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Overfitting

Example: linear classification with polynomial features
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Src: http://mlwiki.org

— how to get the best from several hypothesis classes?


http://mlwiki.org

Nonuniform Learnability

Definition

A hypothesis class H is nonuniformy learnable if there exists a learning
algorithm A and a function mUL : (0,1)? x H — N such that for every
€,0 € (0,1) and for every h € H, if m > m;’Y[UL(e,cS, h) then with
probability at least 1 — § over the sample S ~ D®™,

LD(A(S)) < LD(h) G E o

Theorem

A hypothesis class #H of binary classifiers is nonuniformly learnable if
and only if it is a countable union of agnostic PAC learnable hypothesis
classes.



Structural Risk Minimization 1/2

Proof of sufficiency: Let H = UyenH g, where each hypothesis class
Hq is PAC learnable with uniform convergence rate mé_ﬁ and let
€4 - N x(0,1) — (0,1) be defined as

e4(m, ) = min {e € (0,1) : m,‘f(e,é) <m} .

For every h € H let d(h) = min{d : h € H4}. Let also w : N — [0,1] be
such that > 57 w(d) < 1.

Lemma
For every 6 € (0,1) and for every distribution D, with probability at
least 1 — & over the sample S ~ D®™,

VheH, Lp(h) < Ls(h)+ ed(,,)(m, w(d(h))é) .



Structural Risk Minimization 2/2

Structural Risk Minimization (SRM)

A(S) € ar/;gen;in Ls(h) + €q(n) (m, W(d(h))5> :

Typical choice: w(d) = ﬁ gives for SRM the nonuniform learning

rate 65
NUL uc €
(e,9,h) < M3 (2’772d(h)2> .

If VCdim(Hq) = d, mYC(e/2,8) = C 1B/ and hence

8C log(2d)
€2 ’

mit(e, 8, h) — myS(€/2,6) <

Remark: other strategy = aggregation, cf PAC-Bayes learning.



Minimum Description Length and Occam’s razor

Entiae non sunt multiplicanda praeter necessitatem
(Entities are not to be multiplied without necessity)
Here: A short explanation tends to be more valid
(generalize better) than a long explanation

Suggests a choice for w(d): should penalize complexity.

More precisely: if |h| is the length of a prefix-free binary code for the
hypothesis h, set

w(h) =271
By Hoeffding's inequality, this typically yields the
Minimum Description Length (MDL) estimator:

h| + log 2
A(S) € arg min Ls(h) + | 11185
heH 2m

This heuristic needs to be justified statistically (often possible). 6
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Stable Rules do not overfit

Theorem

Let D be a distribution on X’ x {£1}, S = (z1,...,2zn,) be an iid
sequence of examples, z’ be another independent sample of D, and let |
be an independent sample of the uniform distribution on {1,..., m}.
Forall1<i<m,let S =(z,...,z1,2',Zi41,...,2m). Then, for
any learning alogrithm A,

Es |Lo(A(S)) = Ls(A(S))] = Es.cna [€(A(SD),21) — €(A(S), 21)] -

Indeed, Es /| [Z(A(s")), z,)] =Es [LD(A(s))], and Es [z(A(S), z/)} =Es [LS(A(S))].
Definition

Algorithm A is said to be on-average-replace-one-stable with rate

€ : N — R if for every distribution D and every sample size m € N,

Es,or.1 [((A(S™), 21) = (A(S), 21)] < €



Tikhonov Regularization as a Stabilizer

We consider a class H = {h,, : w € Udso R9}.

Definition
Tikhonov's Regularized Loss Minimizer is defined as
A(S) € argmin Ls(h) + A|w]?,
hy,€H
where \ > 0 is a parameter.

With square loss on RY, the resulting estimator is called ridge regression:

m

W= al;vger;;din % ; %(<W7X,'> —y,-)2 + Alw|® = (2xmly —|—XTX)71XTy )
X1 )1

where X = | ™ and y = 2
Xm Vim



Tikhonov's RLM for convex loss is stable

Denote fs(w) = Ls(w) + Al|w||%. If £ is convex, then f is 2\-strongly
convex, and thus

B(ASY) — 5 (AS)) 2 AASD) - AS)

and hence

A|ASD)-A(S)IP <




Lipschitz loss

When the loss (-, z) is p-Lipschitz for every z, we obtain that

A(S@) = A(S)|

2p

MASD) = AS)I? <

when entails ||A(5(i)) —A(9)] < Q
~ Am

RLM generalizes well Lispchitz Losses

When the loss function £(-, z) is convex and p-Lipschitz for all z,
2
Tikhonov's RLM is on-average-one-stable with rate iim, and hence

Es[Lo(A(S) - Ls(AS)] < 2.

Remark: when ¢ is 5-smooth and non-negative, and when ¢(0,z) < C for
all z, one can prove that for A > % Tikhonov's RLM satisfies

4853 > 485C

Es[Lo(A(S)) — Ls(A(S))] < ToE[Ls(AS)] < 5= .



Controlling Fitting-Stability Tradeoff

Fitting-stability tradeoff:
Es |Lo(A(S))] = Es[Ls(A(S))] + Es[Lo(A(S)) - Ls(A(S))]

fitting error generalization error = stability

The stronger the regularization (the larger ), the better the stability
BUT the higher the bias.

But for every h,, € H,
Es[Ls (A(S))] < Bs [Ls(hu) + AlwlP] = Lo(hw) + Allw?

Oracle inequality
If the loss function (-, z) is convex and p-Lipschitz for all z, Tikhonov's
RLM satisfies
E [L (A(S))} < inf Lp(hy)+ Aw|? + 2
°LP = hoer O Am
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Corollary
If Yhy, € H,||w| < B and if the loss function ¢(-, z) is convex and

p-Lipschitz for all z, Tikhonov's RLM with A = éffn satisfies:
Es {LD(A(S))} < inf Lo(hy)+pBy/S .
= hyEH m

2 2
89623 then for every distribution D

Es {LD (A(S))} < infren Lp(hw) + €.

Hence, for every € > 0, if m >

The same kind of result can be obtained for S-smooth, non-negative
2
losses: with A = €/(3B?), for every m > %, whatever the

distribution D, Es [LD (A(S))} <infuen Lp(hw) + €.

In practice, X is most often chosen by cross-validation.
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Example: Ridge regression generalizes well

Theorem

Let D be a distribution over X x [—1, 1], where

X={xeR?: ||x|| <1}. Let X ={w € R : |w| < B}. For any
€€ (0,1), let m > my(e) = 150B2/€>. Then ridge regression with
parameter \ = ¢/(3B?) satisfies:

Es {LD(A(S))] < min Lp(w) +c.

Furthermore, for every § € (0,1) and every m > my(¢,0) = my(€d),

IP’S(LD(A(S)) < min Lp(w) + e) >1-4.

Expectation to high-probability PAC learning: the sample complexity can
be reduced to my (€, 8) = my(e/2)[ logy(1/6)] + "Iog(4/5)+|052(]'|0g2(1/5)]—‘
when the loss function is bounded by 1.

13



	Regularization and Structural Risk Minimization
	Regularization and Stability

