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Abstract 

Prediction problems are of major importance in statistical learning. The main paradigm of predictive 

learning is Empirical Risk Minimization (ERM in abbreviated form). In the standard setup, training 

observations originate from the same distribution as the testing observations. We consider statistical 

learning problems, when the distribution P' of the training observations Z'_1, ..., Z'_n differs from the 

distribution P involved in the risk one seeks to minimize (referred to as the test distribution) but is still 

defined on the same measurable space as P and dominates it. In the unrealistic case where the 

likelihood ratio \Phi(z)=dP/dP'(z) is known, one may straightforwardly extends the Empirical Risk 

Minimization (ERM) approach to this specific transfer learning setup using the same idea as that 

behind Importance Sampling, by minimizing a weighted version of the empirical risk functional 

computed from the 'biased' training data Z'_i with weights \Phi(Z'_i). Although the importance function 

\Phi(z) is generally unknown in practice, we show that, in various situations frequently encountered in 

practice - such as learning with class imbalance, learning in a stratified population, solving binary 

classification with only positive and unlabeled data (PU learning) or learning under random censorship 

- it takes a simple form and can be directly estimated from the Z'_i's and some auxiliary information 

on the statistical population P. By means of linearization techniques, we then prove that the 

generalization capacity of the approach aforementioned is preserved when plugging the resulting 

estimates of the \Phi(Z'_i) 's into the weighted empirical risk. Beyond these theoretical guarantees, 

numerical results provide strong empirical evidence of the relevance of the approach promoted in this 

article. Specifically, we show on ImageNet - an image dataset based on the hierarchical lexical database 

WordNet - that correcting bias on high-level categories can lead to significant performance 

improvements for the classification task. 
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1. Introduction 

Prediction problems are of major importance in statistical learning. The main paradigm of predictive 

learning is Empirical Risk Minimization (ERM in abbreviated form), see e.g. Devroye et al. (1996). In 

the standard setup, 𝑍 is a random variable (r.v. in short) that takes its values in a feature space 𝒵 

with distribution 𝑃, 𝛩 is a parameter space and ℓ: 𝛩 × 𝒵 → ℝ+ is a (measurable) loss function. The 

risk is then defined by: ∀𝜃 ∈ 𝛩, 

ℛ𝑃(𝜃) = 𝔼𝑃[ℓ(𝜃, 𝑍)], 

and more generally for any measure 𝑄 on 𝒵: ℛ𝑄(𝜃) = ∫
𝒵

ℓ(𝜃, 𝑧)𝑑𝑄(𝑧). In most practical situations, 

the distribution 𝑃 involved in the definition of the risk is unknown and learning is based on the sole 

observation of an independent and identically distributed (i.i.d.) sample 𝑍1, … , 𝑍𝑛 drawn from 𝑃 

and the risk (1) must be replaced by an empirical counterpart (or a possibly smoothed/penalized version 

of it), typically: 

ℛ̂𝑃(𝜃) =
1

𝑛
∑ ℓ

𝑛

𝑖=1

(𝜃, 𝑍𝑖) = ℛ�̂�𝑛
(𝜃), 

where �̂�𝑛 = (1/𝑛) ∑ 𝛿𝑍𝑖

𝑛
𝑖=1  is the empirical measure of 𝑃 and 𝛿𝑧 denotes the Dirac measure at any 

point 𝑧. With the design of successful algorithms such as neural networks, support vector machines 

or boosting methods to perform ERM, the practice of predictive learning has recently received a 

significant attention and is now supported by a sound theory based on results in empirical process 

theory. The performance of minimizers of (2) can be indeed studied by means of concentration 

inequalities, quantifying the fluctuations of the maximal deviations sup𝜃∈𝛩|ℛ̂𝑃(𝜃) − ℛ𝑃(𝜃)| under 

various complexity assumptions for the functional class ℱ = {ℓ(𝜃, ⋅):  𝜃 ∈ 𝛩} (e.g. VC dimension, 

metric entropies, Rademacher averages), see Boucheron et al. (2013) for instance. Although, in the 

Big Data era, the availability of massive digitized information to train predictive rules is an undeniable 

opportunity for the widespread deployment of machine-learning solutions, the poor control of the data 

acquisition process one is confronted with in many applications puts practitioners at risk of 

jeopardizing the generalization ability of the rules produced by the algorithms implemented. Bias 

selection issues in machine-learning are now the subject of much attention in the literature, see 

Bolukbasi et al. (2016), Zhao et al. (2017), Burns et al. (2019), Liu et al. (2016) or Huang et al. (2007). 

In the context of face analysis, a research area including a broad range of applications such as face 

detection, face recognition or face attribute detection, machine learning algorithms trained with baised 

training data, e.g. in terms of gender or ethnicity, raise concerns about fairness in machine learning. 

Unfair algorithms may induce systemic undesired disadvantages for specific social groups, see Das et 

al. (2018) for further details. Several examples of bias in deep learning based face recognition systems 

are discussed in Nagpal et al. (2019). 

Throughout the present article, we consider the case where the i.i.d. sample 𝑍′1,  … ,  𝑍′𝑛 available 

for training is not drawn from 𝑃  but from another distribution 𝑃′ , with respect to which 𝑃  is 

absolutely continuous, and the goal pursued is to set theoretical grounds for the application of ideas 

behind Importance Sampling (IS in short) methodology to extend the ERM approach to this learning 

setup. We highlight that the problem under study is a very particular case of Transfer Learning (see 

(2) 

(1) 
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e.g. Pan and Yang (2010), Ben-David et al. (2010) and Storkey (2009)), a research area currently 

receiving much attention in the literature and encompassing general situations where the 

information/knowledge one would like to transfer may take a form in the target space very different 

from that in the source space (referred to as domain adaptation). 

Weighted ERM (WERM). In this paper, we investigate conditions guaranteeing that values for the 

parameter 𝜃 that nearly minimize (1) can be obtained through minimization of a weighted version of 

the empirical risk based on the 𝑍′𝑖’s, namely 

 

ℛ̃𝑤,𝑛(𝜃) = ℛ �̃�𝑤,𝑛
(𝜃), 

where �̃�𝑤,𝑛 = (1/𝑛) ∑ 𝑤𝑖
𝑛
𝑖=1 𝛿𝑍′𝑖

 and 𝑤 = (𝑤1,  … , 𝑤𝑛) ∈ ℝ+
𝑛  is a certain weight vector. Of course, 

ideal weights 𝑤∗ are given by the likelihood function 𝛷(𝑧) = (𝑑𝑃/𝑑𝑃′)(𝑧): 𝑤𝑖
∗ = 𝛷(𝑍′𝑖) for 𝑖 ∈

{1, … ,  𝑛}. In this case, the quantity (3) is obviously an unbiased estimate of the true risk (1): 

𝔼𝑃′ [ℛ�̃�𝑤∗,𝑛
(𝜃)] = ℛ𝑃(𝜃), 

 

and generalization bounds for the ℛ𝑃-risk excess of minimizers of ℛ̃𝑤∗,𝑛 can be directly established 

by studying the concentration properties of the empirical process related to the 𝑍′𝑖’s and the class of 

functions {𝛷(⋅)ℓ(𝜃, ⋅):  𝜃 ∈ 𝛩}  (see section 2 below). However, the importance function 𝛷  is 

unknown in general, just like distribution 𝑃. It is the major purpose of this article to show that, in far 

from uncommon situations, the (ideal) weights 𝑤𝑖
∗ can be estimated from the 𝑍𝑖′s combined with 

auxiliary information on the target population 𝑃. As shall be seen below, such favorable cases include 

in particular classification problems where class probabilities in the test stage differ from those in the 

training step, risk minimization in stratified populations (see Bekker and Davis (2018)), with strata 

statistically represented in a different manner in the test and training populations, positive-unlabeled 

learning (PU-learning, see e.g. du Plessis et al. (2014)). In each of these cases, we show that the 

stochastic process obtained by plugging the weight estimates in the weighted empirical risk functional 

(3) is much more complex than a simple empirical process (i.e. a collection of i.i.d. averages) but can 

be however studied by means of linearization techniques, in the spirit of the ERM extensions 

established in Clémençon et al. (2008) or Clémençon and Vayatis (2009). Learning rate bounds for 

minimizers of the corresponding risk estimate are proved and, beyond these theoretical guarantees, the 

performance of the weighted ERM approach is supported by convincing numerical results. 

The article is structured as follows. In section 2, the ideal case where the importance function 𝛷 is 

known is preliminarily considered and a first basic example where the optimal weights can be easily 

inferred and plugged into the risk without deteriorating the learning rate is discussed. The main results 

of the paper are stated in section 3, which shows that the methodology promoted can be applied to 

three important problems in practice, risk minimization in stratified populations, PU-learning and 

learning from censored data, with generalization guarantees. Illustrative numerical experiments are 

displayed in section 4, while some concluding remarks are collected in section 5. Proofs and additional 

results are deferred to the Supplementary Material. 

(3) 

(4) 
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2. Importance Sampling - Risk Minimization with Biased Data 

Here and throughout, the indicator function of any event ℰ is denoted by 𝕀{ℰ}, the sup norm of any 

bounded function ℎ: 𝒵 → ℝ by ||ℎ||∞. We place ourselves in the framework of statistical learning 

based on biased training data previously introduced. As a first go, we consider the unrealistic situation 

where the importance function 𝛷 is known, insofar as we shall subsequently develop techniques 

aiming at mimicking the minimization of the ideally weighted empirical risk 

ℛ̃𝑤∗,𝑛(𝜃) =
1

𝑛
∑ 𝑤𝑖

∗

𝑛

𝑖=1

ℓ(𝜃, 𝑍𝑖′), 

 

namely the (unbiased) Importance Sampling estimator of (1) based on the instrumental data 

𝑍′1, … ,  𝑍′𝑛. The following result describes the performance of minimizers �̃�𝑛
∗ of (5). Since the goal 

of this paper is to promote the main ideas of the approach rather than to state results with the highest 

level of generality due to space limitations, we assume throughout the article for simplicity that ℓ and 

𝛷  are both bounded functions. For 𝜎1,  … , 𝜎𝑛  independent Rademacher random variables (i.e. 

symmetric {−1,1}-valued r.v.’s), independent from the 𝑍′𝑖 ’s, we define the Rademacher average 

associated to the class of function ℱ as 𝑅′𝑛(ℱ) : = 𝔼𝛔 [sup𝜃∈𝛩
1

𝑛
|∑ 𝜎𝑖

𝑛
𝑖=1 ℓ(𝜃, 𝑍′𝑖)|]. This quantity 

can be bounded by metric entropy methods under appropriate complexity assumptions on the class ℱ, 

it is for instance of order 𝑂ℙ(1/√𝑛) when ℱ is a VC major class with finite VC dimension, see e.g. 

Boucheron et al. (2005). 

Lemma 1. With probability at least 1 − 𝛿, we have: ∀𝑛 ≥ 1, 

ℛ𝑃(�̃�𝑛
∗) − min

𝜃∈𝛩
 ℛ𝑃(𝜃) ≤ 4||𝛷||∞𝔼[𝑅′𝑛(ℱ)] + 2||𝛷||∞ sup

(𝜃,𝑧)∈𝛩×𝒵
ℓ(𝜃, 𝑧)√

2log(1/𝛿)

𝑛
. 

Of course, when 𝑃′ = 𝑃 , we have 𝛷 ≡ 1  and the bound stated above simply describes the 

performance of standard empirical risk minimizers. The proof is based on the standard bound 

ℛ𝑃(�̃�𝑛
∗) − min

𝜃∈𝛩
 ℛ𝑃(𝜃) ≤ 2sup

𝜃∈𝛩
|ℛ̃𝑤∗,𝑛(𝜃) − 𝔼[ℛ̃𝑤∗,𝑛(𝜃)]|, 

combined with basic concentration results for empirical processes, see the Supplementary Material for 

further details. Of course, the importance function 𝛷 is generally unknown and must be estimated in 

practice. As illustrated by the elementary example below (related to binary classification, in the 

situation where the probability of occurence of a positive instance significantly differs in the training 

and test stages), in certain statistical learning problems with biased training distribution, 𝛷 takes a 

simplistic form and can be easily estimated from the 𝑍′𝑖’s combined with auxiliary information on 𝑃. 

Binary classification with varying class probabilities. The flagship problem in supervised learning 

corresponds to the simplest situation, where 𝑍 = (𝑋, 𝑌) , 𝑌  being a binary variable valued in 

{−1, +1} say, and the r.v. 𝑋 takes its values in a measurable space 𝒳 and models some information 

hopefully useful to predict 𝑌 . The parameter space 𝛩  is a set 𝒢  of measurable mappings (i.e. 

classifiers) 𝑔: 𝒳 → {−1, +1} and the loss function is given by ℓ(𝑔, (𝑥, 𝑦)) = 𝕀{𝑔(𝑥) ≠ 𝑦} for all 

𝑔  in 𝒢  and any (𝑥, 𝑦) ∈ 𝒳 × {−1, +1}. The distribution 𝑃  of the random pair (𝑋, 𝑌) can be 

either described by 𝑋’s marginal distribution 𝜇(𝑑𝑥) and the posterior probability 𝜂(𝑥) = ℙ{𝑌 =

(5) 
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+1 ∣ 𝑋 = 𝑥}  or else by the triplet (𝑝, 𝐹+, 𝐹−)  where 𝑝 = ℙ{𝑌 = +1}  and 𝐹𝜎(𝑑𝑥)  is 𝑋 ’s 

conditional distribution given 𝑌 = 𝜎1  with 𝜎 ∈ {−, +} . It is very common that the fraction of 

positive instances in the training dataset is significantly lower than the rate 𝑝 expected in the test 

stage, supposed to be known here (see the Supplementary Material for the case where the rate 𝑝 is 

only approximately known). We thus consider the case where the distribution 𝑃′ of the training data 

(𝑋′1, 𝑌′1), … ,  (𝑋′𝑛, 𝑌′𝑛) is described by the triplet (𝑝′, 𝐹+, 𝐹−) with 𝑝′ < 𝑝. The likelihood function 

takes the simple following form 

𝛷(𝑥, 𝑦) = 𝕀{𝑦 = +1}
𝑝

𝑝′
+ 𝕀{𝑦 = −1}

1 − 𝑝

1 − 𝑝′
=

𝑑𝑒𝑓
𝜙(𝑦), 

which reveals that it depends on the label 𝑦 solely, and the ideally weighted empirical risk process is 

ℛ̃𝑤∗,𝑛(𝑔) =
𝑝

𝑝′

1

𝑛
∑

𝑖:𝑌′𝑖=1

𝕀{𝑔(𝑋′𝑖) = −1} +
1 − 𝑝

1 − 𝑝′

1

𝑛
∑

𝑖:𝑌′𝑖=−1

𝕀{𝑔(𝑋′𝑖) = +1}. 

In general the theoretical rate 𝑝′ is unknown and one replaces (6) with 

ℛ̃�̂�∗,𝑛(𝑔) =
𝑝

𝑛′+
∑

𝑖:𝑌𝑖
′=1

𝕀{𝑔(𝑋′𝑖) = −1} +
1 − 𝑝

𝑛′−
∑

𝑖:𝑌i
′=−1

𝕀{𝑔(𝑋′𝑖) = +1}, 

 

where 𝑛′+ = ∑ 𝕀{𝑌′𝑖 = +1}𝑛
𝑖=1 = 𝑛 − 𝑛′− , �̂�𝑖

∗ = �̂�(𝑌′𝑖)  and �̂�(𝑦) = 𝕀{𝑦 = +1}𝑛𝑝/𝑛′+ + 𝕀{𝑦 =

−1}𝑛(1 − 𝑝)/𝑛′−. The stochastic process above is not a standard empirical process but a collection of 

sums of two ratios of basic averages. However, the following result provides a uniform control of the 

deviations between the ideally weighted empirical risk and that obtained by plugging the empirical 

weights into the latter. 

Lemma 2. Let 𝜀 ∈ (0,  1/2) . Suppose that 𝑝′ ∈ (𝜀,  1 − 𝜀) . For any 𝛿 ∈ (0,1) , we have with 

probability larger than 1 − 𝛿: 

sup
𝑔∈𝒢

|ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔)| ≤
2

𝜀2
√

log(2/𝛿)

2𝑛
, 

as soon as 𝑛 ≥ 2log(2/𝛿)/𝜀2. 

See the Appendix for the technical proof. Consequently, minimizing (7) nearly boils down to 

minimizing (6). Combining Lemmas 2 and 1, we immediately get the generalization bound stated in 

the result below. 

Corollary 1. Suppose that the hypotheses of Lemma 2 are fulfilled. Let �̃�𝑛 be any minimizer of 

ℛ̃�̂�∗,𝑛 over class 𝒢. We have with probability at least 1 − 𝛿: 

ℛ𝑃(�̃�𝑛) − inf
𝑔∈𝒢

ℛ𝑃(𝑔) ≤
2max(𝑝, 1 − 𝑝)

𝜀
(2𝔼[𝑅′𝑛(𝒢)] + √

2log(2/𝛿)

𝑛
) +

4

𝜀2
√

log(4/𝛿)

2𝑛
, 

as soon as 𝑛 ≥ 2log(4/𝛿)/𝜀2; where 𝑅′𝑛(𝒢) = (1/𝑛)𝔼𝛔[sup𝑔∈𝒢| ∑ 𝜎𝑖
𝑛
𝑖=1 𝕀{𝑔(𝑋′𝑖) ≠ 𝑌′𝑖}|]. 

(6) 

(7) 
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Hence, some side information (i.e. knowledge of parameter 𝑝) has permitted to weight the training 

data in order to build an empirical risk functional that approximates the target risk and to show that 

minimization of this risk estimate yields prediction rules with optimal (in the minimax sense) learning 

rates. The purpose of the subsequent analysis is to show that this remains true for more general 

problems. Observe in addition that the bound in Corollary 1 deteriorates as 𝜀 decays to zero: the 

method used here is not intended to solve the few shot learning problem, where almost no training data 

with positive labels is available (i.e. 𝑝′ ≈ 0). As shall be seen in subsection 3.2, alternative estimators 

of the importance function must be considered in this situation. 

Remark 1. Although the quantity (7) can be viewed as a cost-sensitive version of the empirical 

classification risk based on the (𝑋′𝑖 , 𝑌′𝑖)’s (see e.g. Bach et al. (2006)), we point out that the goal 

pursued here is not to achieve an appropriate trade-off between type I and type II errors in the 𝑃′ 

classification problem as in biometric applications for instance (i.e. optimization of the (𝐹+, 𝐹−)-ROC 

curve at a specific point) but to transfer knowledge gained in analyzing the biased data drawn from 𝑃′ 

to the classification problem related to distribution 𝑃. 

Related work. We point out that the natural idea of using weights in ERM problems that mimic those 

induced by the importance function has already been used in Sugiyama et al. (2008) for covariate shift 

adaptation problems (i.e. supervised situations, where the conditional distribution of the output given 

the input information is the same in the training and test domains), when, in contrast to the framework 

considered here, a test sample is additionally available (a method for estimating directly the importance 

function based on Kullback-Leibler divergence minimization is proposed, avoiding estimation of the 

test density). Importance sampling estimators have been also considered in Garcke and Vanck (2014) 

in the setup of inductive transfer learning (the tasks between source and target are different, regardless 

of the similarities between source and target domains), where the authors have proposed two methods 

to approximate the importance function, among which one is again based on minimizing the Kullback-

Leibler divergence between the two distributions. In Cortes et al. (2008), the sample selection bias is 

assumed to be independent from the label, which is not true under our stratum-shift assumption or for 

the PU learning problem (see section 2). Lemma 1 assumes that the exact importance function is known, 

as does Cortes et al. (2010). The next section introduces new results for more realistic settings where 

it has to be learned from the data. 
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3. Weighted Empirical Risk Minimization - Generalization Guarantees 

Through two important and generic examples, relevant for many applications, we show that the 

approach sketched above can be applied to general situations, where appropriate auxiliary information 

on the target distribution is available, with generalization guarantees. 

3.1 Statistical Learning from Biased Data in a Stratified Population 

A natural extension of the simplistic problem considered in section 2 is multiclass classification in a 

stratified population. The random labels 𝑌 and 𝑌′ are supposed to take their values in {1, … ,  𝐽} 

say, with 𝐽 ≥ 1, and each labeled observation (𝑋, 𝑌) belongs to a certain random stratum 𝑆  in 

{1, … ,  𝐾}  with 𝐾 ≥ 1 . Again, the distribution 𝑃  of a random element 𝑍 = (𝑋, 𝑌, 𝑆)  may be 

described by the parameters {(𝑝𝑗,𝑘 , 𝐹𝑗,𝑘):  1 ≤ 𝑗 ≤ 𝐽,  1 ≤ 𝑘 ≤ 𝐾}  where 𝐹𝑗,𝑘  is the conditional 

distribution of 𝑋 given (𝑌, 𝑆) = (𝑗, 𝑘) and 𝑝𝑗,𝑘 = ℙ(𝑋,𝑌,𝑆)∼𝑃{𝑌 = 𝑗, 𝑆 = 𝑘}. Then, we have 

𝑑𝑃(𝑥, 𝑦, 𝑠) = ∑ ∑ 𝕀

𝐾

𝑘=1

𝐽

𝑗=1

{𝑦 = 𝑗, 𝑠 = 𝑘}𝑝𝑗,𝑘𝑑𝐹𝑗,𝑘(𝑥), 

and considering a distribution 𝑃′ with 𝐹𝑗,𝑘 ≡ 𝐹′𝑗,𝑘 but possibly different class-stratum probabilities 

𝑝′𝑗,𝑘, the likelihood function becomes 

𝑑𝑃

𝑑𝑃′
(𝑥, 𝑦, 𝑠) = ∑ ∑

𝑝𝑗,𝑘

𝑝′𝑗,𝑘

𝐾

𝑘=1

𝐽

𝑗=1

𝕀{𝑦 = 𝑗, 𝑠 = 𝑘} =
𝑑𝑒𝑓

𝜙(𝑦, 𝑠). 

A more general framework can actually encompass this specific setup by defining ’meta-strata’ in 

{1, … ,  𝐽} × {1, … ,  𝐾}. Strata may often correspond to categorical input features in practice. The 

formalism introduced below is more general and includes the example considered in the preceding 

section, where strata are defined by labels. 

Learning from biased stratified data. Consider a general mixture model, where distributions 𝑃 and 

𝑃′ are stratified over 𝐾 ≥ 1 strata. Namely, 𝑍 = (𝑋, 𝑆) and 𝑍′ = (𝑋′, 𝑆′) with auxiliary random 

variables 𝑆 and 𝑆′ (the strata) valued in {1, … ,  𝐾}. We place ourselves in a stratum-shift context, 

assuming that the conditional distribution of 𝑋 given 𝑆 = 𝑘 is the same as that of 𝑋′ given 𝑆′ = 𝑘, 

denoted by 𝐹𝑘(𝑑𝑥), for any 𝑘 ∈ {1, … ,  𝐾}. However, stratum probabilities 𝑝𝑘 = ℙ(𝑆 = 𝑘) and 

𝑝′𝑘 = ℙ(𝑆′ = 𝑘) may possibly be different. In this setup, the likelihood function depends only on the 

strata and can be expressed in a very simple form, as follows: 

𝑑𝑃

𝑑𝑃′
(𝑥, 𝑠) = ∑ 𝕀

𝐾

𝑘=1

{𝑠 = 𝑘}
𝑝𝑘

𝑝′𝑘
=

𝑑𝑒𝑓
𝜙(𝑠). 

In this case, the ideally weighted empirical risk writes 

ℛ̃𝑤∗,𝑛(𝜃) =
1

𝑛
∑ ℓ

𝑛

𝑖=1

(𝜃, 𝑍′𝑖) ∑ 𝕀

𝐾

𝑘=1

{𝑆𝑖′ = 𝑘}
𝑝𝑘

𝑝′𝑘
. 

 



 

ICMA 2020 

Online Conference August 18, 2020 

9 

 

 

If the strata probabilities 𝑝𝑘’s for the test distribution are known, an empirical counterpart of the ideal 

empirical risk above is obtained by simply plugging estimates of the 𝑝′𝑘’s computed from the training 

data: 

ℛ̃�̂�∗,𝑛(𝜃) = ∑ ℓ

𝑛

𝑖=1

(𝜃, 𝑍′𝑖) ∑ 𝕀

𝐾

𝑘=1

{𝑆𝑖′ = 𝑘}
𝑝𝑘

𝑛′𝑘
, 

 

with 𝑛′𝑘 = ∑ 𝕀𝑛
𝑖=1 {𝑆′𝑖 = 𝑘}, �̂�𝑖

∗ = �̂�(𝑆′𝑖) and �̂�(𝑠) = ∑ 𝕀𝐾
𝑘=1 {𝑠 = 𝑘}𝑛𝑝𝑘/𝑛′𝑘. 

A bound for the excess of risk is given in Theorem 1, that can be viewed as a generalization of 

Corollary 1. 

Theorem 1. Let 𝜀 ∈ (0,1/2) and assume that 𝑝′𝑘 ∈ (𝜀, 1 − 𝜀) for 𝑘 = 1, … , 𝐾 . Let �̃�𝑛
∗  be any 

minimizer of ℛ̃�̂�∗,𝑛 as defined in (8) over class 𝛩. We have with probability at least 1 − 𝛿: 

ℛ𝑃(�̃�𝑛
∗) − inf

𝜃∈𝛩
ℛ𝑃(𝜃) ≤

2max
𝑘

 𝑝𝑘

𝜀
(2𝔼[𝑅′𝑛(ℱ)] + 𝐿√

2log(2/𝛿)

𝑛
) +

4𝐿

𝜀2
√

log(4𝐾/𝛿)

2𝑛
, 

as soon as 𝑛 ≥ 2log(4𝐾/𝛿)/𝜖2; where 𝑅′𝑛(ℱ) = (1/𝑛)𝔼𝛔[sup𝜃∈𝛩| ∑ 𝜎𝑖
𝑛
𝑖=1 ℓ(𝜃, 𝑍′𝑖)|], and the loss 

is bounded by 𝐿 = sup(𝜃,𝑧)∈𝛩×𝒵ℓ(𝜃, 𝑧). 

Just like in Corollary 1, the bound in Theorem 1 explodes when 𝜀 vanishes, which corresponds to the 

situation where a stratum 𝑘 ∈ {1, … , 𝐾} is very poorly represented in the training data, i.e. when 

𝑝′𝑘 << 𝑝𝑘 . Again, as highlighted by the experiments carried out, reweighting the losses in a 

frequentist (ERM) approach guarantees good generalization properties in a specific setup only, where 

the training information, though biased, is sufficiently informative. 

3.2 Positive-Unlabeled Learning 

Relaxing the stratum-shift assumption made in the previous subsection, the importance function 

becomes more complex and writes: 

𝛷(𝑥, 𝑠) =
𝑑𝑃

𝑑𝑃′
(𝑥, 𝑠) = ∑ 𝕀

𝐾

𝑘=1

{𝑠 = 𝑘}
𝑝𝑘

𝑝′𝑘

𝑑𝐹𝑘

𝑑𝐹𝑘′
(𝑥), 

where 𝐹𝑘 and 𝐹𝑘′ are respectively the conditional distributions of 𝑋 given 𝑆 = 𝑘 and of 𝑋′ given 

𝑆′ = 𝑘. The Positive-Unlabeled (PU) learning problem, which has recently been the subject of much 

attention (see e.g. du Plessis et al. (2014), du Plessis et al. (2015), Kiryo et al. (2017)), provides a 

typical example of this situation. Re-using the notations introduced in section 2, in the PU problem, 

the testing and training distributions 𝑃 and 𝑃′ are respectively described by the triplets (𝑝, 𝐹+, 𝐹−) 

and (𝑞, 𝐹+, 𝐹), where 𝐹 = 𝑝𝐹+ + (1 − 𝑝)𝐹− is the marginal distribution of 𝑋. Hence, the objective 

pursued is to solve a binary classification task, based on the sole observation of a training sample 

pooling data with positive labels and unlabeled data, 𝑞 denoting the theoretical fraction of positive 

data among the dataset. As noticed in du Plessis et al. (2014) (see also du Plessis et al. (2015), Kiryo 

et al. (2017)), the likelihood/importance function can be expressed in a simple manner, as follows, 

∀(𝑥, 𝑦) ∈ 𝒳 × {−1, +1}: 

(8) 
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𝛷(𝑥, 𝑦) =
𝑝

𝑞
𝕀{𝑦 = +1} +

1

1 − 𝑞
𝕀{𝑦 = −1} −

𝑝

1 − 𝑞

𝑑𝐹+

𝑑𝐹
(𝑥)𝕀{𝑦 = −1}. 

Based on an i.i.d. sample (𝑋′1, 𝑌′1), … , (𝑋′𝑛, 𝑌′𝑛) drawn from 𝑃′ combined with the knowledge of 

𝑝 (which can also be estimated from PU data, see e.g. du Plessis and Sugiyama (2014)) and using that 

𝐹− = (1/(1 − 𝑝))(𝐹 − 𝑝𝐹+), one may obtain estimators of 𝑞, 𝐹+ and 𝐹 by computing 𝑛′+/𝑛 =

(1/𝑛) ∑ 𝕀𝑛
𝑖=1 {𝑌′𝑖 = +1} , �̂�+ = (1/𝑛′+) ∑ 𝕀𝑛

𝑖=1 {𝑌′𝑖 = +1}𝛿𝑋′𝑖
 and �̂� = (1/𝑛′−) ∑ 𝕀𝑛

𝑖=1 {𝑌′𝑖 =

−1}𝛿𝑋′𝑖
. However, plugging these quantities into (9) do not permit to get a statistical version of the 

importance function, insofar as the probability measures �̂�+  and �̂�  are mutually singular with 

probability one, as soon as 𝐹+ is continuous. Of course, as proposed in du Plessis et al. (2014), one 

may use statistical methods (e.g. kernel smoothing) to build distribution estimators, that ensures 

absolute continuity but are subject to the curse of dimensionality. However, WERM can still be applied 

in this case, by observing that: ∀𝑔 ∈ 𝒢 , 

ℛ𝑃(𝑔) = −𝑝 + 𝔼𝑃′ [
2𝑝

𝑞
𝕀{𝑔(𝑋′) = −1, 𝑌′ = +1} +

1

1 − 𝑞
𝕀{𝑔(𝑋′) = +1, 𝑌′ = −1}], 

which leads to the weighted empirical risk 

2𝑝

𝑛′+
∑ 𝕀

𝑖:Yi
′=+1

{𝑔(𝑋𝑖′) = −1} +
1

𝑛′−
∑ 𝕀

𝑖:Yi
′=−1

{𝑔(𝑋𝑖′) = +1}. 

 

Minimization of (11) yields rules �̃�𝑛  whose generalization ability regarding the binary problem 

related to (𝑝, 𝐹+, 𝐹−) can be guaranteed, as shown by the following result, the form of the weighted 

empirical risk in this case being quite similar to (7). 

Theorem 2. Let 𝜀 ∈ (0,  1/2) . Suppose that 𝑞 ∈ (𝜀,  1 − 𝜀) . Let �̃�𝑛  be any minimizer of the 

weighted empirical risk (11) over class 𝒢. We have with probability at least 1 − 𝛿: 

ℛ𝑃(�̃�𝑛) − inf
𝑔∈𝒢

ℛ𝑃(𝑔) ≤
2max(2𝑝, 1)

𝜀
(2𝔼[𝑅′𝑛(𝒢)] + √

2log(2/𝛿)

𝑛
) +

4(2𝑝 + 1)

𝜀2
√

log(4/𝛿)

2𝑛
, 

as soon as 𝑛 ≥ 2log(4/𝛿)/𝜀2; where 𝑅′𝑛(𝒢) = (1/𝑛)𝔼𝛔[sup𝑔∈𝒢| ∑ 𝜎𝑖
𝑛
𝑖=1 𝕀{𝑔(𝑋′𝑖) ≠ 𝑌′𝑖}|]. 

Remark 2. Let 𝜂(𝑥) = ℙ{𝑌 = +1 ∣ 𝑋 = 𝑥}  denote the posterior probability and recall that 

(𝑑𝐹+/𝑑𝐹−)(𝑥) = ((1 − 𝑝)/𝑝)(𝜂(𝑥)/(1 − 𝜂(𝑥)). Observing that 

𝛷(𝑥, 𝑦) =
𝑝

𝑞
𝕀{𝑦 = +1} +

1 − 𝜂(𝑥)

1 − 𝑞
𝕀{𝑦 = −1}, 

in the case when an estimate �̂�(𝑥) of 𝜂(𝑥) is available, one can perform WERM using the empirical 

weight function 

�̂�(𝑥, 𝑦) =
𝑛𝑝

𝑛′+
𝕀{𝑦 = +1} +

1 − �̂�(𝑥)

1 −
𝑛′+
𝑛

𝕀{𝑦 = −1}. 

(10) 

(11) 

(9) 

(12) 

(13) 
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A bound that describes how this approach generalizes, depending on the accuracy of estimate �̂�, can 

be easily established, for more details refer to Theorem 3 in the Supplementary Material, where it is 

also discussed how to exploit such formulas in order to design incremental WERM procedures. 

 

3.3 Learning from Censored Data 

Another important example of sample bias is the censorship setting where the learner has only access 

to (right) censored targets min(𝑌′, 𝐶′) instead of 𝑌′. Intuitively, this situation occurs when 𝑌′ is a 

duration/date, e.g. the date of death of a patient modeled by covariates 𝑋′, and the study happens at a 

(random) date 𝐶′. Hence if 𝐶′ ≤ 𝑌′, then we know that the patient is still alive at time 𝐶′ but the 

target time 𝑌′ remains unknown. This problem has been extensively studied (see e.g. Ausset et al. 

(2019)): we show here that it is an instance of WERM. Formally, we respectively denote by 𝑃 and 

𝑃′  the testing and training distributions of the r.v.’s (𝑋, min(𝑌, 𝐶), 𝕀{𝑌 ≤ 𝐶})  and 

(𝑋′, min(𝑌′, 𝐶′), 𝕀{𝑌′ ≤ 𝐶′})  both valued in ℝ𝑑 × ℝ+ × {0,1}  (with 𝑌, 𝑌′, 𝐶, 𝐶′  all nonnegative 

r.v.’s) and such that the pairs (𝑋, 𝑌) and (𝑋′, 𝑌′) share the same distribution 𝑄. Moreover, 𝐶 > 𝑌 

with probability 1  (i.e. the testing data are never censored) and 𝑌′  and 𝐶′  are assumed to be 

conditionally independent given 𝑋′. Hence, for all (𝑥, 𝑦, 𝛿) ∈ ℝ𝑑 × ℝ+ × {0,1}: 

𝑑𝑃(𝑥, 𝑦, 𝛿) = 𝛿𝑑𝑄(𝑥, 𝑦), 

and 

𝛿𝑑𝑃′(𝑥, 𝑦, 𝛿) = 𝛿ℙ(𝐶′ ≥ 𝑦)𝑑ℙ(𝑋′ = 𝑥, 𝑌′ = 𝑦|𝐶′ ≥ 𝑦) = 𝛿𝑆𝐶′(𝑦|𝑥)𝑑𝑄(𝑥, 𝑦), 

where 𝑆𝐶′(𝑦|𝑥) = ℙ(𝐶′ ≥ 𝑦|𝑋′ = 𝑥)  denotes the conditional survival function of 𝐶′  given 𝑋′ . 

Then, the importance function is: 

∀(𝑥, 𝑦, 𝛿) ∈ ℝ𝑑 × ℝ+ × {0,1},  𝛷(𝑥, 𝑦, 𝛿) =
𝑑𝑃

𝑑𝑃′
(𝑥, 𝑦, 𝛿) =

𝛿

𝑆𝐶′(𝑦|𝑥)
. 

In survival analysis, the ratio 𝛿/𝑆𝐶′(𝑦|𝑥) is called IPCW (inverse of the probability of censoring 

weight) and 𝑆𝐶′(𝑦|𝑥) can be estimated by using the Kaplan-Meier method, see Kaplan and Meier 

(1958). 
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4. Numerical Experiments 

This section illustrates the impact of reweighting by the likelihood ratio on classification performances, 

as a special case of the general strategy presented in Section 3. Since the distribution shapes are 

unknown for real data, we infer that reweighting will have variable effectiveness, depending on the 

dataset. We detail here an experiment that uses the structure of ImageNet to illustrate reweighting with 

a stratified population and strata distribution bias or strata bias. The code of the experiments can be 

found at  

https://drive.google.com/drive/folders/1-tWJ4n4WyXuTza8dLPngyHSVprKUZFVJ?usp=sharing. 

We focus on the learning from biased stratified data setting introduced in section 3.1 by leveraging 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC); a well-known benchmark for the 

image classification task, see Russakovsky et al. (2014) for more details. 

The challenge consists in learning a classifier from 1.3 million training images spread out over 1,000 

classes. Performance is evaluated using the validation dataset of 50,000 images of ILSVRC as our test 

dataset. ImageNet is an image database organized according to the WordNet hierarchy, which groups 

nouns in sets of related words called synsets. In that context, images are examples of very precise 

nouns, e.g. flamingo, which are contained in a larger synset, e.g. bird. 

The impact of reweighting in presence of strata bias is illustrated on the ILSVRC classification 

problem with broad significance synsets for strata. To do this, we encode the data using deep neural 

networks. Specifically our encoding is the flattened output of the last convolutional layer of the 

network ResNet50 introduced in He et al. (2015). It was trained for classification on the training dataset 

of ILSVRC. The encodings 𝑋1, … , 𝑋𝑛 belong to a 2,048-dimensional space. 

A total of 33 strata are derived from a list of high-level categories provided by ImageNet1. The 

construction of the strata is postponed to the Appendix. By default, strata probabilities 𝑝𝑘 and 𝑝𝑘′ 

for 1 ≤ 𝑘 ≤ 𝐾 are equivalent between training and testing datasets, meaning that reweighting by 𝛷 

would have little to no effect. Since our testing data is the validation data of ILSVRC, we have around 

25 times more training than testing data. Introducing a strata bias parameter 0 ≤ 𝛾 ≤ 1, we set the 

strata train probabilities such that 𝑝𝑘′ = 𝛾1−⌊𝐾/2⌋/𝑘𝑝𝑘  before renormalization and remove train 

instances so that the train set has the right distribution over strata; see the Appendix for more details 

on the generation of strata bias. When 𝛾 is close to one, there is little to no strata bias. In contrast, 

when 𝛾 approaches 0, strata bias is extreme. 

  

                                                 
1 http://www.image-net.org/about-stats 

https://drive.google.com/drive/folders/1-tWJ4n4WyXuTza8dLPngyHSVprKUZFVJ?usp=sharing
http://www.image-net.org/about-stats
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Comparison of 𝑝𝑘
′ s and 𝑝𝑘’s 

Figure 1: Results for the strata reweighting experiment with ImageNet. 

 

 

 

 

 

Dynamics for the SCE.       Dynamics for the miss rate.        Dynamics for the top-5 error. 

Figure 2: Dynamics for the linear model for the strata reweighting experiment. 

Dynamics for the SCE.       Dynamics for the miss rate.        Dynamics for the top-5 error. 

Figure 3: Dynamics for the MLP model for the strata reweighting experiment. 

The models used are a linear model and a multilayer perceptron (MLP) with one hidden layer; more 

details are given in the Appendix. We report better performance when reweighting using the strata 

information, compared to the case where the strata information is ignored, see fig. 1. For comparison, 

we added two reference experiments: one which reweights the train instances by the class probabilities, 

which we do not know in a stratified population experiment, and one with more data and no strata bias 

Model Reweighting   Miss rate Top-5 error 

 Unif. �̂� = 1 0.344 0.130 

Linear Strata �̂� 𝟎. 𝟑𝟐𝟗 𝟎. 𝟏𝟐𝟎 

 Class �̂�  0.328   0.119  

 No bias  0.297   0.102  

 Unif. �̂� = 1 0.371 0.143 

MLP Strata �̂� 𝟎. 𝟑𝟔𝟒 𝟎. 𝟏𝟑𝟖 

 Class �̂�  0.363   0.138  

 No bias  0.316   0.111  
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because it uses all of the ILSVRC train data. The dominance of the linear model over the MLP can be 

justified by the much higher number of parameters to estimate. 

 

5. Conclusion 

In this paper, we have considered specific transfer learning problems, where the distribution of the test 

data 𝑃 differs from that of the training data, 𝑃′, and is absolutely continuous with respect to the latter. 

This setup encompasses many situations in practice, where the data acquisition process is not perfectly 

controlled. In this situation, a simple change of measure shows that the target risk may be viewed as 

the expectation of a weighted version of the basic empirical risk, with ideal weights given by the 

importance function 𝛷 = 𝑑𝑃/𝑑𝑃′, unknown in practice. Throughout this article, we have shown that, 

in statistical learning problems corresponding to a wide variety of practical applications, these ideal 

weights can be replaced by statistical versions based solely on the training data combined with very 

simple information about the target distribution. The generalization capacity of rules learnt from biased 

training data by minimization of the weighted empirical risk has been established, with learning bounds. 

These theoretical results are also illustrated with several numerical experiments. 
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Appendix - Technical Proofs 

Here we detail the proofs of the results stated in the article and discuss their connection with related 

work. 
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Proof of Lemma 1 

Let 𝛿 ∈ (0,1). Applying the classic maximal deviation bound stated in Theorem 3.2 of Boucheron et 

al. (2005) to the bounded class 𝒦 = {𝑧 ∈ 𝒵 ↦ 𝛷(𝑧)𝑙(𝜃, 𝑧):   𝜃 ∈ 𝛩}, we obtain that, with probability 

at least 1 − 𝛿: 

sup
𝜃∈𝛩

|ℛ ̃𝑤∗,𝑛(𝜃) − 𝔼[ℛ̃𝑤∗,𝑛(𝜃)]| ≤ 2𝔼[𝑅′𝑛(𝒦)] + ||𝛷||∞ sup
(𝜃,𝑧)∈𝛩×𝒵

|ℓ(𝜃, 𝑧)|√
2log(1/𝛿)

𝑛
. 

In addition, by virtue of the contraction principle, we have 𝑅′𝑛(𝒦) ≤ ||𝛷||∞𝑅′𝑛(ℱ) almost-surely. 

The desired result can be thus deduced from the bound above combined with the classic bound 

ℛ𝑃(�̃�𝑛
∗) − min

𝜃∈𝛩
 ℛ𝑃(𝜃) ≤ 2sup

𝜃∈𝛩
|ℛ̃𝑤∗,𝑛(𝜃) − 𝔼[ℛ̃𝑤∗,𝑛(𝜃)]|. 

Proof of Lemma 2 

Apply twice the Taylor expansion 

1

𝑥
=

1

𝑎
−

𝑥 − 𝑎

𝑎2
+

(𝑥 − 𝑎)2

𝑥𝑎2
, 

so as to get 

1

𝑛+′/𝑛
=

1

𝑝′
−

𝑛+′/𝑛 − 𝑝′

𝑝′2
+

(𝑛+′/𝑛 − 𝑝′)2

𝑝′2𝑛′+/𝑛
,

1

𝑛−′/𝑛
=

1

1 − 𝑝′
−

𝑛−′/𝑛 − 1 + 𝑝′

(1 − 𝑝′)2
+

(𝑛−′/𝑛 − 1 + 𝑝′)2

(1 − 𝑝′)2𝑛′−/𝑛
.

 

This yields the decomposition ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔) = −
𝑝

𝑝′2
(

𝑛′+

𝑛
− 𝑝′)

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = −1,  𝑌′𝑖 = +1}

−
1 − 𝑝

(1 − 𝑝′)2
(

𝑛′−

𝑛
− 1 + 𝑝′)

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = +1,  𝑌′𝑖 = −1}

+
𝑝(𝑛+′/𝑛 − 𝑝′)2

𝑝′2𝑛′+
𝑛

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = −1,  𝑌′𝑖 = +1}

 

+
(1 − 𝑝)(𝑛−′/𝑛 − 1 + 𝑝′)2

(1 − 𝑝′)2𝑛′−/𝑛

1

𝑛
∑ 𝕀

𝑛

𝑖=1

 {𝑔(𝑋′𝑖) = +1,  𝑌′𝑖 = −1}. 

We deduce that 

|ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔)| ≤
|𝑛′+/𝑛 − 𝑝′|

𝜀2
(1 + |𝑛′+/𝑛 − 𝑝′| (

𝑝

𝑛′+/𝑛
+

1 − 𝑝

1 − 𝑛′+/𝑛
)). 

By virtue of Hoeffding inequality, we obtain that, for any 𝛿 ∈ (0,1), we have with probability larger 

than 1 − 𝛿: 

|𝑛′+/𝑛 − 𝑝′| ≤ √
log(2/𝛿)

2𝑛
, 
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so that, in particular, min{𝑛′+/𝑛,  1 − 𝑛′+/𝑛} ≥ 𝜀 − √log(2/𝛿)/(2𝑛). This yields the desired result. 

Proof of Corollary 1  

Observe first that ||𝛷||∞ ≤ max(𝑝,  1 − 𝑝)/𝜀 and 

 ℛ 𝑃(�̃�𝑛) − inf
𝑔∈𝒢

ℛ𝑃(𝑔) ≤ 2sup
𝑔∈𝒢

|ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔)| + 2sup
𝑔∈𝒢

|ℛ̃𝑤∗,𝑛(𝑔) − ℛ𝑃(𝑔)|. 

The result then directly follows from the application of Lemmas 1-2 combined with the union bound. 

Proof of Theorem 1 

Observe first that ||𝛷||∞ ≤ max𝑘𝑝𝑘/𝜀 and 

ℛ𝑃(�̃�𝑛
∗) − inf

𝜃∈𝛩
ℛ𝑃(𝜃) ≤ 2sup

𝜃∈𝛩
|ℛ̃�̂�∗,𝑛(𝜃) − ℛ̃𝑤∗,𝑛(𝜃)| + 2sup

𝜃∈𝛩
|ℛ̃𝑤∗,𝑛(𝜃) − ℛ𝑃(𝜃)|. 

The result then directly follows from the application of Lemmas 1-3 combined with the union bound. 

Lemma 3. Let 𝜀 ∈ (0,  1/2). Suppose that 𝑝′𝑘 ∈ (𝜀,  1 − 𝜀) for 𝑘 ∈ {1, … ,  𝐾}. For any 𝛿 ∈ (0,1), 

we have with probability larger than 1 − 𝛿: 

sup
𝜃∈𝛩

|ℛ̃�̂�∗,𝑛(𝜃) − ℛ̃𝑤∗,𝑛(𝜃)| ≤
2𝐿

𝜀2
√

log(2𝐾/𝛿)

2𝑛
, 

as soon as 𝑛 ≥ 2log(2𝐾/𝛿)/𝜀2, where 𝐿 = sup(𝜃,𝑧)∈𝛩×𝒵ℓ(𝜃, 𝑧). 

Proof. Apply the Taylor expansion 

1

𝑥
=

1

𝑎
−

𝑥 − 𝑎

𝑎2
+

(𝑥 − 𝑎)2

𝑥𝑎2
, 

so as to get for all 𝑘 ∈ {1, … , 𝐾} 

1

𝑛′𝑘/𝑛
=

1

𝑝′𝑘
−

𝑛′𝑘/𝑛 − 𝑝′𝑘

𝑝′𝑘
2 +

(𝑛′𝑘/𝑛 − 𝑝′𝑘)2

𝑝′𝑘
2𝑛′𝑘/𝑛

. 

This yields the decomposition 

ℛ̃�̂�∗,𝑛(𝜃) − ℛ̃𝑤∗,𝑛(𝜃) = 

1

𝑛
∑ ℓ

𝑛

𝑖=1

(𝜃, 𝑍′𝑖) ∑ 𝕀

𝐾

𝑘=1

{𝑆𝑖
′ = 𝑘} (−

𝑝𝑘

𝑝′𝑘
2 (

𝑛′𝑘

𝑛
− 𝑝′𝑘) +

𝑝𝑘(𝑛′𝑘/𝑛 − 𝑝′𝑘)2

𝑝′𝑘
2𝑛′𝑘/𝑛

). 

We deduce that 

|ℛ̃�̂�∗,𝑛(𝜃) − ℛ̃𝑤∗,𝑛(𝜃)| ≤
𝐿

𝜀2
∑ |

𝐾

𝑘=1

𝑛′𝑘/𝑛 − 𝑝′𝑘|𝑝𝑘 (1 +
|𝑛′𝑘/𝑛 − 𝑝′𝑘|

𝑛′𝑘/𝑛
). 

By virtue of Hoeffding inequality, we obtain that, for any 𝑘 ∈ {1, … , 𝐾} and 𝛿 ∈ (0,1), we have with 

probability larger than 1 − 𝛿: 
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|𝑛𝑘
′ /𝑛 − 𝑝𝑘

′ | ≤ √
log(2/𝛿)

2𝑛
, 

so that, by a union bound, max𝑘{𝑛k
′ /𝑛} ≥ 𝜀 − √log(2𝐾/𝛿)/(2𝑛). This yields the desired result. 

Proof of Theorem 2  

Observe first that ||𝛷||∞ ≤ max(2𝑝,  1)/𝜀 and 

ℛ𝑃(�̃�𝑛) − inf
𝑔∈𝒢

ℛ𝑃(𝑔) ≤ 2sup
𝑔∈𝒢

|ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔)| + 2sup
𝑔∈𝒢

|ℛ̃𝑤∗,𝑛(𝑔) − ℛ𝑃(𝑔)|, 

with weighted empirical risk ℛ̃𝑤∗,𝑛(𝑔) defined in (11). The result then directly follows from the 

application of Lemmas 1-4 combined with the union bound. 

Lemma 4. Let 𝜀 ∈ (0,  1/2) . Suppose that 𝑞 ∈ (𝜀,  1 − 𝜀) . For any 𝛿 ∈ (0,1) , we have with 

probability larger than 1 − 𝛿: 

sup
𝑔∈𝒢

|ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔)| ≤
2(2𝑝 + 1)

𝜀2
√

log(2/𝛿)

2𝑛
, 

as soon as 𝑛 ≥ 2log(2/𝛿)/𝜀2. 

Proof. Apply twice the Taylor expansion 

1

𝑥
=

1

𝑎
−

𝑥 − 𝑎

𝑎2
+

(𝑥 − 𝑎)2

𝑥𝑎2
, 

so as to get 

1

𝑛+′/𝑛
=

1

𝑞
−

𝑛+′/𝑛 − 𝑞

𝑞2
+

(𝑛+′/𝑛 − 𝑞)2

𝑞2𝑛′+/𝑛
,

1

𝑛−′/𝑛
=

1

1 − 𝑞
−

𝑛−′/𝑛 − 1 + 𝑞

(1 − 𝑞)2
+

(𝑛−′/𝑛 − 1 + 𝑞)2

(1 − 𝑞)2𝑛′−/𝑛
.
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This yields the decomposition: 

ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔) = −
2𝑝

𝑞2
(

𝑛′+

𝑛
− 𝑞)

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = −1,  𝑌′𝑖 = +1}

−
1

(1 − 𝑞)2
(

𝑛′−

𝑛
− 1 + 𝑞)

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = +1,  𝑌′𝑖 = −1}

+
2𝑝(𝑛+′/𝑛 − 𝑞)2

𝑞2𝑛′+
𝑛

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = −1,  𝑌′𝑖 = +1} 

+
(𝑛−′/𝑛 − 1 + 𝑞)2

(1 − 𝑞)2𝑛′−/𝑛

1

𝑛
∑ 𝕀

𝑛

𝑖=1

{𝑔(𝑋′𝑖) = +1,  𝑌′𝑖 = −1}. 

We deduce that 

|ℛ̃�̂�∗,𝑛(𝑔) − ℛ̃𝑤∗,𝑛(𝑔)| ≤
|𝑛′+/𝑛 − 𝑞|

𝜀2
(2𝑝 + 1 + |𝑛′+/𝑛 − 𝑞| (

2𝑝

𝑛′+/𝑛
+

1

1 − 𝑛′+/𝑛
)). 

By virtue of Hoeffding inequality, we obtain that, for any 𝛿 ∈ (0,1), we have with probability larger 

than 1 − 𝛿: 

|𝑛′+/𝑛 − 𝑞| ≤ √
log(2/𝛿)

2𝑛
, 

so that, in particular, min{𝑛′+/𝑛,  1 − 𝑛′+/𝑛} ≥ 𝜀 − √log(2/𝛿)/(2𝑛). This yields the desired result. 

Appendix - Inaccurate Prior Information about the Test Distribution 

As noticed in section 2, it may happen that the rate of positive instances in the target population is 

approximately known only. Suppose that our guess for 𝑝 is �̃� such that |𝑝 − �̃�| ≤ 𝜁, with 𝜁 ∈ (0,1). 

Denote by �̃� the distribution over 𝒳 × {−1, +1} under which 𝑋 is drawn from �̃�𝐹+ + (1 − �̃�)𝐹− 

and such that ℙ(𝑋,𝑌)∼�̃�{𝑌 = 1 ∣ 𝑋 = 𝑥} = ℙ(𝑋,𝑌)∼𝑃{𝑌 = 1 ∣ 𝑋 = 𝑥} = 𝜂(𝑥). 

By a change of measure we have, 

ℙ�̃�(𝑌 ≠ 𝑔(𝑋)) = ℙ𝑃(𝑌 ≠ 𝑔(𝑋)) + 𝔼𝑃 [(
𝑑�̃�

𝑑𝑃
(𝑋, 𝑌) − 1) 𝕀{𝑌 ≠ 𝑔(𝑋)}], 

which allows to bound the difference of the classification risks of 𝑔 under 𝑃 and �̃�: 

|ℛ�̃�(𝑔) − ℛ𝑃(𝑔)| ≤ 𝔼𝑃 [|
𝑑�̃�

𝑑𝑃
(𝑋, 𝑌) − 1|] = 2|�̃� − 𝑝| ≤ 2𝜁. 
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Appendix - Numerical Experiments 

Strategy to induce bias in balanced datasets. In the real data experiment described in section 4, a 

strategy is used to induce class distribution bias or strata bias, since the data is uniformly distributed 

on strata for the train and test set. Since the experiment involves a small test dataset, it is kept intact, 

while we discard elements of the train dataset to induce bias between the train and test datasets. The 

bias is parameterized by a single parameter 𝛾, such that when 𝛾 is close to one, there is little strata 

or class bias, while when 𝛾 approaches 0, bias is extreme. 

The bias we induce is inspired by a power law, which is often used to model unequal distributions. 

The distribution on the strata of the train set is modified so that the generated train set follows a power 

law. Formally, the power law distribution {𝑝𝑘′}𝑘=1
𝐾  over 𝑆 ∈ {1, … , 𝐾}, is defined for all 1 ≤ 𝑘 ≤ 𝐾 

as 𝑝𝑘
′ =  𝛾

−
⌊𝐾/2⌋

𝜎(𝑘) 𝑝𝑘 and then normalized to sum to 1, with 𝜎 is a random permutation in {1, … , 𝐾}. 

To generate a train dataset with modality distribution {𝑝𝑘′}𝑘=1
𝐾 , we sample instances from the original 

train data set 𝒟𝑛
∘ = {(𝑋𝑖′, 𝑌𝑖′, 𝑆𝑖′)}𝑖=1

𝑛 , where 𝑌𝑖′ is the class, 𝑆𝑖′ is the strata. The generated train 

dataset is noted 𝒟𝑛 . First, we define candidates 𝕀𝑘 = {𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛, 𝑆𝑖′ = 𝑘} for each strata 𝑘 ∈

{1, … , 𝐾}. Then we select one of the candidate sets 𝕀𝑘 with the probabilities 𝑝𝑘′’s, to remove one of 

its elements, selected at random, and place it in the train dataset 𝒟𝑛. We repeat this operation until 

one of the candidate sets is empty. A more efficient implementation of this process was used in the 

provided code. 

Models. We compare two models: a linear model and a multilayer perceptron (MLP) with one hidden 

layer of size 1,524. Given a classification problem of input 𝒙 of dimension 𝒅 with 𝑲 classes, 

precisely with 𝒅 = 𝟐𝟎𝟒𝟖, 𝑲 = 𝟏𝟎𝟎𝟎, a linear model simply learns the weights matrix 𝑾 ∈ ℝ𝒅×𝑲 

and the bias vector 𝒃 ∈ ℝ𝑲 and outputs logits 𝒍 = 𝑾⊤𝒙 + 𝒃. On the other hand, the MLP has a 

hidden layer of dimension 𝒉 = ⌊(𝒅 + 𝑲)/𝟐⌋ and learns the weights matrices 𝑾𝟏 ∈ ℝ𝒅,𝒉, 𝑾𝟐 ∈ ℝ𝒉,𝒌 

and bias vectors 𝒃𝟏 ∈ ℝ𝒉, 𝒃𝟐 ∈ ℝ 𝑲 and outputs logits 𝒍 = 𝑾𝟐
⊤𝒉(𝑾𝟏

⊤𝒙 + 𝒃𝟏) + 𝒃𝟐 where 𝒉 is the 

ReLU function, i.e. 𝒉: 𝒙 ↦ 𝐦𝐚𝐱(𝒙, 𝟎) . The MLP model involves approximatively 5M (million) 

parameters, while the MLP model uses only 2M. The weight decay or l2 penalization for the linear 

model and MLP model are written 𝓟 =
𝟏

𝟐
∥ 𝑾 ∥  𝐚𝐧𝐝 𝓟 =

𝟏

𝟐
∥ 𝑾𝟏 ∥ +

𝟏

𝟐
∥ 𝑾𝟏 ∥, respectively. 

 

Cost function. The cost function is the Softmax Cross-Entropy (SCE), which is the most used 

classification loss in deep learning. Specifically, given logits 𝑙 = (𝑙1, … , 𝑙𝐾) ∈ ℝ𝐾 , the softmax 

function is 𝛾: ℝ𝑘 → [0,1]𝐾  with 𝛾 = (𝛾1, … , 𝛾𝐾)  and for all 𝑘 ∈

{1, … , 𝐾},𝛾𝑘: 𝑙 ↦ exp(lk)/ ∑ exp𝐾
𝑗=0 (𝑙𝑗). Given an instance with logits 𝑙 and ground truth class value 

𝑦, the expression of the softmax cross-entropy 𝑐(𝑙, 𝑦) is 𝒄(𝒍, 𝒚) = ∑ 𝕀𝑲
𝒌=𝟏 {𝒚 = 𝒌} ⋅ 𝐥𝐨𝐠(𝜸𝒌(𝒍)). 

The loss that is reweighted depending on the cases as described in is this quantity 𝑐(𝑙, 𝑦). The loss on 

the test set is never reweighted, since the test set is the target distribution. The weights and bias of the 

model that yield the logits are tuned using backpropagation on this loss averaged on random batches 

of 𝐵  elements of the training data summed with the regularization term 𝜆 ⋅ 𝒫  where 𝜆  is a 

hyperparameter that controls the strength of the regularization. 
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Preprocessing, optimization, parameters. The images of ILSVRC were encoded using the 

implementation of ResNet50 provided by the library keras, see Chollet et al. (2015), by taking the 

flattened output of the last convolutional layer. 

Optimization is performed using a momentum batch gradient descent algorithm on batches of size 

1,000, with a learning rate parameter of 0.001 and a momentum of 0. 9, see Ruder (2016) for more 

details. The weight decay parameters 𝜆 were cross-validated by trying values on the logarithmic scale 

{10−4, 10−3, 10−2, 10−1, 1} and then we tried more fine-grained values between the two best results, 

in practice 10−3 was best and 10−2 was second best so we tried {0.002,0.003,0.004,0.005}. The 

standard deviation initialization of the weights 𝜎0 = 0.01 was chosen by trial-and-error to avoid 

overflows. The learning rate was fixed after trying different values to have fast convergence while 

keeping good convergence properties. 

Stratified information for ImageNet. In this section, we detail the data preprocessing necessary to 

assign strata to the ILSVRC data. These were constructed using a list of 27 high-level categories found 

on the ImageNet website2. 

Each ILSVRC image has a ground truth low level synset, either from the name of the training instance, 

or in the validation textfile for the validation dataset, that is provided by the ImageNet website. The 

ImageNet API 3 provides the hierarchy of synsets in the form of is-a relationships, e.g. a flamingo is 

a bird. Using this information, for each synset in the validation and training database, we gathered all 

of its ancestors in the hierarchy that were high-level categories. Most of the synsets had only one 

ancestor, which then accounts for one stratum. Some of the synsets had no ancestors, or even several 

ancestors in the table, which creates extra strata, either a no-category stratum or a strata composed of 

the union of several ancestors. The definitions of the strata can be requested to the API. 

 

 

  

                                                 
2 http://www.image-net.org/about-stats 

3 http://image-net.org/download-API 

http://www.image-net.org/about-stats
http://image-net.org/download-API
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Abstract 

As variety learning methods introducing, using deep learning structures to fix present problems is a 

prevalent option, image tasks especially. Among image distinguishing, convolutional networks (CNNs) 

have been seen as a vital feat and overwhelmed a series of methods during competitions. Recently, the 

semi-supervised learning, such as GAN, has also spread a different spectrum on unsupervised image 

classifications. In this paper, in order to offering a more robust solution, we propose the ternary 

generative adversarial networks (TGAN), which we draw a lesson from DCGAN, WGAN-GP, 

ACGAN, and Triple GAN. Different from above novel GANs, TGAN owns three structures, the 

generator, discriminator, and supervisor, and thus TGAN not only can fulfill the original duty of 

distinguishing fake or real images and producing images but also classifies images’ label properly and 

sends loss to three structures to update properly toward low resolution images. Among our experiments 

and model comparisons, TGAN’s structure can efficiently converge and offer a decent accuracy on 

label classification, as TGAN has a readily trainable ability on label distinguishing, compared with 

ACGAN. Most importantly, this structure can help to output more reasonable generated images than 

rival’s samples. Moreover, giving above a series of experiments, except of inception score performance, 

TGAN brings better performance than competitors. We can also see TGAN’s generated images 

outperformance others’ generated images and witness a right generated effect toward specific images’ 

category because TGAN also bring the test generated images accuracy to further level. Therefore, 

TGAN can truly produce fake images based on the mechanism of label loss and TGAN structure. We 

believe that if TGAN was stacked up enough layers and added more parameters, the performance will 

become much decent. Surely, the result and the mechanism of TGAN is still far from perfect or robust. 

Considering the constraint computer setting and much more unused novel skills, modifying current 

TGAN structure so we can propose improved TGAN is a deduced path in near future. 

 

Keyword: Deep Learning, CNNs, GANs 
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1. Introduction 

 Convolutional neural networks (CNNs) (Krizhevsky, Sutskever, & Hinton, 2012), to begin with, 

is a milestone in image classifications field by taking spatial information into account and delivering 

these values into following deep neural networks, such as multi-layer perceptron. By stacking deep 

enough layers, CNNs can provide a much accuracy result than traditional methods among image tasks. 

The development of generative adversarial networks (GAN) (Goodfellow et al., 2014) have sprayed 

the light on unsupervised and semi-supervised learning, especially proposing a combination of CNNs 

and GAN structure. With generator learning noise and labels, the discriminator will receive more 

challenged distractions, which are fake images or information. By the discriminator learning distract 

information from generators, this structure can boost the prediction accuracy and allows people to use 

the trained discriminators models to distinguish image tasks if the discriminator embedded with an 

ability of output prediction label. In this regard, GAN allow models to learn present data with minor 

labeled data and still can structure a robust prediction. This means GANs can learn from each other 

infinitively without human involving. Further, it must be mentioned that the method of bring CNNs 

into GAN and then introduced the deep convolutional generative adversarial networks (DCGAN) 

(Radford, Metz, & Chintala, 2015), which builds the bridge between image learning and unsupervised 

learning. DCGAN enables stacking convolutions among GAN so we can practice unsupervised 

learning on image tasks. Therefore, we can leverage unlimited unlabeled images to improve 

discriminators with multi-convolutions because real world images are notoriously minor compared 

with unknown data. General speaking, the unstable result of GAN is an admitted issue. Although there 

are already a series of varietal GAN-based networks to prevent this dilemma, these methods basically 

have to dedicate relatively large calculating cost or propose a complex loss function to lead a proper 

learning path. On the other hand, avoiding overfitting in deep structure is also a big obstacle during 

training deep neuron networks, especially training such complex structure with considering spatial 

information. Generally, it is normal to see overfitting problems in deep learning, so the general solution 

is using dropout, which is discarding partial parameter to prevent model decaying, but the effect might 

only go to minor. Even there are presented GAN-based structures, the accuracy will easily be dimmed 

by low resolution and then the accuracy remains in under 30% or even worse. This causes the original 

meaning of non-supervised GAN become limited because GANs can only distinguish fake/real images 

rather than images labels. Even worse, the poor ability of distinguishing low-definition images will 

readily output blurry images. Therefore, aforementioned issues are waiting for being fixed. 

 In this paper, in order to address above problems, we propose a new three-unit generative 

adversarial network, Ternary Generative Adversarial Networks (TGAN). By TGAN, we mainly 

structure a third networks, which is called supervisor, after the discriminator so we separate the job of 

label prediction from the discriminator. Therefore, the only duty of the supervisor is to classify the 

right images’ label toward either to real images or fake images. In order to pick up easy-trainable model 

and early-converged result, we practice a series of novel skills in deep learning structures, including 

weight initializations and advanced activation functions among each unit. 
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Fig. 1. A graphical abstract of the proposed structure 

 

 As the work flow illustrated, the noise is following the normal distribution (0, 1) with 100 

dimensions and then using this noise to combine the real label to produce fake images. Among 

producing fake images, the important convolutions will assign the weight to each convolution. 

Secondly, we assign the final hidden layer of the discriminator to our supervisor, whose duty only 

distinguish the images’ label both from the generator and real images and thus the discriminator’s duty 

is classifying true or fake. Therefore, the supervisor has to distinguish the images label toward to both 

fake and real images. Then, the supervisor’s loss will be updated by backpropagation. Among 

backpropagation, we separate the loss of discriminator, which only contain fake/real loss, and 

supervisor, which only includes label loss. Also, we apply gradient penalty in discriminator by 

sampling images among real and fake images toward each label and then creating interpolates. The 

detail description of loss mechanism will be offered in the following sections. In the end, TGAN can 

update the loss toward fake/real and label properly so produce reasonable fake image to distract the 

discriminator in order to boost the prediction level. Among this paper, the introduction, motivation, 

purpose, and work flows are presented in this section. By section II, we will go through the related 

researches, which are motived our work and help our work to better performance or even make our 

idea come true. In section III, the mechanism and crystal-clear work flows will be shown in this part. 

Then, the part IV will illustrate our experiment design and results, which contain the samples of our 

generator and prediction performance of our discriminator. Lastly, the conclusion will be suggested in 

the end, section V. 
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2. Related Work 

 

2.1 Generative Adversarial Networks-based Structures 

 In order to implement an unsupervised learning, Generative Adversarial Networks (Goodfellow 

et al., 2014), introduce a novel way to train generative models. It constructs a two-player game in the 

model so two networks can compete each other and then spontaneously reach to better performance 

than a solo model. Later, the introducing of Conditional Generative Adversarial Nets (Mirza & 

Osindero, 2014) shows using label in the generator in MNIST data to help the generator output a decent 

and mimic image. On the other hand, another similar structure of Info-GAN (Chen et al., 2016)bring 

a GAN structure with the generator only being inputted with fake images. Stack-GAN (Zhang et al., 

2017) bring an another advanced c-GAN with two c-GAN in this model to produce image from textures. 

AC-GAN (Odena, Olah, & Shlens, 2017) proposed a model, which can predict ten labels in the 

discriminators. We can also see a slightly same picture in Semi-Supervised-GAN (Odena, 2016). In 

this work (Mirza & Osindero, 2014), it shows how this model could be used to learn a multi-modal 

model, and provide preliminary examples of an application to image tagging. Therefore, we can apply 

semi-supervised structure in GAN because the generator literally uses the real data’s label to produce 

fake information. Recently, some works have shown that GAN can offer reasonable image samples 

with low resolution (Denton, Chintala, & Fergus, 2015). Besides, the works (Sutskever, Vinyals, & Le, 

2014) (Ramsundar et al., 2015)of feeding class into the generator also can ramp up the quality of 

picture, as these class lead the generator to produce human-readable picture instead of white noise, and 

performance of discriminator indirectly. On the other side of spectrum, in order to confront the inherit 

problem of GAN, WGAN (Arjovsky, Chintala, & Bottou, 2017) and WGAN-GP (Gulrajani, Ahmed, 

Arjovsky, Dumoulin, & Courville, 2017), proposed multiple methods, including replacing non-linear 

activation function with linear and getting rid of log to prevent model decaying on the flaws of 

shrinking distance between true and fake images. Conversely, although LSGAN (Mao et al., 2017) 

suggested using least square error to evaluate the performance can fix possible situations in GAN, the 

existing problems still remain. 

 

2.2 Image Classification- Convolution Networks 

 Among image classification, before CNNs (Krizhevsky et al., 2012), it is hard to fix three-

dimensional data, spatial data, into deep learning structure. With this big feature, we can see a lot of 

novel structure used extended-CNNs structure to leap the model’s performance in ILVRC, including 

VGG (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and ResNet (He, Zhang, 

Ren, & Sun, 2016a) (He, Zhang, Ren, & Sun, 2016b). Most importantly, SE-Nets can boost above 

convolutional models with minor computational cost and ~25% improvement compared with time/s 

and accuracy in (Hu, Shen, & Sun, 2018). On the other hand, the deconvolutional networks, 

fractionally-strided convolutions, was firstly introduced in (Zeiler, Krishnan, Taylor, & Fergus, 2010). 

The structure is applied in unsupervised feature learning in (Zeiler, Taylor, & Fergus, 2011) (Zeiler & 
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Fergus, 2014) (Bengio, Courville, & Vincent, 2013) (Dosovitskiy & Brox, 2016), and are used in 

visualizing (Zeiler & Fergus, 2014), upsampling (Long, Shelhamer, & Darrell, 2015), semantic 

segmentation (Wei et al., 2017) (Long et al., 2015), learning high-level features (Wei et al., 2017), and 

generating fake images in DC-GAN’ generator (Radford et al., 2015). 
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3. The Proposed Work – Ternary GAN 

 In our structure, we separate the function of prediction label from the discriminator and create a 

supervisor, which is a normal multilayer perceptron. By our proposing loss mechanism, the output can 

become easier trainable and relative robust GAN compared with current situations. 

 

3.1 TGAN’s Generator 

 In this section, we want to illustrate proposed model’s structure with crystal-clear plots step-by-

step. Firstly, we use the general structure. The only different part is using the recommend leaky-ReLU 

activation each layer activation function. The algorithm can be shown as: 

𝑥 = 𝐺(𝐿𝑅𝑒𝐿𝑈(𝐷𝑒𝐶𝑁𝑁(𝑧, 𝑦))) (1) 

 where the 𝑧 follows the normal distribution (0,1)∈ ℝ100×1, the 𝑦 is the training data’s images’ 

label, 𝑥 is the generated images, 𝐷𝑒𝐶𝑁𝑁 is deconvolution structure, 𝐿𝑅𝑒𝐿𝑈 is Leaky ReLU. 

 

3.2 TGAN’s Discriminator 

 Different from general structure of ACGAN or the general discriminators which distinguish label 

and Real images’ label, our discriminator only classify whether the input image is real or not by feeding 

generated images and real images into CNNs structure. Because we also draw a lesson from WGAN-

GP, we use the recommended structure setting of WGAN-GP, which is using layer normalizer during 

the discriminator. Also, we apply Leaky ReLU as each layer’s activation function in CNNs. In the end, 

the last hidden layer will be sent to the supervisors as its input layer. So, the discriminator’s algorithm 

can be illustrated as: 

𝔼𝑥~𝑝𝑟
[𝐷(𝐶𝑁𝑁(𝑥))] (2) 

𝔼𝑥~𝑝𝑔
[𝐷(𝐶𝑁𝑁(𝑥))] (3) 

 where 𝑝𝑟  means the data is from real images, 𝑝𝑔  is from generated images, 𝐶𝑁𝑁  means 

convolutional networks. 

 

3.3 TGAN’s Supervisor 

 By our third unit, the supervisor, it is a typical multilayer perceptron neuron network. By picking 

up the last hidden layer from the discriminator and viewing it as the supervisor’s input layer, the label 

loss of supervisor’s output will influence the discriminator’s weight by backpropagation. The 

supervisor’s algorithm can be illustrated as below: 

𝔼𝑥~𝑝𝑟
[𝑆(𝑀𝐿𝑃(𝑥))] (4) 

𝔼𝑥~𝑝𝑔
[𝑆(𝑀𝐿𝑃(𝑥))] (5) 

 where 𝑝𝑟 means the data is from real images, 𝑝𝑔 is from generated images, 𝑀𝐿𝑃 means multi-

layer perceptron networks. 
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3.4 Loss Function of TGAN 

 Based on the above novel structure, basically every aspect of the inherit problems of deep 

structure and GAN have been taken into account in our proposed structure. However, the mode 

collapse is still a difficult challenge among cGAN training. Generally, the role of loss function is a 

vital factor. The original loss function of GAN is under below: 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑟
[𝑙𝑜𝑔𝐷(𝑥|𝑦)] + 𝔼𝑥~𝑝𝑔

[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑥|𝑦)))] (6) 

 where 𝐷 and 𝐺 is the discriminator and the generator in the GAN, 𝑝𝑟 is the probability from 

real images, 𝑝𝑔 is the probability from generated images whose noise follow the uniform distribution 

(0, 1) with ℝ100×1.  

 From above original loss function, the model only be evaluated the ability of distinguishing true 

and fake images but the reality usually needs the capability of predicting label from real and fraud 

information. Also, the well-known dilemma in GAN is hard-trained result, either in generator’s output 

nor GAN’s loss convergence. In WGAN, the authors clearly show that because of the GAN’s non-

reasonable KL divergence, GANs cannot update the generator weight to close to the discriminator. 

Also, as the gradient in sigmoid is too smooth in both sides and the images from real and fake images’ 

low dimensional manifold too hard to overlap or even impossible by proof in WGAN’s thesis. 

Aforementioned reasons bring a hard-trained GAN. In order to face the true problem toward loss 

function, which is also distance problem between both networks, we use gradient penalty in the 

discriminator’s loss to limit the gradient. 

 Firstly, in the discriminator and generator, we simply use the loss function like below: 

 Toward Discriminator: 

𝐿𝑇𝐺𝐴𝑁(𝐷) = −𝔼𝑥~𝑝𝑟
[𝐷(𝑥)] + 𝔼𝑥~𝑝𝑔

[(1 − 𝐷(𝑥))] 
(7) 

 where 𝐷  is the discriminator in TGAN, 𝑝𝑟  is the probability from real images, 𝑝𝑔  is the 

probability from generated images whose noise follow the normal distribution (0, 1) with ℝ100×1.  

We want to minimize the difference between the real data and generated data as low as possible. 

 Toward Generator: 

𝐿𝑇𝐺𝐴𝑁(𝐺) = −𝔼𝑥~𝑝𝑔
[ 𝐷(𝑥))] (8) 

 where 𝐺 is the generator in TGAN, 𝑝𝑔 is the probability from generated images whose noise 

follow the normal distribution (0, 1) with ℝ100×1.  We want to minimize the 𝐿𝑇𝐺𝐴𝑁(𝐺), and thus we 

hope the generated ability become better as possible. 

 Toward Supervisor: 

𝐿𝑇𝐺𝐴𝑁(𝑆) = −𝔼𝑥~𝑝𝑟
[𝑙𝑜𝑔𝑆(𝐶 = 𝑐|𝑥)] − 𝔼𝑥~𝑝𝑔

[𝑙𝑜𝑔𝑆(𝐶 = 𝑐|𝑥)] (9) 

 where 𝑆 is the supervisor in TGAN, 𝑝𝑟 is the probability from real images, 𝑝𝑔 is the 

probability from generated images whose noise follow the normal distribution (0, 1) with ℝ100×1. 

We want to minimize the 𝐿𝑇𝐺𝐴𝑁(𝑆), which means we hope the prediction can become close to real 

label toward to both real images and generated images. 
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3.5 Gradient Penalty in TGAN 

 As the method in WGAN-GP (Gulrajani et al., 2017) ,we simply import the gradient penalty into 

our discriminator’s loss. Thus, our loss toward the discriminator goes to: 

𝐿𝑇𝐺𝐴𝑁(𝐷) = −𝔼𝑥~𝑝𝑟
[𝐷(𝑥)] + 𝔼𝑥~𝑝𝑔

[(1 − 𝐷(𝑥))] + 𝜆𝔼𝑥~𝑝�̂�
[||∇𝑥𝐷(𝑥)||𝑝 − 1]2 

(10) 

 where D is the discriminator in TGAN, 𝑝𝑟  is the probability from real images, 𝑝𝑔  is the 

probability from generated images whose noise follow the normal distribution (0, 1) with ℝ100×1,  �̂� 

is the sample among the real image and the fake image, 𝑝�̂� is the probability among the real image 

and the fake image. Similarly, we want 𝐿𝑇𝐺𝐴𝑁(𝐷) as low as possible. On the other hands, 𝜆 is 

generally set 10. With higher 𝜆, the loss and training history will be more stable but the output will 

become fuzzier in images and hard to lead the accuracy to right prediction. By lower 𝜆, the fluctuation 

will become more severe and then we might easily see a mode collapse. Aforementioned situations are 

related to the 𝜆 which affects the impact of gradient penalty. 

 

3.6 Demonstrating Structure of TGAN 

 Among our proposing structure, ternary generative adversarial networks, our goal is making each 

networks to learn from loss properly to help sample images to access closely to real image and fulfill 

the duty of predict label accurately. With the favor of gradient penalty in both discriminator and 

supervisor, we can further make sure the over-sloped gradient won’t update the weight falsely. Finally, 

the proposing loss function is experimentally helpful for preventing model decaying. Our proposing 

structure’s detail work flows is illustrated in Fig. 2.  

 

Fig. 2. The structure of proposed TGAN 
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4. Experiments and Results 

 

4.1 Experiments’ Description and Design 

 While our proposing model’s, Ternary Generative Adversarial Networks (TGAN), mechanisms 

and work flows are shown in above sections, we still have to examine our model’s performance by 

revealing each network’s loss among TGAN and sampling generated images. To begin with, in order 

to make our model enclose reality situations, we use cifar-10 as our training and testing data, which is 

a dataset contains 10 kinds of transportation and animals, such as airplanes, horses, boasts, flogs, etc., 

with 5000 in training data and 1000 in testing data. Secondly, we separate our comparison into two 

parts, (1) comparing TGAN’s label classifying performance in accuracy with ACGAN and modified 

ACGANs, which is ACGAN with WGAN-GP, (2) sampling generated images from aforementioned 

GANs and evaluating these images. In our comparison, we reimplement aforementioned models and 

compare the performance with same structures as close as possible. Most importantly, as training 

GAN-based model is highly computing costing, we have to mention our advice setup is AMD Ryzen 

7 2700X Eight-Core Processor 3.70 GHz, 32.0 GB RAM, and Nvidia RTX 2070 8GB. 

 

4.2 The Comparison of Performance of Images’ Label Classification 

 In this part, we compare the ability of distinguishing images’ label in GANs. The following Table 

is the accuracy comparison toward real training images, real testing images, and fake(generated) 

testing images. The value in the bracket are the improving ratio compared with ACGAN. Every 

recorded value is the best figure in the last 100 epochs. When it comes to each index purpose, training 

images accuracy is evaluating the prediction ability in existing images. Testing images accuracy is for 

assessing the prediction ability in unknown images. Lastly, testing generated images accuracy is bound 

to evaluate whether the GAN can generate the proper fake images by learning the feature in testing 

images because producing images which cannot be recognized by discriminator also could be viewed 

as an unpersuaded learning result. 

 From the Table. 1., ACGAN has a decent performance in classifying real training images, 92.7%. 

However, we witnessed a severe overfitting problem because the testing images accuracy is apparently 

lower than training images accuracy with 23.4% difference.  We can see a degradation when we apply 

gradient penalty and earth mover distance in ACGAN. The possible explanation for this result could 

be the loss of simply using linear activation function, earth mover distance, and gradient penalty unable 

update the weight toward the label distinguishing ability properly. In our proposing model, TGAN, 

while the training images accuracy is lower, 79% with -19% difference ration, TGAN put off the 

overfitting problem because there is not much difference between training images accuracy (79%) and 

testing images accuracy (69.3%), with only 5.5% difference. When we compared the former difference 

in training and testing, there is. 76.5% improvement in overfitting problem. Therefore, above situation 

hints the improvement in label prediction toward real images. Also, TGAN not only maintain the good 

performance in distinguish fake images’ label but also escalated to 95.8%. From Table.2. and Fig. 4., 
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applying novel skills in TGAN not only brings the much better accuracy performance, we can also see 

that the testing images accuracy already reach over 70% by 3% improvement compared with ACGAN. 

Therefore, the improving version TGAN is used as our final proposed model of TGAN. The 

comparison table and bar chart are under below:  

TABEL. 1. Accuracy comparison toward each GANs in training images accuracy, testing images 

accuracy, and testing generated images accuracy. 

Accuracy 

Comparison 

Index 

Training 

Images 

Accuracy 

Testing 

Images 

Accuracy 

Testing 

Generated 

Images 

Accuracy * 

Models ACGAN 92.7% 69.3% 94.5% 

ACGAN  

(with 

WGAN-

GP) 

37.8%  

(-59%) 

35.5%  

(-49%) 

13.3%  

(-86%) 

TGAN 74.8%  

(-19%) 

69.3%  

(0%) 

95.8%  

(1%) 

*Fake Image Accuracy 

 

ABEL. 2 Improved TGAN compares with each targeted GANs 

Accuracy comparison Index 

Training 

Images 

Accuracy 

Testing 

Images 

Accuracy 

Testing 

Generated 

Images 

Accuracy*2 

Models ACGAN 92.7% 69.3% 94.5% 

ACGAN 

(with WGAN-

GP) 

37.8% 

(-59%) 

35.5% 

(-49%) 

13.3% 

(-8%) 

TGAN 

(Original) 

74.8% 

(-19%) 

69.3% 

(0%) 

95.8% 

(1%) 

TGAN 

(Improving)*1 

77% 

(-17%) 

71.5% 

(3%) 

96.7% 

(2%) 
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*1 The TGAN (cross entropy-based supervisor) embedded with PReLU, He-value, and Xavier-value. 

*2 Fake Image Accuracy 

 

 

Fig. 3. Accuracy comparison in ACGAN, ACGAN+WGAN-GP, and TGAN 

 

 

Fig. 4. Improved TGAN compares with each targeted GANs 

 

 In the following comparisons, the improving TGAN is regard as our proposed model. 

 

4.3 The Comparison of Generated Images Performance 

 

 In order to evaluating the generated images, the general way is using artificial method, which is 

using eye and intuitive sense to evaluate, so we sample out the generated images from each comparing 

GANs. Nonetheless, only using intuition to assessment is not objective. As a result, we also apply 

popular assessing method, inception score, to evaluate our generated images performance. First of all, 

we sample the generated images from ACGAN as our standard. The sampling is as the Fig. 5. 

 In using WGAN-GP in ACGAN, Fig. 6., although we pick up the best inception score in this 

combination, we have to admit that the generated images might be really fuzzy and ambiguous. What 

have to mention is we sample the images which is examined the highest inception score among the last 

100 epochs. Even with these unpromising results, we still tell a little bit that the 1st might be horses, 

5th might be airplanes, 7th might hint to flogs. Others are really blurry compared with the results of 

proposed models in the following discussion. Lastly, in Fig. 7., sampling from our proposed TGAN 
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also see a decent result as the picture under below. Except the rows of 3 and 4, we can readily see what 

the object among each row of generated images is. In first row, we can see they are airplanes from long 

distance. The second row might hint to cars. Also, the 6th row are dogs, 7th are flogs, 8th are horses, 9th 

are bots, and 10th are trucks. Therefore, although the result of TGAN might not be clear or high 

resolution, the targeted object in each generated image is quite obvious. 

 

 

Fig. 5. The generated images from ACGAN 

 

 

Fig. 6. The generated images from ACGAN with WGAN-GP 

 

Fig. 7. The generated images from TGAN 
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4.4 Inception Score toward Each GANs’ Samples 

 

 It is true that using intuition to evaluate the generated images has its own merit. While following 

general method is easier, it is hard to prevent the standard goes to subjective and biased. Therefore, 

current novel method is using inception net, which is proposed by Google, to assessment the images’ 

mean as an objective and unbiased evaluation. What has to be mentioned is the inception score only 

means an objective reference value instead of an absolute index. The whole recoded figure is under 

the comparison table: 

 From the comparison in Table. 3. and Fig. 8., we use ACGAN as our standard in this part 

experiment. Toward ACGAN+WGAN-GP, we receive highest inception score mean among our 

reimplement result, ~2.83. Obviously, using earth mover distance and proper gradient penalty can truly 

shrink the distance among real and generated data’s weight in the discriminator and generator 

respectively. In the TGAN’s inception score outcome, TGAN maybe not the highest value in this index, 

thought, TGAN still outshine ACGAN performance especially the images generated quality in the 

above samples’ discussions. While TGAN’s inception score doesn’t transcend the ACGAN+WGAN-

GP’s, the difference between them is only 0.033, which is pretty minor and hints a close performance. 

 

TABEL. 3. Inception score comparison toward each GANs with standard deviation. 

Inception score 

comparison 

Index 

Inception Score 

Mean 

Models ACGAN 2.6294839 

ACGAN+WGAN-

GP 

2.8292003 

TGAN 2.7964336 

 

 

 Fig. 8. Inception score comparison in each GANs. We can see that although the combination of 

ACGAN+WGAN-GP picks up the best performance, the TGAN’s images’ quality is admittedly close 

to this combination. 
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5. Conclusion and Future Works 

 

 Giving above a series of experiments, except of inception score performance, TGAN brings better 

performance than competitors. We can also see TGAN’s generated images outperformance others’ 

generated images and witness a right generated effect toward specific images’ category because TGAN 

also bring the test generated images accuracy to further level. Therefore, TGAN can truly produce fake 

images based on the mechanism of label loss and TGAN structure. We believe that if TGAN was 

stacked up enough layers and added more parameters, the performance will become much decent. 

Surely, the result and the mechanism of TGAN is still far from perfect or robust. Considering the 

constraint computer setting and much more unused novel skills, modifying current TGAN structure so 

we can propose improved TGAN is a deduced path in near future. 
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Abstract 

Purpose- We address an active learning framework where several distributions can be sequentially 

sampled, and where the distribution whose expectation is the closest to a given threshold must be 

identified. We study two frameworks: the general case, and the case where the expectations are given 

in increasing order. The later setting is notably motivated by phase 1 clinical trials, a setting where the 

maximal dose with acceptable toxicity needs to be found (toxicity in known to increase with the dose). 

Despite its practical importance, no effective method is known for this problem. Classical approaches 

are based on dose escalation, and the most well-known is the "traditional 3+3 Design". The problem 

is here considered as a "thresholding bandit problem", but with a particular structure that has never be 

studied before. 

 

Results- This paper provides an information-theoretic answer by identifying the exact sample 

complexity of the problem, that is the number of samples required before any algorithm may find the 

right answer with a cetain confidence. The complexity is computed with and without the monotonicity 

assumption. In addition, in each case we propose and analyse an algorithm whose sample complexity 

is of the same order of magnitude. The computational complexity of the resulting algorithm is 

discussed. 

 

Methods- These results are obtained by building on isotonic regression and on the recent progress in 

optimal best-arm identification in multi-armed bandit problems. The complexity comes as a solution 

to an optimization problem, for which an original solution is provided and analyzed. 

 

Conclusion/discussion- We thus provide a complete treatment of the problem in the case where the 

number of provided distributions is not too large, and when the distributions can be sampled without 

constraint. These promising results are a key step for further developments dealing with many 

distributions and/or constrained sampling strategies (like escalation methods in clinical trials). 

 

Keyword: sequential learning, multi-armed bandits, thresholding bandits, best arm identification, 

unimodal regression, isotonic regression 
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1. Introduction 

The motivation of this work originally comes from an attempt to contribute to the theory of clinical 

trials, which we use here as a running example to explain the model that we study and the solution that 

we propose.  

An important step of phase 1 (and sometimes early phase 2) clinical trials is the testing of a drug on 

healthy volunteers for dose-ranging. The first goal is to determine the maximum tolerable dose (MTD), 

that is the maximum amount of the drug that can be given to a person before adverse effects become 

intolerable or dangerous. A target tolerance level is chosen (typically 33%), and the trials aim at 

identifying quickly which is the dose entailing the toxicity coming closest to this level. Classical 

approaches are based on dose escalation, and the most well-known is the "traditional 3+3 Design": see 

Le Tourneau et al. (2009) and Genovese et al. (2013) for and references therein for an introduction. 

 

We propose in this paper a complexity analysis for a simple model of phase 1 trials, which captures 

the essence of this problem and which can be identified in machine learning literature as a fixed-

confidence thresholding bandit problem. We assume that the possible doses are x(1)<...<x(K), for some 

positive integer K. The patients are treated in sequential order, and identified by their rank. When the 

patient number t is assigned a dose x(k), we observe a measure of toxicity X(k,t) which is assumed to 

be an independent random variable. Its distribution  characterizes the toxicity level of dose x(k). To 

avoid obfuscating technicalities, we treat here the case of Gaussian laws with known variance and 

unknown mean, but some results can easily be extended to other one-parameter exponential families 

such as Bernoulli distributions. The goal of the experiment is to identify as soon as possible the dose 

x(k) which has the  toxicity level mu(k) closest to the target admissibility level S, with a controlled 

risk δ to make an error.  

 

Content. This setting is an instance of the thresholding bandit problem: we refer to Locatelli et al. 

(2016) for an important contribution and a nice introduction in the fixed budget setting. Contrary to 

previous work, we focus here on identifying the exact sample complexity of the problem: we want to 

understand precisely (with the correct multiplicative constant) how many samples are necessary to take 

a decision at risk . We prove a lower bound which holds for all possible algorithms, and we propose 

an algorithm which matches this bound asymptotically when the risk δ tends to 0. 

 

But the classical thresholding bandit problem does not catch a key feature of phase 1 clinical trials: the 

fact that the toxicity is known in hindsight to be increasing with the assigned dose. In other words, we 

investigate how many samples can be spared by algorithms using the fact that μ(1)<μ(2)<...<μ(K). 

Under this assumption, we prove another lower bound on the sample complexity, and provide an 

algorithm matching it. The sample complexity does not take a simple form (like a sum of inverse 

squares), but identifying it exactly is essential even in practice, since it is the only way known so far 

to construct an algorithm which reaches the lower bound. We are thus able to quantify, for each 



 

ICMA 2020 

Online Conference August 18, 2020 

40 

 

 

problem, how many samples can be spared when means are sorted, at the cost of a slight increase in 

the computation cost of the algorithm. 

 

Connections to the State of the Art. 

Phase 1 clinical trials have been an intense field of research in the statistical community (see Le 

Tourneau et al. (2009) and references therein), but not considered as a sequential decision problem 

using the tools of the bandit literature. The important progress made in the recent years in the 

understanding of bandit models has made it possible to shed a new light on this issue, and to suggest 

very innovative solutions. Some technical connections are to be found with Combes & Proutiere (2014), 

which deals with regret minimization for unimodal bandits. The closest contribution are the works of 

Locatelli et al. (2016) and Chen et al. (2014), which provides a general framework for combinatorial 

pure exploration bandit problems.  

The present work tackles the more specific issue of phase 1 trials. It aims at providing strong 

foundations for such solutions: it does not yet tackle all the ethical and practical constraints. Observe 

that it might also be relevant to look for the highest dose with toxicity below the target level: we discuss 

this variant in Section 4; however, it seems that practitioners do not consider this alternative goal in 

priority. 

 

From a technical point the view, the approach followed here extends the theory of Best-Arm 

Identification initiated by Kaufmann et al. (2016) to a different setting. Building on the mathematical 

tools of that paper, we analyze the characteristic time of a thresholding bandit problem with and 

without the assumptions that the means are increasing. Computing the complexity with such a 

structural constraint on the means is a challenging task that had never been done before. It induces 

significant difficulties in the theory, but (by using isotonic regression) we are still able to provide a 

simple algorithm for computing the complexity term, which is of fundamental importance in the 

implementation of the algorithm. The computational complexity of the resulting algorithm is discussed 

in Section 3.1. 

 

Organization. The lower bounds on complexity are presented in Section 2. We compare the 

complexities of the non-monotonic case versus the increasing case K=2. This comparison is 

particularly simple and enlightening when , a setting often referred to as A/B testing. We discuss this 

case in Section 2.1, which furnishes a gentle introduction to the general case.  

We present in Section 3 an algorithm and show that it is asymptotically optimal when the risk  δ goes 

to 0. The implementation of this algorithm requires, in the increasing case, an involved optimization 

which relies on constraint sub-gradient ascent and unimodal regression: this is detailed in Section 3.1.  

Section 3.2 shows the results of some numerical experiments for different strategies with high level of 

risk that complement the theoretical results.  

Section 4 discusses the interesting, but simpler variant of the problem where the goal is to identify the 
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arm with mean closest, but also below the threshold. 

Section 5 summarizes further possible developments, and precedes most of the technical proofs which 

are given in appendix. 

 

1.1 Notation and Setting 

 

 

 

 

 

2. Lower Bounds 
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2.1 The Two-armed Bandit Case 
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2.2 On the Characteristic Time and the Optimal Proportions 
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3. An asymptotically Optimal Algorithm 

 

 

 

 

3.1. On the Implementation of Algorithm 1 
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3.2 Numerical Experiments 
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4. Closest Mean Below the Threshold 
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5. Conclusion 
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Appendix A: Proofs of the Lower Bounds 

A.1 Expression of the Complexity in the Increasing Case 
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A.2. Expression of the Complexity in the Non-monotonic Case 
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Appendix B: Correctness and Asymptotic Optimality of Algorithm 1  
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Appendix C: Some technical Lemma for the Analysis of Algorithm 1 

C.1. An Inequality 

 

 

 

 

C.2. Unimodal Regression under Bound Restriction 
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