (5) How does the value of β obtained in the previous question depend on n? Combined with the main conclusion of Part 1, how does the upper bound U_n depend on n? Is it expected ?
- (6) Can the result be adapted when \mathcal{H} is the set of all linear forms (i.e. $B = \infty$)?

Exercise 1

We denote by $|\cdot|$ the Euclidean norm on \mathbb{R}^n , and by B_n the corresponding unit ball. Recall that if $G \sim N(0, \mathrm{Id}_n)$, then for every 1-Lipschitz function $f : (\mathbb{R}^n, |\cdot|) \to \mathbb{R}$ and $t \ge 0$,

$$(\bigstar) \qquad \qquad \mathbb{P}\Big(f(G) \ge \mathbb{E}\big[f(G)\big] + t\Big) \le \exp(-t^2/2).$$

We consider a Gaussian cloud $(G_i)_{1 \le i \le N}$ where G_i are i.i.d. $N(0, \mathrm{Id}_n)$ random vectors and $N \gg n$. Let K be the convex hull of $\{G_i : 1 \le i \le N\}$.

(1) Show that $\mathbb{P}(|G| \ge \sqrt{n} + t) \le \exp(-t^2/2)$. Deduce that if $N \ge e^n$, then

$$\mathbb{P}\Big(K \subset 3\sqrt{\log N}B_n\Big) \ge 1 - \frac{1}{N}.$$

(2) Show that if $(X_i)_{1 \le i \le N}$ are i.i.d. N(0, 1) random variables, then

$$\mathbb{E}\bigg[\max_{1\le i\le N} X_i\bigg] \ge c\sqrt{\log N}$$

for some constant c > 0.

(3) Deduce from (2) and (\bigstar) that for every $x \in S^{n-1}$,

$$\mathbb{P}\left(\sup_{y\in K} \langle x, y\rangle \leq \frac{c}{2}\sqrt{\log N}\right) \leq N^{-c^2/8}.$$

(4) Let $0 < \varepsilon < 1$. Show that if $P \subset S^{n-1}$ is an ε -separated set (with respect to the induced Euclidean distance), then

$$\varepsilon^n \operatorname{card}(P) \le (1+\varepsilon)^n$$
.

Conclude that S^{n-1} contains a ε -net (ε -dense) with cardinality $\leq (1+2/\varepsilon)^n \leq (3/\varepsilon)^n$.

(5) Choose a number $\alpha \ge e$ such that $\alpha^{c^2/8} > 36/c$. Show that if $N \ge \alpha^n$ then $\frac{c}{4}\sqrt{\log N}B_n \subset K \subset 3\sqrt{\log N}B_n$

Hint: Use (3) for x in a $\frac{c}{12}$ -net of S^{n-1} , and the union bound.

Exercise 2

An airline defines a suitcase (identified as a parallepiped) to be admissible if the sum of its dimensions (length+width+height) does not exceed 115 centimeters. Is it possible to hide a non-admissible suitcase inside an admissible suitcase?

Hint: Consider one of the notions introduced in Lecture 13.