{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ " \n", "author: Aurélien Garivier\n", "\n", "# An experiment with the MNIST dataset\n", "\n", "\n", "The Mnist dataset provides a (somewhat old but) very classical example of Machine Learning. The goal is simple and useful: recognize hand-written digits. This was an important challenge for the postal companies in the 1980s. \n", "\n", "It is available on the webpage of Yann LeCun, a very famous researcher in Machine Learning in general and neural networks in particular. \n", "\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "# loading a lot of facilities for numerical computations and graphs\n", "%pylab inline \n", "pylab.rcParams['figure.figsize'] = (20, 6) # to have larger plot\n", "seed(240979) #initialize random number generator\n", "\n", "# set working directory\n", "workingdir = './'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. Loading the data set\n", "\n", "### 1.1 Description of the data set\n", "The MNIST data contains $n\\_tot=70000$ images of size $dimX\\times dimY=28\\times28$, and their *labels* (a digit between $0$ and $9$). \n", "The images are stored as lines of the matrix *mnist.data*. \n", "Each image can be reshaped as a matrix $im \\in \\mathcal{M}_{dimX, dimY}(\\mathbb{R})$, where $im[i,j]$ is the intensity level of pixel (i,j): 0 means 'white', 255 means 'black'.\n", "\n", "The labels, stored in *mnist.target*, are numbers (here, we cast them to integers) between $0$ and $9$. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loaded 70000 images of size 28x28\n", "Number of classes: 10\n", "Classes:\n", "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n" ] } ], "source": [ "from sklearn.datasets import fetch_mldata # si besoin: sudo pip install -U scikit-learn ou (pour une install locale) pip install --user --install-option=\"--prefix=\" -U scikit-learn\n", "\n", "mnist = fetch_mldata('MNIST original', data_home='./')\n", "mnist.target = mnist.target.astype(int) # by default the digits are floating numbers: convert to integers\n", "\n", "# defining general variables for use throuhout the notebook \n", "n_tot = len(mnist.data)\n", "dimX = int(sqrt(len(mnist.data[0]))); dimY = dimX # nb of pixels in each dimension\n", "nc = len(unique(mnist.target)) # number of classes\n", "\n", "print(\"Loaded %d images of size %dx%d\"%(n_tot, dimX, dimY))\n", "print(\"Number of classes: %d\"%(nc))\n", "print(\"Classes:\")\n", "print(sorted(unique(mnist.target)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2 What does the data look like?" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGfCAYAAAAQ8aZbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8FeXZ/q87ISwBZAtKQgWpqIAISAJa60LRCigolbdv\nRVRaC3HFpbZqoUKsita2WhUXcIWKYiuVxbculKLWXxVMAAFFKyooi8pa9i25f3+cc8jMyXLmuc/J\nw8yT+/v5nE9ynsw11zzzzJzJmbnnGmJmKIqiKMrhJutwL4CiKIqiAHpAUhRFUUKCHpAURVGUUKAH\nJEVRFCUU6AFJURRFCQV6QFIURVFCQVoHJCIaSESfENEqIrotUwulKIqi1D9Ieh8SEWUD+A+AHwJY\nC+B9AMOZ+aPMLZ6iKIpSX0jnG1JfAKuY+XNm3g9gBoALM7NYiqIoSn2jQRra9gC+8rxfC+CU5ImI\nqBhAMQA0zckp7HLgQOUfu3aN/Vy5srItPx8oKACWLQMS0+bmxqZdswbYtKly2h49gN27gVWrKts6\ndADatgXKyirbWrQAOneOTfff/1a2FxYCGzcCX35Z2da5c8xv2bLKtrw8oGPH2HLu3h1ry8mJ+a9f\nD2zYoH3SPmmftE/aJ0+fVrdpg02bNhFMYGbRC8D/AHjS8/4yAJNq0xTm57OICRPsaNQrMzpXvaQ6\nV72kOle9pDpHvQoLC5kNjyvpXEP6HoASZh4Qf//r+AHunpo0RURcKvEjAkx1Eo16ZUbnqpdU56qX\nVOeql1TnqFdRURFKS0uNviGlcw3pfQDHEVEnImoI4GIAc9KYn6IoilKPEV9DYuaDRHQdgNcBZAN4\nmpk/zNiSKYqiKPWKdIoawMx/B/D3wILEhS9TSkvtaNQrMzpXvaQ6V72kOle9pDpXvQRoUoOiKIoS\nCsRFDRK0qCFiXlKdq15SnateUp2rXlKdo162ixoURVEUJWPoAUlRFEUJBdklJSXWzKZMmVJSfPPN\nMnG/fnY06pUZnateUp2rXlKdq15SnYNeU6ZMQXFx8R0mmrSuIRHR0wAGA/iWmbunmr6oqIhLLVVr\nKIqiKIePw3EN6VkAAwNP7c1JMqGgwI5GvTKjc9VLqnPVS6pz1Uuqc9VLQNpVdkR0DIBXAn1D0iq7\naHlJda56SXWuekl1rnpJdY56hbLKjoiKiaiUiEo3xhoqX2VlsZe3LXFNq6Cgsi1BcbF/2vXrgblz\n/W1TpnjNY68hQ2LvhwzxTwvEpk9uW7/e31ZcHGsvLKxsS/zHkFhe0z4VFpr3KbF8pn2aO9e/jEH6\n5J2faZ+SvVL1KXmcg/Zp/Xr/PIL2ydsv03FK+AXtk+k4ebe9hG/QPiWSniXbHiDrk/dvQfrkHeeg\nfUqMU8LLZH8CZOOU+HvQPiXGyTvfIH1KeEg+I7xeQbe9BCZ9SiyHSZ+8XiaYprEmvwAcA2BFkGkL\nc3ONE2OZmbl3bzsa9cqMzlUvqc5VL6nOVS+pzlEvq2nfCYxO2WlRg6IoSr0glKfsfKxZI9N5vw7X\npUa9MqNz1Uuqc9VLqnPVS6pz1UtAumXfLwDoByAPwDcAJjDzUzVNr0UNEfOS6lz1kupc9ZLqXPWS\n6hz1knxDSjfte3g6ekVRFEVJoNFBiqIoSiiwe0Dq0UOmW7fOjka9MqNz1Uuqc9VLqnPVS6pz1UuA\n3QPS7t0yXeL+irrWqFdmdK56SXWuekl1rnpJda56CdDnIalX5nWuekl1rnpJda56SXWOelkt+yai\no4loARF9REQfEtEN0nkpiqIoSjpVdgcB3MzMi4moOYAyIprHzB9laNkURVGUeoT4GxIzb2DmxfHf\ndwBYCaB9raIOHWRmkyfb0ahXZnSuekl1rnpJda56SXWuekkwzRqq7oVYnt2XAI6o5m/FAEoBlHZo\n0YI5diYy9iotjb28bRMmxIKQ8vMr2xI5SqNH+6ddt455zhx/2+TJsWm9bYMHx9oGD/a3M8em97bN\nmRObr7dt9OjKPKdEW35+rG3CBO2T9kn7pH3SPiX16XBl2TUD8BaAu5n5b7VNq0UNEfOS6lz1kupc\n9ZLqXPWS6hz1sp5lR0Q5AGYCmJ7qYKQoiqIotZFOlR0BeArASma+P3OLpCiKotRH0vmG9H0AlwHo\nT0RL46/zalW0aCFzGjzYjka9MqNz1Uuqc9VLqnPVS6pz1UuA3Rtj9XlIiqIo9YLwPw9p1SqZLvEo\n3rrWqFdmdK56SXWuekl1rnpJda56CdDoIPXKvM5VL6nOVS+pzlUvqc5Rr/B/Q1IURVGUGtADkqIo\nihIK7B6QCgtlOslXTOmpSPVKX+eql1TnqpdU56qXVOeql4B07kNqTESLiOiDeNr3HSlFGzfKzKZM\nsaNRr8zoXPWS6lz1kupc9ZLqXPUSIC5qiN8Y25SZd8YTG94BcAMzv1eTRosaIuYl1bnqJdW56iXV\nueol1TnqJSlqED9+Ipbjh53xtznxl72SPUVRFMUp0s2yyyaipQC+BTCPmRdWM00xEZUSUenGWEPl\nq6ws9vK2lZTEhAUFlW0Jiov9065fD8yd62/zfrVMtCVq6IcM8U8LxKZPblu/3t9WXBxrLyysbCso\niLUllte0T4nraSZ9SiyfaZ/mzvUvY5A+eedn2qdkr1R9Sh7noH1av94/j6B98vbLdJwSfkH7ZDpO\n3m0v4Ru0T4nHTEu2PUDWJ+/fgvTJO85B+5QYp4SXyf4EyMYp8fegfUqMk3e+QfqU8JB8Rni9gm57\nCUz6lFgOkz55vUwwjQev7gWgJYAFALrXNl1h584sYs4cOxr1yozOVS+pzlUvqc5VL6nOUS/J4ycy\nUmXHzNviB6SBtU6YmyszkFTnSSv61Ct9nateUp2rXlKdq15SnateAtIpamgL4AAzbyOiJgDeAPA7\nZn6lJo0WNUTMS6pz1Uuqc9VLqnPVS6pz1MtqUQOAfABTiSgbsWtRf6ntYKQoiqIotZFOld0yACdn\ncFkURVGUeozdpIa8PJlu9Gg7GvXKjM5VL6nOVS+pzlUvqc5VLwH6PCRFURQl44Q/7XvlSpku7NUk\nrnpJda56SXWuekl1rnpJda56CdDnIalX5nWuekl1rnpJda56SXWOeoX/G5KiKIqi1EDaB6R4fNAS\nIkpd8p2TIzPJz7ejUa/M6Fz1kupc9ZLqXPWS6lz1EpD2KTsi+gWAIgBHMPPg2qbVogZFUZT6gfVT\ndkT0HQDnA3gykCARhmlKIniwrjXqlRmdq15SnateUp2rXlKdq14STMPvvC8ALwEoBNAPwCs1TFMM\noBRAaYfYZbHKV2lp7OVtmzAhlsyXn+9vZ2YePdrftm5dLPTP2zZ5cmxab9vgwbG2wYOrznPyZH9b\nYr7e96NHx6bt3buyLT8/1jZhgqxPiXnZ6FPy/OqyT8nLadKnxPIH7VM645ToV9A+pTNO3p912afk\n/tRln9IZp8S0dbHtJfepuu2/LvqUGCdvW131ydY4pfkZIQlXTSfLbjCA85j5GiLqB+CXnOqUnVbZ\nRctLqnPVS6pz1Uuqc9VLqnPUy/Ypu+8DuICIVgOYAaA/ET2XxvwURVGUeoz4gMTMv2bm7zDzMQAu\nBvBPZr60VlHXrjIzSSGEtHhCvdLXueol1bnqJdW56iXVueolQO9DUhRFUUKBJjWoV+Z1rnpJda56\nSXWuekl1jnppUoOiKIoSWfSApCiKooSC7BJbNzwBmDJlSknxzTfLxP362dGoV2Z0rnpJda56SXWu\nekl1DnpNmTIFxcXFd5ho9HlIiqIoSsY5HNFBq4loOREtJaLUR5ply2RGBQV2NOqVGZ2rXlKdq15S\nnateUp2rXgLS+oYUvym2iJk3BZleq+wi5iXVueol1bnqJdW56iXVOeqlVXaKoihKZEn3gMQA3iCi\nMiIqrm4CIiomolIiKt2YlRU70iZeZWWxl7ctUWRRUFDZ1qRJrK242D/t+vXA3Ln+tilTvOax15Ah\nsfdDhvinBWLTe9u++93YfL1txfGuFRZWtiW+wiaW17RPhYVA795mfUoss2mf5s4Func365N3fiZ9\nAoA2bcz6lHgdcYRZnxLp8aZ9IgK6dDHrU2KcEn5B+zRkSGycTfrkncakT2VlsX6Z9inhZdKnxDh5\n/xakT0Sx7cOkT4lxSngF7RNRbLs37ZPXK2ifEuPUpIlZnxIeJn1KjJO3D0H6lPAy7VNiOUz65PUy\nIN1Tdu2ZeR0RHQlgHoAxzPx2TdNrUYOiKEr9wPopO2ZeF//5LYCXAfStVbBmjcyouNovX5nXqFdm\ndK56SXWuekl1rnpJda56CUjn8RNNAWQx84747/MA/JaZX6tJo0UNEfOS6lz1kupc9ZLqXPWS6hz1\nknxDamDk4OcoAC9T7FxhAwDP13YwUhRFUZTaEB+QmPlzAD0zuCyKoihKPcZu2XePHjLdunV2NOqV\nGZ2rXlKdq15SnateUp2rXgLsHpB275bpysrsaNQrMzpXvaQ6V72kOle9pDpXvQTo85DUK/M6V72k\nOle9pDpXvaQ6R700qUFRFEWJLHpAUhRFUUJBumnfLYnoJSL6mIhWEtH3ahV06CAzmjzZjka9MqNz\n1Uuqc9VLqnPVS6pz1UtAutFBUwH8i5mfJKKGAHKZeVtN02t0kKIoSv3A6jUkImoB4EwATwEAM++v\n7WAEQF6pIQnqE4b7qVcGdK56SXWuekl1rnpJda56CUjnlF0nABsBPENES4joyXiEkA9f2nesofaE\n2OpSbxPYSPsG7KV9m/YpsXymfUpOBg7SJ+/8TPuU7BU0RTqBjbTvRL9Mxynut+ezz7DvpZd8+v2T\nJmHPnj2+tvLzzgMAfN2nj6999uzZWHrNNb6298aNw+vPPONbxplt2qBXr174KDf3UPu3OTno1asX\nHm/XzqcffvzxVdZpCRGICOs9bWXxtilJ66OACEO8bUQojk/rbZsbb5vr3R6JMGjQIDyUlCpfUliI\nET/4QZV1v2rVKuz1THvwqKOwatUqbLn+et+0X82aha9mzfJv+yb7E2A37ds7X037NiadLLsiAO8B\n+D4zLySiBwFsZ+bba9Jo2XfEvKQ6V73iuj2G99M1yc3F7FmzjK0uHDoUvXqahaEs/eADSD4KGBDr\nBg0caKR59bXXsOrTT429Oh93XCS2j1Avo0Uv22XfawGsZeaF8fcvAehdq6JFC5nT4MF2NOqVGZ2r\nXgDKBw0y1nxdVCTyeivxfKg61gDAXJEKWNi2rRUNgEhsH6FfRtvrw5B0ixr+BWAUM39CRCUAmjLz\nr2qaXosalKizZ88eY80bb7wh8powYYJI98EHH4h0EgYafjtK8PDDDxtrOnfuLPJSDg+H48bYMQCm\nE9EyAL0ATKx16lWrZC6Jc6F1rVGvzOhc9QLQcNgwY80pd90l8nrwiy+saABgjkgFlAgKlSQaAJHY\nPkK/jLbXhyEaHaRemde56hXX6TUkv06vIaWpc9RLo4MURVGUyKIHJEVRFCUU2D0gee9TMUHyFVN6\nKlK90te56gUYn64DIDpdB8D4dJ1UA8hO1wHmp+ukGgCR2D5Cv4y214chdg9IGzfKdN6bXetSo16Z\n0bnqBSD7qaeMNR1ff13kNWzzZisaABgtUgGDvvrKigZAJLaP0C+j7fVhSDo3xp4A4EVP03cBjGfm\nP9Wk0aKGiHlJda56xXVa1ODXaVFDmjpHvSRFDQ2MHDww8yeIlXqDiLIBrAPwsnR+iqIoSv0mU6fs\nzgbwGTOvydD8FEVRlPoGM6f9AvA0gOtq+FsxgFIApR1yc5ljX/xir9LS2MvbNmECMzNzfn5l27HH\nxtpGj/ZPu24d85w5/rbJk2PTetsGD461DR7sb2eOTe9t+81vYvP1to0eHZu2d+/Ktvz8WNuECbI+\n9e4dW3YbfZozh/mZZ+z0iZn53HNlferTx6xPSeNUMWoUV1RUcIWnTxX5+bG28eN903523XW85Mkn\nfW1rfvYzfuedd3hfmzaH2nYcfzy/8847vGHIEN+0J7ZqxZc0b+5ru6lZM87Ly/O1vZaTw0MAnuNd\ndoCJiIuT2oYAXJDUNiU+bamnbV28rSRp2kKAb0xqK4lPu87TVhpvm5I0bUF8GbxtxfFpvW1z4m3S\nPr0GcOPGjbnMM9/18bY7s7N9036vYUP+XsOGvrZtN97Ia9as4QNHHnmobV/37rxmzRreMXy4b9pN\nf/hD3exPNX1GHHts5vcnW58RGf7cKywsZGazY0naN8bGn4O0HsCJzPxNbdMW9ezJpZJYk/XrK1Nm\n61KjXpnRWfbi/Hxjq9I5c7A/L89Yd+WQIfgmO9tI03DTJmwQpB/nMxvrJBrbunxmbGnc2Nhr1dtv\no/yoo4w02d98g/Z9+hh7uby/2PKSXEPKxAHpQgDXMvO5qabVooaIeUl1lr24osLcKisL/++dd4x1\n3z/9dLQ1PJBt3LQJWYIP+wpmY51EY1tXwYwmggPSnr178eUas6sCHTp21P3lMHkdrqSG4QBeyMB8\nFEVRlHpMWgek+AP5fgjgb5lZHEVRFKW+Ii77BgBm3gWgTWCB4Jw9AGC04LY9iUa9MqOLgNfXwvTi\naY0aGWueEDnJdDa9pDqp187hw0WaZhKzCGzDofcSYDftW5+HpNQBkm343//+t8hr6NChxprNwvQE\nl2kkOLB/8sknIq8OHTqIdEp6hD/te+VKmU6SgSfNzVOv9HUR8Op5xRUi3T+2bjXWvC/8p0+is+kl\n1Um92p1/vhUNgEhsw6H3EqDPQ1KvzOu0ys6HVtlV1WiVnfte4f+GpCiKoig1YPeAlJMj0wlufBRp\n1Cszugh47W8TvBbHy9dZ5rvMepGTTGfTS6qTeh088kgrGgCR2IZD7yUgrVN2RHQTgFEAGMByAD9j\n5r01Ta9FDUpdoEUN0UOLGtzH6ik7ImoP4HoARczcHUA2gItrFa0X/m9UUmJHo16Z0UXA62jBc40A\n4Fe7dhlrJgj/6ZPobHpJdVKvFg88YEUDIBLbcOi9BKTzPKT2AN4D0BPAdgCzADzEzG/UpNGihoh5\nSXVa1OBDixqqarSowX0vyTckoyTW5BeAGwDsBLARwPQapqlM+05K/Q2ceptIqLWRepuYbwZTb2tM\n8k3M20aSb3If6zLtu7r1GaRPieUXphNvHz6cV69ezXu7dz/UduDII3n16tW89YYbqngVJr0vQd0k\nY3t/Jl5Bk7Fn5uVxYWEhf+RJyv82J4cLCwt5ctI+MqJLlyp9XF9czGVlZbzPk0K+q0sXLisr440/\n+pFv2l9ecgk/nJTUPu3003l00ja6tEMHHj16NC/t0EHUp8S0QRPMk8dp/hln8Lhx4/i/zZodalvb\nrh2PGzeOF/XqVXWbspmM7W3TtG9mtpT2TUStAMwE8BMA2wD8FcBLzPxcTRr9hhQxL6nOstea1auN\nrToec0wkvrUUGd7/UVpWhsVlZcZevQsLUSy4G3/KE09YXR+/GTfOSHPX3Xfr/nKYvGyXfZ8D4Atm\n3sjMBxDLszutVkXXrjInSSGEtHhCvdLXRcCrSKSS6aRel3bpYkUDAHcJijUAu+vjUcHNzBINgEhs\nw6H3EpDOAelLAKcSUS4REWJPjRVGMSiKoij1nXTLvu9A7JTdQQBLAIxi5n01Ta+n7CLmJdXpKbu0\nNQmdnrLz6/SUXXS8JKfs0k37ngBgQjrzUBRFURRAo4MURVGUkGD3gCSNn5gg+BIm0ahXZnQR8LpD\npJLppF5TBPuLRAMAc3v3Fulsro9/nnGGFQ2ASGzDofcSoM9DUiLPGsObJQGgU6dOdbAkmaW38CAx\nZcoUY83jjz8u8nryySdFOgljx44V6e66664ML4kShPCnfS9bJtMVFNjRqFdmdBHwWiv8R0yik3q9\nKthfJBoAuG/6dJHO5vq45cEHrWgARGIbDr2XALsHpAMHZLoNG+xo1Cszugh4SXcviU7q1Vawv0g0\nANBy926Rzub6OGLnTisaAJHYhkPvJSCtAxIR3UBEK4joQyK6MVMLpSiKotQ/0kn77g5gNIC+iAWs\nDiaizrWKcnNlZpJz6cLz7+qVAV0EvMzv1JHrpF4rBfuLRAMAawwDYxPYXB/r2rWzogEQiW049F4C\n0smy+zGAgcz88/j72wHsY+b7atJoUYNSG5LiBADo27evsWbjxo0iL8lzfP7617+KvE47rfYkrppo\n3bq1sWbfvhrvZ6+Vm266SaSTFFFI1j0AvPXWW8YayTal+LGa9g2gK4D/AGgDIBfAuwAerma6yrTv\nhg1lqbd5efZSb889117a9+jR9pJ8L7nETp+YmZNTpwP26UBBAa9evZp3nX22r3316tW8aeJEX9s3\nTz7JXy1c6Gub1rgxH3nkkby0QYNDbRuysvjII4/k+zxp2Qzw35Be2nenRo34opwcX9s1DRpw48aN\nfW2vZGXx6gED+Os+fXztc+fO5Q+uvdbXtvD22/mNZ5/1te25/HLevHkzH+jZ81Bb+VFH8ebNm3n3\nLbf4pt02fz7vPf/84OOUtO3t/fxz3j9zpq9t/6RJvHfvXl/bwfPO47179/LB887ztV999dX83Fln\n+doeHTSIb7v8cl/bhpYt00r7vjM7mxs3bszrPW1lRNy4cWN+MjvbN+3zWVn8yR/+4Gv7/LbbeGHS\ntrPl9NN54cKFvOX004PtTzV9RnhS1TXt22LaNwAQ0c8BXANgF4APEfuGVOO1JI0OipiXVJeGl2kM\nUMdjjsFRgsdUf/Ptt+L4GtNn+ezZuxevzJ1r7DV4yBBsMXzabOs2bcTrft/eGh/2XCONGjfGNVdf\nbaR59LHHrK77RQsXGnv1PeWUSOwvYfayXvbNzE8xcyEznwlgK2LfmBRFURTFmLSy7IjoSGb+log6\nALgIwKmZWSxFURSlvpHufUgziegjAHMBXMvM22qdukcPmcu6dXY06pUZndBrreDUikQDAO1FKuC7\nggvr8559VuS1dcUKKxoA2Pf55yLdry+/3IoGkK17iQZAJPaX0HsJSPeU3RnM3I2ZezLz/JQC4c13\nEMTpizTqlRmd0Kvh8uVWNABg9lCHSk6uqDDWtPjsM5FXgw8+sKIBgKwlS0S6DoJqRYkGkK17iQZA\nJPaX0HsJsJtlp0UN0fKS6rSowYcWNfjRooYMaCLgFf4sO0VRFEWpAT0gKYqiKKHA7gGpQweZbvJk\nOxr1yoxO6LV54kQrGgC4UqQCrm1gXpi67NprRV677r/figYADkyaJNJNP+ssKxpAtu4lGgCR2F9C\n7yUg5TUkInoawGAA3zJz93hbawAvAjgGwGoA/8vMW1OZaXSQUhsaHeRHo4P8aHRQtKira0jPAhiY\n1HYbgPnMfByA+fH3qZFWaggugIo06pUZndCr4zHHWNEAsQvkEvYILvwPHjJE5NW6TRsrGiBWnCDh\n0cces6IBZOteogEQif0l9F4CUh6QmPltAFuSmi8EMDX++1QAQzO8XIqiKEp9I0jgHWKn5lZ43m/z\n/E7e99VoK8NVk0ISA4cMJgIBbYQMJuabwZDBGoMTE/O2EZyY3Me6DFdN8trz2We876WXfG37J03i\nPXv2VJm2Q4cOPC8poLRDhw58a+vWvraf5eVxUUGBr20KEDi0kwHu6wlhZYB/m5XFOTk5vnDVMoBz\ncnL4CSLftP968UVeeuedvraVN93E8+fP97VtPPXUyvEKMk7pbnvJ/bQY2vnWW2/xJzff7GtbPnEi\nv5sU2MoG41RduGoJgofgMsCvXHWV7/2C4cP5kUce8bV90b07P/LII/xF9+7pjZO3TcNVmbkOwlWJ\n6BgAr3DlNaRtzNzS8/etzNwq1XyKWrbk0m21hzlUy5AhgOl9HBKNemVEV37++Tgwc6ax1TutWuHn\nhvcUPfXttzhXcP1jLoAfCS54ry8sxLK77zbS9H/gAWe3j82nnYYP773XSHPibbeh7XvvGXvNZsaF\nhqeOZjPjq0ceMfa65tVX3Rwzi16Sa0jSA9InAPox8wYiygfwJjOfEGABtaihHrBXeN7+hBNSbkLV\n8tVXXxlrGgirr1577TVjTf/+/UVeUeDtt98W6fr165fZBamFSYIKwmuuuaYOlqR+YfPG2DkARsZ/\nHwlgdiDVqlUyN8lFYeGFZPVKX5czbJjI6qlvv7WiAYCXDx4U6XqMG2cucnj7OPG2YPVM6WqA2Lcd\nGxoA7o6Z7c8PQ4KUfb8AoB+APADfAJgAYBaAvwDoAGANYmXfyYUPVdDooIh5SXVE2Ltnj7FV4yZN\n0NHwXrU1X34pjqFpmJNjrNt/4AD+OT91bKOX/mef7fT28bZhWfWZZ50lHjNTXQUzHpWcsrv2WjfH\nLOTRQSnPWzDz8Br+dLaJkaIoiqLUhkYHKYqiKKHA7gGpUBj6L/mKKT13rF5p6ySn6wAYn66TagCI\nTtcBMD5dB8Dp7cP0dJ1UA0B0mk+iAeDumNn+/DDE7gFJGNeCKVPsaNQrI7rsp54SWQ3fudOKBgB+\nLnxOTsErr5iLHN4+2s2ZY0UDAKMFH4oSDQB3x8z254ch+jwk9cq8TosafGhRgx8tasiAJgJe+jwk\nRVEUJbKkPCAR0dNE9C0RrfC0/ZiIPiSiCiIqqttFVBRFUeoD0rTvFQAuAmB2m3bnzkaTH0Jyzll4\nnlq90tftf+klkdUVeXlWNADwo+xske6DO+80Fzm8fawQPI9KogGACyxpALg7ZrY/PwwRpX0z80pm\n/sTYLTfXWAJAVp0nrehTr7R1FSefLLJa3rChFQ0ALBZWX+04/nhzkcPbx05B3JNEAwCSh9cIH3jj\n7pjZ/vwwJUgCK5LSvj3tbwIoSqHVtO96nvZ99YUX8u/PPNPX9kSfPjx8+PAq0xIRz6mmrTipbQjA\nBUltpmnfz1x3ne/9v84+m++9917e3rz5obYN7dvzvffey0v69pWPk/dnqnGKcNr3Cy+8wItGjfK1\nvfXLX/LLScnaiTG1lfb97tixvvdLrr6aZ82a5WvbUFTEs2bN4g1FRemNk7dN076Z2ULat6f9TQC/\nZOZAialaZRcxL6mOCJcMryngo2aef+EFURWVtGLrd4Yp1QBw6223hXvMDsP2MeOFF4wkFw8fbrXK\nbvasWcbL2lbRAAAgAElEQVReFw4d6uaYaZWdoiiKoqTG7gFJeAEao0fb0ahXRnT/PPZYkdUTljQA\nsLRvX5kw7GNmefv4TPBoDYkGsLt9ODtmtj8/DJGmfW8B8DCAtgC2AVjKzANSmenzkOoHl1xyiUg3\nY8aMDC9Jzdxzzz0i3a233prhJYk20jGTbiMSXn75ZWPNhRdeWAdLUr+ok1N2zDycmfOZOYeZv8PM\nTzHzy/HfGzHzUUEORgCAlStNlq2SsFeTuOol1N0teIgdALwvOLct0QDAyIcfFulCP2aWt49zx461\nogHsbh/OjlnIq+zsnrLbvVumW7zYjka9MqLrtHWryEqyyUt3k3br1smEYR8zy9tH6y++sKIB7G4f\nzo6Z7c8PQ7SoQVEURQkFdg9Iwsh/5Ofb0ahXRnRbmzQRWa23pAGAHc2by4RhHzPL28eeli2taAC7\n24ezY2b788MQuwekHj1kuvWCzUqiUa+M6K4dOlRk9R3BvSkSDQA8Om6cSBf6MbO8fcx+7DErGsDu\n9uHsmNn+/DBEGq76eyL6mIiWEdHLRBTsXx5pp0pK7GjUKyO6YcuXi6wmCC5ASzQA8P1580S60I+Z\n5e2juyC3UKIB7G4fzo6Z7c8PQ4KUfZ8JYCeAaYmkBiI6F8A/mfkgEf0OAJg5ZT2sJjVEzEuq06QG\nP45vH5rU4CHsYxb1pAauPlz1DWY+GH/7HoDvmJgqiqIoShWCBN6hhnDV+N/mAri0Fq2Gq0Y8XHX7\nggW8fcECX9ueW2/lrVu3cnm7dofaDvTsyVu3bq3idVzTpvzjJk18bWMaNeLmnhDTxCudcNUXW7Tg\nLl268IpGjQ61fdOgAXfp0oUfbtOmilf5okW+9xXjx3N5eTlXeMaponfvWFtSaKhpuGpF0jhVVFRw\nxeOP+9tmz+aKtWv9baNGxab1jFNFfn6sbfx4/7Tvv191nA1CO3d88gnvevFF/zg/+CBv377d13Zg\n4EDevn07Hxg40D/Oxx3HvznySF9bcX4+f79Tp2rHWRquOrFhQ27evDmvJzrUtjgri5s3b85P5+RU\n8drx/PO+97seeKDKdrp/wADeunUr7x8wINj+pOGqKft0OMJVxwEoAnARB5hRUbduXPrRR8GPlgnK\nysxvzJJo1KsKO958E+W9ehlpLmjfHksFzxs6fscO48dC9GbGri5djL0+nDZNtD6yliwx1nFpqdXt\ng4rMn5m56+23RY8NufzEE/Fh48ZGmhP37sXstWuNvU5v0sR4u+pVXo45gnvOWn72mZv7tEUvySm7\nBkYOHojopwAGAzg7yMFIURRFUWpD9A2JiAYCuB/AWcy8MaiZFjVEzCuu22aYvNCyVSscIbjPZ/uO\nHaKL1l0F35BWfvwxKsrLjXVZ2dmiMeOKCmMvysoy1lFWlnicd2zfbixrfsQROP6444w0//n0U3FR\ng+l2tX3HDuPtF4htw07u01EvaoiHq74L4AQiWktEPwcwCUBzAPOIaCkRPW60pIqiKIqSRMpTdsxc\nXf3uU3WwLIqiKEo9xm5SgzR+YsIEOxr1qsJeweMW7mnYUOR1hyUNAPD48TKhYD1KvSQ6qde+224T\n6R5u3dqKBpBtV9Jt0dl92vLnhymBriFlCn0eUvTYtm2bsaZDhw4ir507d4p0J5xwgrHmww8/FHll\nZZn/D2e75ocE12d27Ngh8ioUPpZg1apVxppmzZqJvL788ktjTUth3p5SSfgfYb5smUxXUGBHo15V\nOKJrV2PNJ8IDy1rBB7dEAwD0HeG93JL12L69zEuiE3o1Pf54ke5fn39uRQPItivptujsPm3588MU\nuwekAwdkug0b7GjUqwpZX39trMkXHiQkm7x0NyGL61HqJdFJvSTjDABHCSoVJRpAtl1Jt0Vn92nL\nnx+m6POQFEVRlFAgTfu+M570vZSI3iCiYP+o5ubKlrJ3bzsa9arCwZ49jTVLBNdZAKDMkgYA2OJ6\nlHpJdFIv0zSOBCsaNbKiAWTblXRbdHaftvz5YYo07fsIZt4e//16AN2Y+apUZlrUED20qMGPFjX4\n0aIGpSZspn17b+luCiDYHrdmjcmyVVJcbEejXlVocuONxpoH9+4VeU0WfHBLNABAV14p0oV+zIRe\nja6/XqS785tvrGgA2XYl3RajMGah95IQJIEV1aR9A7gbwFcAVgBoW4tW074jnvb94i238Iu33OJr\nWzhoEE+aNIl3HnHEobZvjj6aJ02aVMWrALF0bm9bMWLpzsnTppP2vXfkSN66dSsf6NnzUFt5u3a8\ndetW3nPrrVXXga3EZYC/6tXL1z5t2jR+92c/87X986ab+K8PPuhre+uEE3jUqFG82pNWvjU3l0eN\nGsWzTz7ZN+1vhw6t0sftv/gFr1u3jg8eddShtn0nncTr1q3jnSNG+Ka99bLL+JGkBO/nzjyTr7rq\nKl/bBx078lVXXcUfdOwoGqfEtNK077/37ctjxozhbU2bHmr7sm1bHjNmDL9z4olVx9lmMra3TdO+\nuabjQk2vtNK+43/7NYDGzDwh1Xw0yy5iXnHdI5MmGUmuve46qw9gi0JW2Z+nTTO2uuzyyzF61Cgj\nzRNPPon1gnTrgvbtcfVVKc+6V+Gxxx+3+lDF68eMMdI89PDD1veXUO/TUc+yC8B0AMMyMB9FURSl\nHiM6IBGRN973QgAfBxL26CGxAwT/8Yk06lWFZ+66y1gjvA1UpJN62VyPLz34oMjql4LHwEs0AHDb\nZZeJdDbH7Dc/+5kVDQB392nLnx+mSNO+7yWiFUS0DMC5AG4I5LZ7t2wpywTFvRKNelXhyK++MtbI\n6q5kOqmXzfXYZvVqkVXHTZusaACgw8bAT5HxYXPMJMso7Zez+7Tlzw9T7GbZ6TWkaHnFdXoNyYNe\nQ/Kh15AyoHPUK/xZdoqiKIpSA3pAUhRFUUKB3QOS8A5+TJ5sR6NeVVhw8cXGGuEtpyKd1MvmenxP\neGF92umnW9EAwPQzzxTpbI7ZjB/8wIoGgLv7tOXPD1P0eUhKrTzyyCPGmjGG5/nTZcuWLaknSsJm\nNMyf//xnke7tt98W6e64w/yxhXfeeafIa7KlDyoAuO6660S6hx56KMNLogShTq4hVReu6vnbzUTE\nRJQXyE1aqSG4ACrSqFcVrhV8CFQI/8mR6KReNtfjZZdfLrJ64sknrWiAWHGCBJtj9tDDD1vRAHB3\nn7b8+WFKkFN2zwIYmNxIREcjVvJtnlyoKIqiKEmIwlXjPADgFiBgsKqiKIqi1EIDiYiILgSwjpk/\nMIq6b9FCYgcMHmxHo15VKG3XDgsWLDDSCEtX8F7btjjX8Lkr7y1ejFMk25XF9bh/wACcf/75xrr/\nI8I0w/uXhhJhiODx7LMhux50nrECmAsgOzvbWPff007DFVdcYab54AOIPnVc3actf34YEySBFZ60\nbwC5ABYCaBF/vxpAXi3ayrTvFi3qZept1Pv0q/79+Vf9+/vaXuzalYcNG8abGzc+1LaqZUseNmwY\nT/H6IHja97tt2/KAAQP43bZtfe0DBgzgP3Xr5msbf/LJPPyss3xtFaNGcUVFBVd4+lSRnx9rGz/+\nsI3T5s2bed+AAb72zZs388777/e1bZ8+nbesWOFrezIrixs2bMhlnnW1DuCGDRvyb7OyfNOe0qAB\nn9Kgga+tJL6e13naSuNt0nGag/RS2acA3KBBAy7ztK2Lt92R5NU3O5v7Zmf72jZceSUvWbKE9+fl\nHWrb1bUrL1myhDdedJFv2uWvvx66/cnFz4jDlvZNRCcBmA8gkQP0HQDrAfRl5q9rm09Ry5ZcKnjg\nG4YMAebOrXuNelWhND8f937/+0aakTNn4kLBRdB/5+WhxPAbUsnixThF8HwduuACa+tx/8CB2Pn8\n88ZW7+bl4aKcHCPN3w4cwBBjJ2A2s2jMJLrZzLiogfnJmU2nnYYvDHMBO91wA1q89Zaxl7P7tEUv\nSZVdJh4/sRpAETOnDNHS6KCIecV1/zPMLMz9pZkzxdEwAwcMMNK89vrr4IoKYy/KyrI6Zls2bza2\nat2mDRo1bGik2bd/v7XYJqmughk5ggPSgYMHsXTJEiNNr5NPtr6/hHqfjnp0UA3hqoqiKIqSUVL+\nm8LMtebZM/MxGVsaRVEUpd5iNzqoUBg8L/mKKdGoVxVMT9cBEJ36AWB8uk6qAWB1PUpO1wEwPl0n\n1QDyMZPopF6mp+ukGgDu7tOWPz9MsXtAkj6bZMoUOxr1qsI5n39urBkt3HgHCZ69JNEAsLoeG02d\nKrL6eXm5FQ0gHzOJTurVZuZMKxoA7u7Tlj8/TNHnIalXSp0WNXiFWtSQrk6LGuqHlz4PSVEURYks\nekBSFEVRQoEo7ZuISohoHREtjb+CJYh07ixbyjlz7GjUqwr3fO97xpoLRE7AhJNPtqIBYHU97pg+\nXWQluXlUogHkYybRSb0+/9OfrGgAuLtPW/78MEWc9g3gAWbuFX/9PZBbbq7BonmQVOdJK/rUy8fn\nrVoZa4QPGcGnRxxhRQPA6no82LOnyGqx4JqORAPIx0yik3rt7trVigaAu/u05c8PU9JJ+zZn2TKZ\nrn17Oxr1qsITfw/2v4aXdSIn4HlBxItEA8DqemzVvUrASSBWHzhgRQPIx0yik3p1F5T4SzQA3N2n\nLX9+GBMk8A6ecNX4+xLEQlWXAXgaQKtatJXhqkkhi4FDBhOBgDZCBhPztRGcmJi3jeDE5D4a9Ony\n7t358u7dfW1PtG/Pp5xyCn+bk3OobWVuLp9yyilVvIKGdjLAl156KS9u375K21NJ8/1jv358XVKQ\nptE4JcYqyDilu+15f6Yap6Rtb1X//jxjxgze3KnTobbdrVrxjBkzePmwYb5pX584sUofSxC+cFUG\n+JZbbuGvjjrq0Pv/Nm3Kt9xyC79x2mm+6R68/HJ+8PLL5eNU3fZfl0Gk3jYNV2XmOg5Xjb8/CsAm\nAAzgTgD5zJwyF17LviPmFdedesopRpL3Fi4UlxBfdumlRpo/P/ec9fVhc8xenDHDSPKTiy+ORNn3\nrbfcYuz1u/vui8T+EupldLHsm5m/YeZyZq4A8ASAvoGEecGedF6F0aPtaNSrCrPatjXWPCFyAhYI\nil4kGgCRGLPP+ve3ogHkYybRSb2isL+Efhltrw9DpN+Q8pl5Q/z3mwCcwswXp5pPUVERl5aWprXA\nil1OPfVUY82iRYtEXiNGjBDp/vznP4t0YefFF18U6YYPrzV+MhT86le/Mtb87ne/q4MlUeoKm2nf\n9xHRciJaBuAHAG4K5LZypcmyVRL2ahJXvQA8u3y5seZ9ySkBAL8VFFBINAAiMWY//PWvrWgA+ZhJ\ndFKvKOwvoV/GkFfZaXSQeqXU6TWkNHV6DamKRq8hue+l0UGKoihKZLF7QDJ8HPMh8vPtaNSrChsF\nY7Ze5ARsbdLEigZAJMZsj+CmZIkGkI+ZRCf1isL+EvpltL0+DLF7QOrRQ6ZbL9iEJRr1qsKQ3r2N\nNd8RpgVcL3j2kkQDIBJjNuexx6xoAPmYSXRSryjsL6FfRtvrwxC7ByRpp0pK7GjUqwqj1q411kwQ\nXpf80QcfWNEAiMSYnfjXv1rRAPIxk+ikXlHYX0K/jLbXhyFa1KBeKXVa1JCmTosaqmi0qMF9r7oq\n+66S9h1vH0NEHxPRh0R0n9GSKoqiKEoSorRvIvoBgAsB9GTmEwH8IfOLpiiKotQnpGnfVwO4l5n3\nxaf5NpCbNApeku4gTYRQLx8jBUnVRSIn4PZBg6xoAERizN6YONGKBpCPmUQn9YrC/hL6ZbS9PkwJ\nksCKqmnfSwHcAWAhgLcA9KlFW5n23axZyoTYalNvu3Sxl3p7//320r5LS+0l+b76qrhPpmnfM70+\nCJ4i/X6TJtytWzdekLSddOvWjSckpb9fc/TRfNZxx/naKkaN4vLycq7w9KkiPz/WNn68v/9//nNa\nicu7Pv2U9/zlL762vQ89xDt37vS1HRg0iEsnT+ZN3/uer/3NN9/kT26+2de2fOJE/vdLL/na5h97\nLA8fPpw/b9XqUNuWJk14+PDh/FLSmIwdMIAnnXqqr60E9tK+GzZsyFdnZ/vaftSgAXf0bCMM8MtE\nvHnzZj7Qs+ehtvKjjuLNmzfz7ltu8U27bf583jZ/vnic+NVX7SZjd+mScn/StO/Mp32vALAAwPUA\n+gB4EcB3OcXMtKghYl5xnc2ihhO7dTPSfPjRR6goLzf2ysrOFq+PXTt3GkmaNmuGt95809jqrH79\ncIlhLt3zL7xgvaihUcOGRpp9+/djy+bNxl6t27SJxP4S6mWMelFDDawF8LfYoZIXAagAIIzyVhRF\nURT5AWkWYqGqIKLjATRE7PlIiqIoiiJCmvb9NIDvxk/dzQAwMtXpOgDy+IkJE+xo1KsKTwoeXXyH\nyAl4RPC8LIkGgHh97Bekaa8eOVLkNVNQUCLRAPIxuzPL/H9aiQZAJPaX0C+j7fVhiN0bY/V5SJHD\n5vOQugqrMJcLHpGRJfxQ3LVrl7FGus1PnjxZpJtheDNtOuQI8yk3bNhgrGndurXISzk8hD/te9ky\nma6gwI5Gvaowd/FiY81a4T85C/7zHysaAOL10UTwhNpThXl7j8yaZUUDyMfsi/37rWgARGJ/Cf0y\n2l4fhtg9IB04INMJ/psSadSrCm0FYybddI88eNCKBoB4fWR9/bWxppGgogwAWu3ZY0UDyMdMohN/\ntEVgfwn9MtpeH4bo85AURVGUUGD3gJSbK9MJHoEg0qhXFT4WjFmZyAn4sHFjKxoA4vVR3quXsWbH\n8ceLvL4QPNtIogHkY7ZYcO+SRAMgEvtL6JfR9vowJGVRAxE9DWAwgG89N8a+COCE+CQtAWxj5pR7\nqhY1RA8tavCjRQ1+tKhBqYm6Kmp4Fknhqsz8E2buFT8IzQTwt0Bua9aYLFslxcV2NOpVhds+/9xY\nM1l4gbxE8LwsiQaAeH00vO46Y81xf5BlD48SHNglGkA+Zo8KruFJNAAisb+Efhltrw9DRNFBnnYC\n8CWA/sz8aar5aHRQxLziOo0O8qDRQVV0Gh2Ups5RL8k3pECBd0gKV/W0nwmgNIW2Mlw1KYwxcMhg\nIhDQRshgYr4ZDBmsMTgxMW8bwYnJfTTo09ySEp5bUuJrWzp0KE+dOpV3tWx5qG1Tx448derUKl5B\nQzsZ1Yd2EhEXJ7UNic/X2/Z88+bcqVMnXtaw4aG2r7OzuVOnTvwnz3ImXo+OGuV7/88zz+Tbb7+d\n/+sJd13Xrh3ffvvt/P7JJ/umPbFVK76keXNf201Nm3KbNm18ba/Fg0WlfZoSn7bU07Yu3laSNG1h\n8hjDbrjq2LFj+eVBg3xt0378Y75nzJiq219d7E/VfUagmu2/LoNIvW0arsqJ40DQV7rfkB4DsIqZ\n/xjk4KffkCLmFddNmzrVSHL5yJFWnz763U6djL0+/+ILjL/9dmPdb++8E3lt2hhpNm3ebHV92P6G\nNG7sWCPN3RMnOr2/hHoZQ/4NSVxlR0QNAFyEWNJ3MHr0kJmtW2dHo15V+Ouf/mSsMQ8bkuukXr+/\n8UaRrrugii0K60Oqu3fMGCsaAJHYX0K/jLbXhyHplH2fA+BjZl4bWLF7t8ypTFCUKtGoVxXarF5t\nrCkUOcl0Uq8C4Y1+PQUX5KOwPqS69oIbhSUaAJHYX0K/jLbXhyFByr5fANAPscdLfANgAjM/RUTP\nAniPmR8Paqan7CLmFdfpKbtK9JRdVZ2esktT56iX5JRdg1QTMHO1ZT7M/FMTI0VRFEWpDY0OUhRF\nUUKB3QNShw4yneSOdeFd7url592f/tRYc6XISaaTes0+/3yR7hdNmxprorA+pLpZgwZZ0QCIxP4S\n+mW0vT4M0echKbUybdo0Y81PBQexdDjmmGOMNZdeeqnI69FHHzXWbNmyReQVBX4teGAhANx9990Z\nXhIlbIT/eUjSSg1JGKM0wFG9fFwueNpphfCfHIlO6vXbO+8U6TYJEgaisD6kursnTrSiARCJ/SX0\ny2h7fRii15AURVGUUJDygERETxPRt0S0wtPWi4jeI6KlRFRKRH3rdjEVRVEU1xGlfQO4D8AdHEv7\nHh9/n5oWLUyWrZLBg+1o1KsKXwme/zNX5CTTSb0+Oe44ke51weMWorA+pLqPBY90l2gARGJ/Cf0y\n2l4fhoiy7IjodQBPM/OLRDQcwBBmviTVfLSoIXpoUYMfLWrwo0UNSk1YS/sG0BWxx058BWAdgI61\naCvTvhs0kKXetmhhL/W2Tx97ad+DB9tL8j3nHHGfyhct4vJFi3xtFePHc3l5OVd4+lTRuzeXl5fz\n140a+ab9yRln8O29evnaHujalX/4wx/62jYgvbRvk2Tst1A1HbsEdZOMnXjVdZ8K4/2S9mlo3758\na7duvrb7OnfmM844w9f2TuvWfMYZZ/A7rVv72g8cOMAHH33U13bw5Zf5wJo1/m3n6KPrZn+q7jPi\nnHPsJmO3aFH3fdK0bzoG/m9IDwF4i5lnEtH/Aihm5nNSzUejgyLmFdeZPm8oKzsb5/7wh8ZWb8yb\nF4monDAvYzpeZ55xhrHu7X/9CwcPHDDSNMjJcXp/CfUyhjw6SFplNxKVT4n9KwAtalAURVHSQnpA\nWg/grPjv/QGkfFqsoiiKotRGynBVb9o3Ea0FMAHAaAAPxp+JtBex60SpKRSG3Eu+Yko06lUFyePB\nJafrAIhONUk0tnVR8JKcrgNgfLouoUn5wVMdEdhfQr+MtteHISm/ITHzcGbOZ+YcZv4OMz/FzO8w\ncyEz92TmU5g5WATDxo2ypZwyxY5GvTKiO29t8EdkeRkt2OglGtu6KHgNET4fip54wooGgLP7i7Ne\nAuxm2WlRQ7S84jotakhPFxUvLWo4TDpHvcKfZacoiqIoNaAHJEVRFCUU2D0gSSND5syxo1GvKlTM\nmmWsGS+IGwKACyxpbOui4HVbt24iXfnLL1vRAIjE/hL6ZbS9PgyRhqv2JKJ3iWg5Ec0loiMCueXm\nypZSUp0nrehTr7R1/2neXGQleTiJ8IEmVnVR8PqkWTORjnv3tqIB4Oz+4qyXgJRFDUR0JoCdAKZ5\nkhreB/BLZn6LiK4A0ImZb09lpkUNEfOK67SoIT1dVLy0qOEw6Rz1qpOiBmZ+G0ByOuTxAN6O/z4P\nwDATU0VRFEWpQpDAO1QNV/03gKHx338BYEct2spwVW8Yn0nIYCIQ0EbIYGK+GQwZrDE4MTHvuu5T\n8vwM+2QarprsFTRclWEvXJVhL1zV+7Mu+5TcH9M+2QpXPbSd2ghXRTXbf10GkXrbNFyVE8eBoC9p\nuGoXAA8BaANgDoDrmblNqvkUtW3LpZKbY4uLzW/MkmjUKyM6Hj1a5LXpoouwZtw4I03Hu+/GRMHj\nJ/5n3jy82L+/se76FSuwaNQoI83BK67AzYLrahM3bcKVhqffJjPj6uxsY681Awfik1/8wljXf8aM\ncG/DEdhfXPWSnLITHZCS/nY8gOeYOWXAqj4PqX4QZJuqjrIy2SX56dOnG2vKBZFIAHDqqacaa264\n4QaR1+bNm0W6rCzz4tk33nhD5NVfcFBX6gfWbowloiPjP7MA/AbA44GEK1dK7MJfTeKql1RXVCSy\n6nrZZVY0APCrGTNEuoGG3+AA4B9bt4q83hcc2CUaACi66iqRLvTbcBT2F1e9BAQp+34BwLsATiCi\ntUT0cwDDieg/AD5GLPn7mUBuu3fLlnLxYjsa9cqIjoReTT/+2IoGAI4W5iq2Xr3aWNNT+G1M8hEg\n/dg44lNhYH/Yt+EI7C/OeglIGbrLzMNr+NODGV4WRVEUpR5jN6khJ0emy8+3o1GvjOhY6LU/L8+K\nBgD+27SpSLe7ZUtjzdeCazpA7NSDDQ0A7GuTsiapesK+DUdgf3HWS4DdtG8taqgXaFGDHy1qUOoj\n4U/7Xi/8/62kxI5GvTKjE3oVCMpRJRoAGLRwoUh30syZxppf7dol8pogOLBLNADQaepUkS7027DD\n+0vovQTo85DUK/M6InBFhblVVhZK33/fSFPUpw9uuvFGY68H/vQnXD9mjLHuoYcfxvOG38guGTEC\nbQWnFjdu2iSKDmoguA/pYHk5/jl/vrGu/9lnh3sbjsj+4qJX+L8hKYqiKEoNBCn7PpqIFhDRR0T0\nIRHdEG9vTUTziOjT+M9Wdb+4iqIoiqsE+YZ0EMDNzNwNwKkAriWibgBuAzCfmY8DMD/+vna6dpUt\npaQQQlo8oV5p69jwtFuCj6ZNs6IBgN//5Cci3at33WWsOVtQmQcAktuLZbckA+8/9phMGPZtOAL7\ni7NeAoKkfW9g5sXx33cAWAmgPYALASSuhE4FMLSuFlJRFEWpB5gksSKW+v0lgCMAbPO0k/d9kkbT\nviOe9m2cTlzd+gzSp8Ty20gnTvQraJ+SxmnLihW8ffp0X9vO++/nzZs3+9r2DRjAjMOX9j3zpJN4\nxIgRvKVJk0Ntn7duzSNGjOD5nTvb2faSxykxraZ9y/pU39O+AYCImgF4C8DdzPw3ItrGzC09f9/K\nzLVeR9Iqu4h5SXWuesV1WwzvD2rdpo3VB/RdOmKEsddz06e7OWa6vxw2rzqrsiOiHAAzAUxn5r/F\nm78hovz43/MBfGtirCiKoiheglTZEYCnAKxk5vs9f5oDYGT895EAZqd0k8ZPTJhgR6NemdG56gVg\nzy23GGvuEDnJdFIvZ8dM95fD5yUg5Sk7IjodwL8ALAeQuNtxLICFAP4CoAOANQD+l5mTH3XuQ6OD\nlKizZUutm3i15Anz9qRccsklxprnnnuuDpZEqc/UySk7Zn6HmYmZezBzr/jr78y8mZnPZubjmPmc\nVAcjAMCyZSbLVklBgR2NemVG56oXgJbduhlr1krO2Qt1Ui9nx0z3l8PnJUCjg9Qr8zpXveI6LWrw\nEPYx0/3lsHlpdJCiKIoSWewekHJzZbreve1o1CszOle9ABzs2dNYI3uohkwn9XJ2zHR/OXxeAvR5\nSITfTV8AABruSURBVIpigBY1KEowwn/Kbs0ama642I5GvTKjc9ULQO5NNxlrJgv/6ZPopF7Ojpnu\nL4fPS0CQsu+jAUwDcBQABjCFmR8koh8DKAHQFUBfZk751UeLGiLmJdW56hXXaVGDh7CPme4vh81L\n8g2pQYBpEmnfi4moOYAyIpoHYAWAiwBMNlpKRVEURamGlAckZt4AYEP89x1EtBJAe2aeBwAk+M9P\nURRFUapgksQKT9q3p+1NAEW1aCrTvps3T5kQW23q7Ukn2Uu9feYZe2nf69bZS/ItK7PTJ2bmESNk\nfTrnHLM+pTFO5f/3f1y+aJGvrWL8eC4vL+cKT58qeveOtY0a5Zv2njFjeNqPf+xre3nQIB47dqyv\nbWXnzlwAe2nfA5LaPh0xgl977TXe07r1obZtnTvza6+9xl8OGmRn20sepxEj6m7bS96fysrsJmOf\ndFLd90nTvqumfXva3wTwSw5yDem447j0008DHywPMXcuMGRI3WvUKzO6CHhVzJ4t0k2/+GJ8fNxx\nRprlEyfiFcGZhMHMxrrBzLj2tdeMvQbs3x/6MQu9l1TnqJfkGlKgA1I87fsVAK+zP2DV7ICkRQ3R\n8pLqIuJVUV5uLMvKzsa4sWONNHdPnGi1qOF1yQFp4MBIjFmovaQ6R73qpOy7lrRvRVEURckYQars\nvg/gMgDLiWhpvG0sgEYAHgbQFsD/EdFSZh5QN4upKIqiuE6QKrt3EHtEeXW8bOTWoYPR5IeYLKgs\nl2jUKzO6CHhVPPaYSDdr0CBjzZUiJ5nuSsTuxTAmAmMWei+pzlUvARodpNRLKioqUk9UDbfffrux\n5p577hF5SXn11VeNNQMG6MkNJbOEPzqoTBj9KLnXSXp/lHqlr4uAV1Z2tkh398SJxpoK4T99Ep3U\nKwpjFnovqc5VLwH6+AlFURQlFOgBSVEURQkFQcq+jyaiBUT0ERF9SEQ3xNt/T0QfE9EyInqZiFqm\ndGvRQraUgwfb0ahXZnQR8OLzzxfpPu7c2VgzV+Qk00m9ojBmofeS6lz1EhAk7TsfQD57wlUBDAXw\nHQD/ZOaDRPQ7AGDmW2ublxY1KGFBixr8aFGDkmnqpKiBmTcw8+L47zsAJMJV32Dmg/HJ3kPsAFU7\nq1aZLFslkqgLiUa9MqOLgBddcIFId9lf/mKsmS0sNJDopF5RGLPQe0l1rnpJMAm+QzXhqvH2uQAu\nrUFTGa6aFPwYOGQwEQhoI2QwMd8MhgzWGJyYmLeN4MTkPtZluGp16zNInxLLbyMMEuD/zJjhe//1\nVVfxsmXLeH/btofadnftysuWLePNw4b5pi1ALAzV21aMWOipt21O0s/EK2i46vRmzbhjx468rGHD\nyuXMzuaOHTvyAy1a+KY9v127Kn08MG4c79271xcYW37yybx3714+eMUVdra95HFKTGsjXLW67b8u\ng0i9bRquysz2w1XHASgCcBGnmJlm2UXMS6qLiNfyZcuMZSf16CHKl5Nm2R3TsaORZvWaNdi3d6+x\nV6PGjSMxZqH2kuoc9aqrB/QlwlVnApiedDD6KYDBAM5OdTBSFEVRlNoQh6sS0UAAtwC4gJl3B3Ir\nLJQtpeRYJz0+qlf6ugh4Sb4dARB905FoABh/O5JqAERizELvJdW56iUgyH1IiXDV/kS0NP46D8Ak\nAM0BzIu3PZ5yThs3ypZyyhQ7GvXKjC4CXq1eekmkGy3YMSUaABi+Y4cVDYBIjFnovaQ6V70E2M2y\n02tI0fKS6iLipdeQKtFrSIdR56hX+LPsFEVRFKUG9ICkKIqihAK7ByRB7AoAYM4cOxr1yowuAl6r\nH3pIpJPcTiu7BRf4edu2VjQAIjFmofeS6lz1EmD3gJSbK9NJqvOkFX3qlb4uAl57unUT6SQPUBE+\ndAXLGza0ogEQiTELvZdU56qXAC1qUK/M6yLipUUNlWhRw2HUOepVJ0UNtaR93xlP+l5KRG8QUYHR\n0iqKoiiKhyCn7A4CuJmZuwE4FcC1RNQNwO+ZuQcz9wLwCoDxdbiciqIoiuOkk/a93TNZUwCpv8/l\n5cmWcvRoOxr1yowuAl5bhg0T6Z6wpAGA55s1s6IBEIkxC72XVOeqlwSTJFYkpX0DuBvAVwBWAGhb\ng6Yy7Tspnbi+pN5qn+z0qWLUKC4vL+cKT58q8vNjbePH+6Y9IzeXz8jN9bVNbNiQmzdvzus9id2L\ns7K4efPm/HROjm9ak7Tvpk2b8v9lZ/vamzZtytd5ErwZ4P9p1IiPbdLE1/bN0KG8aNEi3tmly6G2\nfXl5vGjRIl47apRv2hVTp/KKqVNDP04ubnvap5Ckfcf/9msAjZl5Qm3zKGralEt37Qp+tExQWAiU\nGdYqSTTqlRmdZa+K9983tvogJwdnNW1qrFuwYwf6GBYolBHhjCZNjL2+OfpofDRtmpGm2+WXo+nK\nlcZeLm8fur8cHi9JUUOgA1I87fsVAK+zJ2DV8/cOAP7OzN1rXUCtsouWl1Rn2auivNzYKis7G0c0\nb26s275jh6jKrpng4Ldz1y68v2iRkaZP3766fRwuL6nOUa+6qrKrKe37OM9kFwL42MRYURRFUbwE\neR5SIu17OREtjbeNBfBzIjoBQAWANQCuSjmnnBzZUubn29GoV2Z0EfDaIHwkxHqLXvsFRUD78/Ig\nujU2AmMWei+pzlUvAXZvjC0q4tLSUmt+Sv2goqLCWNOyZUuR186dO401ucKEkgULFoh0ffr0EekU\nJZOEP+17veT/SwAlJXY06pUZXQS8fr1vn0g3QfAP3Nj9+0VeBYJn0Eg0ACIxZqH3kupc9RKg0UHq\nlXmdFjX40KKGeuIl1TnqFf5vSIqiKIpSA3pAUhRFUUKBOFzV8/ebiYiJKHVJUNeusqWUFEJIiyfU\nK31dBLzOFBYaFAk0pzduLPL6cOpUKxoAkRiz0HtJda56CQhS9p0IV11MRM0BlBHRPGb+iIiOBnAu\nYnFCiqIoiiLGuKiBiGYDmMTM84joJQB3ApgNoIiZN9Wm1aKGiHlJdVrU4EOLGuqJl1TnqJekqMEo\n+A6ecFXE0hkejLevBpBXg6YyXNUbxmcSMpgIBLQRMpiYbwZDBmsMTkzMu677lDy/uuxT8nKa9Cmx\n/BbCVRmwFq7KgLVw1SrrM4yhnYlpbQSRVrf912UQqbdNw1WZ2UK4KoDXACwAcC4z/5eIVkO/Ibnn\nJdVZ9ioTnN8uLCoSP8VV8g1p6rPPGnuN/OlPw73upTpXvaQ6R73qrOw7Hq46E8B0jiV9HwugE4AP\n4gej7wBYTETtap2RNH5iwgQ7GvXKjC4CXneIVDLd0gsvlJmFfd1Lda56SXWueglI+Q0pHq46FcAW\nZr6xhmlWI8g3JI0OUuqAMkGcvs14nWeeeUakGzlyZIaXRFHsUVffkBLhqv2JaGn8dZ5oCZctE8lQ\nUGBHo16Z0UXAa63ktIVQ9+Mbq/0/LjVhX/dSnateUp2rXgJSln0z8zsAaj3KMfMxgdwOHAg0WRU2\nbLCjUa/M6CLgJd29JLrcbdtkZmFf91Kdq15SnateAjSpQVEURQkFdg9Iwrvj0bu3HY16ZUYXAS/B\nQ5zFus0dO8rMwr7upTpXvaQ6V70E6POQlMijRQ2KEj7Cn/a9Zo1MV1xsR6NemdFFwGuy8B8xie57\nwgNS6Ne9VOeql1TnqpcAfR6SemVepzfGVtHojbH1wEuqc9SrTr4h1ZT2TUQlRLQu7VJwRVEURUEa\nad/xvz3AzH+ou8VTFEVR6gspvyEx8wZmXhz/fQeAlQDai9x69BDJsG6dHY16ZUYXAS/ZBizT/eWB\nB2RmYV/3Up2rXlKdq14STJJY4U/7LkEs5XsZgKcBtKpBU5n2nZSuHDj19thj7aXe/uY39tK+58yx\nl+T7zDN2+sTMfO65sj716WPWp6Rx2jtyJG/dupUP9Ox5qK28XTveunUr77n1Vt+0Dx97LBcXFvra\nnunYkfv168cbPSncnzRrxv369eO5SenzPznjDP6Nx4cBvr9LFz7nnHN8bf/Oy+PyWbO44vzzfe3l\n5eVc/thj/rZZs7j8q6/SG6f77w8+TocrRfrcc+tu20vu0zPP2E3GPvbYuu+Tpn37076Z+W9EdBSA\nTQAYsWci5TPzFbXNQ4saIuYl1Vn22rZ1q7FVy1at8IN+/Yx1C958Ez885xwjzbx//EP8zKZQr3up\nzlUvqc5RL5tp32Dmb5i5nJkrADwBoK/R0iqKoiiKhyBVdgTgKQArmfl+T7v3WRI/ArAi84unKIqi\n1BeCVNkl0r6XE9HSeNtYAMOJqBdip+xWA7gy5Zw6dJAt5eTJdjTqlRldBLz+ePzxIt0DXboYayoe\ne0zkFfp1L9W56iXVueolQKODlMizTZCm/aMf/Ujk1aBBkP/h/Lz++usir6wszT5Wokv4o4MEmWMA\nYhfUbGjUKzO6CHgtePNNkW7eP/5hrMnKzhZ5hX7dS3Wuekl1rnoJ0H/BFEVRlFCgByRFURQlFNg9\nILVoIdMNHmxHo16Z0UXA699t2oh07+blGWv4/PNFXqFf91Kdq15SnateArSoQYk8WtSgKOHDatp3\n/G9jiOjjePt9Kd1WrTJZtkqGDLGjUa/M6CLgdffy5SLdb5cuTT1REnTBBSKv0K97qc5VL6nOVS8B\nKb8hxW+AzWdP2jeAoQCOAjAOwPnMvI+IjmTmb2ubl0YHRcxLqtPoIB8aHVRPvKQ6R70k35BSnn9g\n5g0ANsR/30FEibTv0QDuZeZ98b/VejBSFEVRlFoxSWKFP+17KYA7ACxELHS1Tw2ayrRvbzqsSept\nIqHWRuptYr4ZTL2tMck3MW8bSb7JfazLtO/q1meQPiWW30Y6caJfQfuUzjh5f9Zln5L7U5d9Smec\nEtPaSPuubvuvy2Rsb5umfTOzvbTvFQAWALgeQB8ALwL4LtcyQy1qUBRFqR9YTfsGsBbA32KHS14E\noAJA7TWxGzeaLFslU6bY0ahXZnSuekl1rnpJda56SXWuegkIUtRAAKYC2MLMN3rarwJQwMzjieh4\nAPMBdKj1G5IWNUTLS6pz1Uuqc9VLqnPVS6pz1KtOihpQc9r30wCejp+62w9gZG0HI0VRFEWpjSBV\ndu8AqOkod2lmF0dRFEWpr9i9FbxzZ5luzhw7GvXKjM5VL6nOVS+pzlUvqc5VLwF2D0i5uTJdYaEd\njXplRueql1TnqpdU56qXVOeqlwC7WXZa1BAtL6nOVS+pzlUvqc5VL6nOUa/wP6BPURRFUWogZVED\nER0NYBpi2XUMYAozP0hELwI4IT5ZSwDbmLlXnS2poiiK4jRByr4PAriZPeGqRDSPmX+SmICI/gjg\nvynnJHiWDABg9Gg7GvXKjM5VL6nOVS+pzlUvqc5VLwHG15CIaDaAScw8L/6eEMu368/Mn9am1egg\nRVGU+kGdX0MiomMAnIxYoGqCMwB8U9PBiIiKiaiUiEo3LlkSuziWeJWVxV7etpKSmLCgoLItUZ1X\nXOyfdv16YO5cf1si4sLblniWx5Ah/nYgNr237dhjY/P1thUXx6YtLKxsKyiItZWUyPpUWBh72ejT\n3LnASSfZ6RMQ+yYs6VPiicJB+5TOOHXtatandMapsNBOn8rKYv2y0ad0xilxpqQutr3kPp10kp0+\nJcYpN7fu+2RrnNL9jBAgDlf1tD8GYBUz/zHVPLTKLmJeUp2rXlKdq15SnateUp2jXnUVHYQawlVB\nRA0AXATATpG6oiiK4ixBHmFOAJ4CsJKZ70/68zkAPmbmtYHccnKMFxAAkJ9vR6NemdG56iXVueol\n1bnqJdW56iUgSNr36QD+BWA5Yo+YAICxzPx3InoWwHvM/HgQMy1qUBRFqR/USVEDM7/DzMTMPZi5\nV/z19/jffhr0YAQgdtFMQuKCX11r1CszOle9pDpXvaQ6V72kOle9BGh0kHplXueql1TnqpdU56qX\nVOeol0YHKYqiKJFFD0iKoihKKLB7QOraVaaTFEJIiyfUK32dq15SnateUp2rXlKdq14C9BuSoiiK\nEgqClH3XlPbdC8DjABojFsB6DTMvqm1eWtQQMS+pzlUvqc5VL6nOVS+pzlGvukpqqDbtG8B9AO5g\n5leJ6Lz4+35GS6woiqIocVIekJh5A4AN8d93ENFKAO0R+7Z0RHyyFgCENxkpiqIoiuF9SPG077cB\ndEfsoPQ6AELsWtRpzLymGk0xgHhsLLoDWCFYzjwAmyxo1CszOle9pDpXvaQ6V72kOle9TmDm5kYK\nZg70AtAMQBmAi+LvHwIwLP77/wL4R4B5lAb1S1enXvVjGXV96PoIi1cUljHsXoGq7GpI+x4JIPH7\nXwH0DTIvRVEURamOdNK+1wM4K/57fwC1Pi1WURRFUWojSJXd9wFcBmA5ES2Nt40FMBrAg/FnIu1F\n5XWi2pgiWkqZTr0On85VL6nOVS+pzlUvqU694lgNV1UURVGUmtCkBkVRFCUU6AFJURRFCQVWDkhE\nNJCIPiGiVUR0W0DN00T0LREZ3bdEREcT0QIi+oiIPiSiGwJoGhPRIiL6IK65w9Azm4iWENErBprV\nRLSciJYSUaDkQiJqSUQvEdHHRLSSiL4XQHNC3CPx2k5ENwbQ3RRfFyuI6AUiahxwGW+Iaz6szae6\n8SWi1kQ0j4g+jf9sFUDz47hXBREVGXj9Pr4elxHRy0TUMoDmzvj0S4noDSIqCOLl+dvNRMRElBdw\nGUuIaJ1n7M4L4kVEY+J9+5CI7gvo9aLHZ7XnenFtml5E9F5iGyaiKpW2Neh6EtG78e1/LhEdkaSp\ndh8OsH3UpKtxG6lFk2r7qElX6zZSk87z9yrbSC1eqbaPGr1q2kZq8Uq1fdSkS7mN+JDUpBvWomcD\n+AzAdwE0BPABgG4BdGcC6A1ghaFfPoDe8d+bA/hPKj/Ebu5tFv89B8BCAKcaeP4CwPMAXjHQrAaQ\nZ9i3qQBGxX9vCKDl/2/vXEOtKqI4/lt1Nbw3EpV85NWUUhEqtIcYaGWWZIU3C8EoIuxLDymNCsUQ\nIyoloz5lH7QC7YEQmBHp1ULrQ5lp3dR8YGU+SI0irQRNW32YMTenPTNrH01uMn/YnD3nzH+vdWb+\nc+axZ69TR13sBS5M5OsNfA908unFwL2G6x9/8LkRt2FmJXCxtX5x4aem+fNpwBwDZzAwCFgFXFnB\n1higwZ/PMdo6r3D+MPCKVbdAH9yD5D+U1XvA3izgsSptBBjly/0cn+5u9bHw+QvATIOtVmCsP78Z\nWGX0cS1wrT+fBDxdwyltwwZ9hHhBjUQ4KX2EeFGNhHgxjURspfQR4gU1EvMvoY+QraRGisfpmCEN\nA7ar6neqegR4G2hJkVT1Y+CXqsZU9UdVXe/PfwOOhzqKcVRVf/fJDv4w7fYQkWbgFmB+VV+rQEQ6\n4xr3AgBVPaKqv1a8zGjgWy2JqFGCBqCTuF2UjdhCQw0G1qjqIVU9CqwGbi/LGKjfFlyni3+9LcVR\n1c2qujXmVIDX6n0E+AxoNnAOFpJNlGgkotsXgSfKOAleEAHOA8BsVT3s8+yvYktEBPeg+1sGTjJ8\nWIA3EBfxBWAFcEcNJ9SGU/oo5cU0EuGk9BHiRTWS+H0q1Ug9v2kJXlAjKVsRfYR4lULMnY4OqTew\nq5DejaEwTwXEhToaipvxpPKe7aeh+4EVqprkeLyEE9FfFd1ToFVE1okLr5RCf+An4DVxy4PzRaSp\nos2J1Aip1DHVPcBcYCcujuEBVW01XH8jMFJEuolII25E1KeCfz3UxU4EN5PrUYF7MpgEfGDJKCLP\niMgu4C5gppHTAuxR1bY6fJvsl4BerV2iCmAgrg7WiMhqEbmqor2RwD5VtTxXOAV43pfHXGC60cYm\nTgxKJxDRSE0bNuujSts3cKL6qOVZNVLkWTVS4qNJHzU8k0YC5ZHURw2vkkbO2E0NInIuLrrElJpR\nSylU9ZiqDsGNhIaJyCUGG7cC+1V1XR0ujlDVy4GxwEMick0ifwNu6WOeqg4F/sAtW5ggIh2Bcbio\nGqm8XXA/GP2BC4AmEbk7xVPVzbjljVZgGfAVcMzqY821FOMs9WQgIjNwEe3fsORX1Rmq2sfnn2y4\nfiPuuT1T51WDecBFwBDcwOAFA6cB6AoMBx4HFvtRrRV3Yhi0eDwATPXlMRU/ezdgEvCgiKzDLe8c\nKcsUa8MxfVRt+zFOSh9lPItGijx//aRGSmyZ9FHCS2okUoZRfZTwqmkktp53Kg7gamB5IT0dmG7k\n9qPiPSTP64Bbi320Tp9nElmbLeR7Djfj24EbsR0CFtVhb1bKHtAT2FFIjwTer2CjBWg15p0ALCik\n7wFeruN7PYv7nyxT/QJbgV7+vBew1aoJIveQQjzgXuBToLGq/oC+kc/+4QGX4mbdO/xxFDfz7FnR\nXuh715bhMmBUIf0tcL6xPBqAfUCzsb4OcOJZRgEO1lGOA4HPS97/Vxs26iPY9kMaCXEM+oj+zoQ0\nUsuzaMRgK6SPsnKMaiRSHil9lNkyaeT4cTpmSGuBASLS34/SJwJL/ytjvqcvC3UU45wvfheNiHQC\nbgS2pHiqOl1Vm1W1H+57faSqyZmEiDSJ+28p/LLbGBJR0FV1L7BLRAb5t0YD36RsFVBl5LsTGC4i\njb48R+PWhJMQke7+tS/u/tGbFXxciouRiH99twK3EkTkJtxS6zhVPWTkDCgkW7BpZIOqdlfVfl4n\nu3E3f/ca7PUqJMdji5S/BHfTGhEZiNv8Yo3SfAOwRVV3G/PXFT6soJGzgCdxf/RZ/DzUhqP6qLPt\nl3JS+ojwohop46U0ErEV1UekPIIaSZRhUB8RXjWNxHqrU3Xg7iVsw/XEM4yct3DT0D9xFXSfkTcC\nN5X/Grdk9BVwc4JzGfCl52ykZgeJ0e51GHfZ4XYctvljU4UyGQJ84f1cAnQx8pqAn4HOFb7PU7jG\ntBFYiN+RY+B9guso24DRVeoX6AZ86EW7Euhq4Iz354dxo7flRlvbcfc2j2ukdjdUGecdXx5fA+/h\nbmJX0i2B3ZUBewuBDd7eUvzsIMHpCCzyfq4Hrrf6CLwO3F+hvkbg/gGgDXe/4Aoj7xHc78E2YDZ+\nBJ1qwwZ9hHhBjUQ4KX2EeFGNhHgxjURspfQR4gU1EvMvoY+QraRGikcOHZSRkZGR0S5wxm5qyMjI\nyMj4fyF3SBkZGRkZ7QK5Q8rIyMjIaBfIHVJGRkZGRrtA7pAyMjIyMtoFcoeUkZGRkdEukDukjIyM\njIx2gb8B5WOfghWujPAAAAAASUVORK5CYII=\n", "text/plain": [ "