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Regularization and Structural

Risk Minimization



Overfitting

Example: linear classification with polynomial features

Src: http://mlwiki.org

→ how to get the best from several hypothesis classes?
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Nonuniform Learnability

Definition

A hypothesis class H is nonuniformy learnable if there exists a learning

algorithm A and a function mNUL
H : (0, 1)2 ×H → N such that for every

ε, δ ∈ (0, 1) and for every h ∈ H, if m ≥ mNUL
H (ε, δ, h) then with

probability at least 1− δ over the sample S ∼ D⊗m,

LD
(
A(S)

)
≤ LD(h) + ε .

Theorem

A hypothesis class H of binary classifiers is nonuniformly learnable if

and only if it is a countable union of agnostic PAC learnable hypothesis

classes.
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Structural Risk Minimization 1/2

Proof of sufficiency: Let H = ∪d∈NHd , where each hypothesis class

Hd is PAC learnable with uniform convergence rate mUC
Hd

, and let

εd : N×(0, 1)→ (0, 1) be defined as

εd(m, δ) = min
{
ε ∈ (0, 1) : mUC

Hd
(ε, δ) ≤ m

}
.

For every h ∈ H let d(h) = min
{
d : h ∈ Hd

}
. Let also w : N→ [0, 1] be

such that
∑∞

d=0 w(d) ≤ 1.

Lemma

For every δ ∈ (0, 1) and for every distribution D, with probability at

least 1− δ over the sample S ∼ D⊗m,

∀h ∈ H, LD(h) ≤ LS(h) + εd(h)

(
m,w

(
d(h)

)
δ
)
.
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Structural Risk Minimization 2/2

Structural Risk Minimization (SRM)

A(S) ∈ arg min
h∈H

LS(h) + εd(h)

(
m,w

(
d(h)

)
δ
)
.

Typical choice: w(d) = 6
π2(d+1)2 gives for SRM the nonuniform learning

rate

mNUL
H (ε, δ, h) ≤ mUC

Hd(h)

(
ε

2
,

6δ

π2d(h)2

)
.

If VCdim(Hd) = d , mUC
Hd

(ε/2, δ) = C d+log(1/δ)
ε2 and hence

mNUL
H (ε, δ, h)−mUC

Hd
(ε/2, δ) ≤ 8C log(2d)

ε2
.

Remark: other strategy = aggregation, cf PAC-Bayes learning.
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Minimum Description Length and Occam’s razor

Entiae non sunt multiplicanda praeter necessitatem

(Entities are not to be multiplied without necessity)

Here: A short explanation tends to be more valid

(generalize better) than a long explanation

Suggests a choice for w(d): should penalize complexity.

More precisely: if |h| is the length of a prefix-free binary code for the

hypothesis h, set

w(h) = 2−|h| .

By Hoeffding’s inequality, this typically yields the

Minimum Description Length (MDL) estimator:

A(S) ∈ arg min
h∈H

LS(h) +

√
|h|+ log 2

δ

2m
.

This heuristic needs to be justified statistically (often possible). 6
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Stable Rules do not overfit

Theorem

Let D be a distribution on X × {±1}, S = (z1, . . . , zm) be an iid

sequence of examples, z ′ be another independent sample of D, and let I

be an independent sample of the uniform distribution on {1, . . . ,m}.
For all 1 ≤ i ≤ m, let S (i) = (z1, . . . , zi−1, z

′, zi+1, . . . , zm). Then, for

any learning alogrithm A,

ES

[
LD
(
A(S)

)
− LS

(
A(S)

)]
= ES,z′,I

[
`
(
A(S (I )), zI

)
− `
(
A(S), zI

)]
.

Indeed, ES,z′,I

[
`
(
A(S(I )), zI

)]
= ES

[
LD

(
A(S)

)]
, and ES,I

[
`
(
A(S), zI

)]
= ES

[
LS

(
A(S)

)]
.

Definition

Algorithm A is said to be on-average-replace-one-stable with rate

ε : N→ R if for every distribution D and every sample size m ∈ N,

ES,z′,I

[
`
(
A(S (I )), zI

)
− `
(
A(S), zI

)]
≤ εm .
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Tikhonov Regularization as a Stabilizer

We consider a class H =
{
hw : w ∈

⋃
d≥0 Rd

}
.

Definition

Tikhonov’s Regularized Loss Minimizer is defined as

A(S) ∈ arg min
hw∈H

LS(h) + λ‖w‖2 ,

where λ > 0 is a parameter.

With square loss on Rd , the resulting estimator is called ridge regression:

ŵ = arg min
w∈Rd

1

m

m∑
i=1

1

2

(
〈w , xi 〉 − yi

)2
+ λ‖w‖2 =

(
2λmId +XTX

)−1
XT y ,

where X =


x1
x2
. . .

xm

 and y =


y1
y2
. . .

ym

.
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Tikhonov’s RLM for convex loss is stable

Denote fS(w) = LS(w) + λ‖w‖2. If ` is convex, then f is 2λ-strongly

convex, and thus

fS
(
A(S (i))− fS

(
A(S)

)
≥ λ

∥∥A(S (i))− A(S)
∥∥2 ,

and

fS
(
A(S (i))

)
− fS

(
A(S)

)
= LS(i)

(
A(S (i))

)
+ λ
∣∣A(S (i))

∣∣2 − LS (i)

(
A(S)

)
− λ
∣∣A(S)

∣∣2︸ ︷︷ ︸
≤0

+
`
(
A(S (i)), zi

)
− `
(
A(S), zi

)
m

+
`
(
A(S), z ′

)
− `
(
A(S (i)), z ′

)
m

,

and hence

λ
∥∥A(S (i))−A(S)‖2 ≤

`
(
A(S (i)), zi

)
− `
(
A(S), zi

)
m

+
`
(
A(S), z ′

)
− `
(
A(S (i)), z ′

)
m

.
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Lipschitz loss

When the loss `(·, z) is ρ-Lipschitz for every z , we obtain that

λ
∥∥A(S (i))− A(S)‖2 ≤

2ρ
∥∥∥A(S (i))− A(S)

∥∥∥
m

,

when entails
∥∥A(S (i))− A(S)‖ ≤ 2ρ

λm
.

RLM generalizes well Lispchitz Losses

When the loss function `(·, z) is convex and ρ-Lipschitz for all z ,

Tikhonov’s RLM is on-average-one-stable with rate 2ρ2

λm , and hence

ES

[
LD
(
A(S)

)
− LS

(
A(S)

)]
≤ 2ρ2

λm
.

Remark: when ` is β-smooth and non-negative, and when `(0, z) ≤ C for

all z , one can prove that for λ ≥ 2β
m Tikhonov’s RLM satisfies

ES

[
LD
(
A(S)

)
− LS

(
A(S)

)]
≤ 48β

λm
E
[
LS
(
A(S)

)]
≤ 48βC

λm
.
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Controlling Fitting-Stability Tradeoff

Fitting-stability tradeoff:

ES

[
LD
(
A(S)

)]
= ES

[
LS
(
A(S)

)]
︸ ︷︷ ︸

fitting error

+ ES

[
LD
(
A(S)

)
− LS

(
A(S)

)]
︸ ︷︷ ︸

generalization error = stability

.

The stronger the regularization (the larger λ), the better the stability

BUT the higher the bias.

But for every hw ∈ H,

ES

[
LS
(
A(S)

)]
≤ ES

[
LS(hw ) + λ‖w‖2

]
= LD(hw ) + λ‖w‖2 .

Oracle inequality

If the loss function `(·, z) is convex and ρ-Lipschitz for all z , Tikhonov’s

RLM satisfies

ES

[
LD
(
A(S)

)]
≤ inf

hw∈H
LD(hw ) + λ‖w‖2 +

2ρ2

λm
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Corollary

If ∀hw ∈ H, ‖w‖ ≤ B and if the loss function `(·, z) is convex and

ρ-Lipschitz for all z , Tikhonov’s RLM with λ =
√

2ρ2

B2m satisfies:

ES

[
LD
(
A(S)

)]
≤ inf

hw∈H
LD(hw ) + ρB

√
8

m
.

Hence, for every ε > 0, if m ≥ 8ρ2B2

ε2 then for every distribution D

ES

[
LD
(
A(S)

)]
≤ infhw∈H LD(hw ) + ε.

The same kind of result can be obtained for β-smooth, non-negative

losses: with λ = ε/(3B2), for every m ≥ 150βB2

ε2 , whatever the

distribution D, ES

[
LD
(
A(S)

)]
≤ infhw∈H LD(hw ) + ε.

In practice, λ is most often chosen by cross-validation.
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Example: Ridge regression generalizes well

Theorem

Let D be a distribution over X × [−1, 1], where

X =
{
x ∈ Rd : ‖x‖ ≤ 1

}
. Let H =

{
w ∈ Rd : ‖w‖ ≤ B

}
. For any

ε ∈ (0, 1), let m ≥ mH(ε) = 150B2/ε2. Then ridge regression with

parameter λ = ε/(3B2) satisfies:

ES

[
LD
(
A(S)

)]
≤ min

w∈H
LD(w) + ε .

Furthermore, for every δ ∈ (0, 1) and every m ≥ mH(ε, δ) = mH(εδ),

PS

(
LD
(
A(S)

)
≤ min

w∈H
LD(w) + ε

)
≥ 1− δ .

Expectation to high-probability PAC learning: the sample complexity can

be reduced to mH(ε, δ) = mH(ε/2)
⌈

log2(1/δ)
⌉

+
⌈
log(4/δ)+log(dlog2(1/δ)e

ε2

⌉
when the loss function is bounded by 1.
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