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Support Vector Machines



Margin for linear separation

e Training sample S = {(xl,yl), R (Xm,ym)}, where x; € R? and
yi € {£1}.

e Linearly separable if there exists a halfspace h = (w, b) such that
Vi, y; = sign ({(w,x;) + b).

e What is the best separating hyperplane for generalization?

Distance to hyperplane
If |[w|] = 1, then the distance from x to the hyperplane h = (w, b) is
d(x, 1) = [{w,x) + b|.

Proof: Check that min {|lx — v||? : v € h} is reached at
vV=x-— ((W,X} + b)w.



Hard-SVM

Formulation 1:

argmax _min [(w,x;)+ b| such that Vi, y;((w,x;)+b) >0.
(w,b):||w||=11Si<m

Formulation 2:

mill;\ |w||® such that Vi, y;((w,x;) + b) > 1.

Remark: b is not penalized.

Proposition

The two formulations are equivalent.

Proof of the useful implication: if (wo, bo) is the solution of Formulation 2,

then w = ﬁ b= H\%H is a solution of Formulation 1: if (w*, b*) is another

solution, then letting v* = mini<i<m yi((w, xi) + b) we see that ( ., :*)

satisfies the constraint of Formulat|on 2, hence ||wo|| < ”: I — W% and thus

miny<i<m (W, Xi) + b| > o > 4.



Sample Complexity

Definition

A distribution D over RY x {1} is separable with a (v, p)-margin if
there exists (w*, b*) such that ||w*|| = 1 and with probability 1 on a
pair (X, Y) ~ D, it holds that || X|| < p and Y ((w*, X) + b) > .

Remark: by multiplying the x; by «, the margin is mutliplied by «.
Theorem

For any distribution D over R? x {+£1} that satisfies the

(7, p)-separability with margin assumption using a homogenous
halfspace, with probability at least 1 — § over the training set of size m
the 0 — 1 loss of the output of Hard-SVM is at most

\/4(p/v)2 +\/2|0g,(:/5)]’

m

Remark: depends on dimension d only thru p and 7.



When the data is not linearly separable, allow slack variables &;:
min \|lwl? + L zm:E,- such that Vi, y; ((w,x;) + b) > 1—¢ and & >0
WBIE m — S ) ) - - Si
= witr) A|wl|? + L2 (w, b)  where (""8°(u) = max(0,1 — u) .

Theorem

Let D be a distribution over B(0, p) x {£1}. If A(S) is the output of
the soft-SVM algorithm on the sample S of D of size m,

. ) 2
E[L%‘I(A(S))} < E[Lg’“ge(A(S))} < inf L159¢° () 4 AfJu2 + 22
u Am
For every B > 0, setting A = éf; yields:
i ) 80232
0—1 hinge . hinge 14
E[L5(AS)| <E[Ly™(A(9))] < LB ) =



Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

- 0 if Vi, yi(w, x;) > 1,
g(w) = max ai(l—yi(w,x;)) =
(w) a€l0,4-00)m Z ( < >> {+oo otherwise .

Then the hard-SVM problem is equivalent to

1
Slwl?

min
Wi,y (w,x;)>1 2

1
5wl + g(w)

=min max 7||WH2+ZO‘I — yi(w X,>)
w  a€l0,+o00

min—max thm ) 5

= max min=|wlZ+ Y a;(1— yi{w, x)) .
Q€[0,+00)m W 2” I ; ’( vilw, r>)
m

The inner min is reached at w = Zamx’. and can thus be written as
i=1

max E @ = = E [e}1e) Xi, Xj) .
aGR”’,a>O ! Jy’yJ ] J> 3
1<I,J<m



Support vectors

Still for the homogeneous case of hard-SVM:
Property

Let wp be a solution of and let / = {i : |(wo, ;)| = 1}. There exist

Wwp — E QX .

i€l

ai,...,0m such that

The dual problem involves the x; only thru scalar products (x;, x;).
It is of size m (independent of the dimension d).
These computations can be extended to the non-homogeneous soft-SVM

— Kernel trick.



Numerically solving Soft-SVM

f(w) = 3|w|?®+ L3778 (w) is A-strongly convex.
— Stochastic Gradient Descent with learning rate 1/(At). Stochastic
subgradient of Lg"¢(w) : v; = —yixi, 1 yi, (w, x,) < 1}.

1 n—1 1 1
WH,]_:Wt—E()\Wt‘l—Vt): ; Wt—EVt:_ﬂ;VS.

Algorithm: SGD for Soft-SVM

1 Set 90 =0

2 fort=0...T —1do

3 Let w; = %Gt

4 Pick Ip ~U({1,...,m})

5 if y,(we, x;,) <1 then

6 ‘ Ory1 < 0 + y1,x,

7 else

8 t Orr1 < 0r

9 return wr = + tT:_Ol Wy 8




Super-learning: Ensemble
Methods




Aggregating Predictions from Weak Learners

Weak learners:

e Stumps

e Decision trees

High bias, high individual variance

But quick and light = can be combined efficiently



Decision Trees: CART and co

Idea: recursive splitting of the feature space X'. Inhomogeneity of a cell:
e classification: 0 when all labels are equal, maximal when the labels are evenly distributed.
Ex: if p = frequency of label 1, h(p) = max(p,1 — p), p(1 — p), binary entropy
e regression: empirical variance of the labels

1. Expansion phase: top-down

e Start with tree root = X

e Repeat for each in-homogeneous leaf:
e find variable v and threshold s such that splitting according to
e [quantitative variable] v < s versus v > s
e [qualitative variable] v € s versus v ¢ s

improves most homogeneity
e replace that leaf by a node with the two corresponding children

e Stop when all leaves are homogeneous or contain fewer that K data
points

2. Pruning phase: bottom-up

e In each leaves' parent, test if the split is significant
e If not, remove the leaves: the parent is now a leave (and start again) 10



Super-learning: Ensemble Methods

Bagging
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Bootstrap: a Resampling scheme

e Setting:
e observation space X', model M C M (X),
e target: ¢(P) for P € I,
o data: Sy =(X1,..., Xm) 2 P,
e empirical measure P, = = 37 §x, is "close to” P
e statistic: 1(Pm)
e Problem: how close is )(Pp,) from ¥(P)?
If we had several samples, we could experiment...
e |dea: since P, is close to P, we can use it as a substitute to P:
X% P,
e Sampling from P, amounts to resampling with replacement from S,
e The distribution of the estimator ¥(P,,) might be close to that of
1p(l5m), where P, = % P %
e We can "see” the distribution of 1/)(I5m) by forming a large number
M of such "bootstrap samples”.
e From this distribution we can build confidence intervals, etc. (needs

to be justified theoretically!) 1



Bagging: Bootstrap Aggregating

Input:
Sample: Sp = ((X1, Y1), .-+, (Xm, Ym))
Weak learner: &, : S, — hp,, where h,, : X — ) is a decision rule

1. Build M bootstrap samples S1 ... 5™

2. For each 1 <j < M, call weak classifier on 5{;, so as to obtain rule
hjm = q)m(S{n) R

3. Aggregate all decision rules into a strong classifier h,:

e for classification: by majority vote

hm(x) —argmale{h’ =y}

yey =1

e for regression: by (uniform) averaging

3

Out-of-bag error estimate
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Random Forest

e Bagging with decision trees

e No need to optimize too much on the tree (for speed, but not only):
® no pruning
e simplified splitting rule (see below)
e limited depth (sometimes to 2)

e extra variance:

e consider a subset of variables only as candidates for splitting
e split at average (or median) value

Measure the importance of each variable:

e (rough) number of occurrences of the variable in the forest

e mean decreasse Gini: sum of the heterogeneity measure decrease
caused by the variable

14



Super-learning: Ensemble Methods

Boosting
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See Rob Schapire's excellent slides:

https://www.csie.ntu.edu.tw/~mhyang/course/u0030/papers/
schapire.pdf
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