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Talk based on
Neurips 2023 with Preprint
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Reinforcement Learning
TD-Gammon. [Tesauro ’92-’95]: backgam-
mon world champion

KnightCap [Baxter et al. ’98]: chess (2500
ELO)

Computer poker [Alberta, ’08...]

Computer go [Mogo ’06], [AlphaGo ’15, Alp-
hazero ’18]

Atari, Starcraft, etc. [Deepmind ’10 sqq]

Robotics: jugglers, acrobots, ... [Schaal et
Atkeson ’94 sqq]

Navigation: robot guide in Smithonian Mu-
seum [Thrun et al. ’99]

Lift command [Crites et Barto ’96]

Maintenance [Mahadevan et al. ’97]

Internet Packet Routing [Boyan et Littman
’93]

Task Scheduling [Zhang et Dietterich ’95]

Social Networks [Acemoglu et Ozdaglar ’10]

Yield Management, pricing [Gosavi ’10]

Load forecasting [Meynn ’10]

Recommendation systems [Asfar et al. ’21]

Protein structure prediction [Jumper et al.
’21]

Reinforcement learning with human feed-
back for LLM [Ouyang et al. ’23]

…
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Example 1: Cliff
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Example 2: Retail Store Management

During week t, the (random) demand is Ut units.

On Monday morning you may command At units:
they are delivered immediately before the shop opens.

Maintenance cost:
h(s) for s units in stock left from the previous week

Command cost: C(a) for a units

Sales profit: f(q) for q units sold

Constraints:
warehouse has maximal capacity of M units
cannot sell units that are not in stock
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Model: Markov Decision Process

MDP
M = (S,A, P (·|·, ·), r(·, ·, ·))

S = state space

A = action space

P (·|·, ·) = transition kernel:
P (s′|s, a) = probability, if you choose action a, to jump from state s to state s′

r(·, ·, ·) = reward function
r(s, a, s′) = reward associated to a transition from state s to state s′ choosing action a
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Session

Intial state S0 = s0 ∈ S

Horizon H = total number of steps

Policy π = (πt)0≤t<H

At time t, the chosen action is πt(s)

Given policy π, the trajectory (St)0≤t≤H is a (non-homogeneous) Markov chain with kernels
Pπt(s′|s) = P (s′|s, πt(s))

Cumulated reward: WH =

H−1∑
t=0

r
(
St, πt(St), St+1

)
We write Pπ (resp. Eπ ) for the law of this process (resp. its expectation)

Stationary policy: πt = π0 for all t
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Markov Decision Process
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Example 1: Cliff

Random move with probability ϵ ≥ 0 Reward: 1 per step spent in the goal state
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Example 2 : Retail Store Management

State = number of units in stock before the week starts

S = {0, . . . ,M}

Action = number of units commanded

A = {0, . . . ,M}

Dynamic: St+1 = max
(
0,min(M,St +At)− Ut

)
Reward: r(s, a, s′) = −C(a)− h(s) + f

(
min(M, s+ a)− s′

)
Possible policy: always buy E[Ut] bikes (?)
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Goals

Planning: knowing the model M = (S,A, P, r), find a policy π maximizing the cumulative
reward WH in expectation:

max
π

Eπ

[
H−1∑
t=0

r
(
St, πt(St), St+1

)]

Learning: Knowing only the structure of the model S,A but not the dynamic P and the
reward function r, and having access to a simluator, play several sessions so as to find the
best policy
regret minimization or best policy identification
trajectory or transition simulator
etc…
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Policy Evaluation

The value function
(
V π
t

)
0≤t≤H

of a policy π is defined by

V π
t (s) = Eπ

[
H−1∑
k=t

r
(
Sk, πt(Sk), Sk+1

)∣∣∣∣∣St = s

]

and can be computed recursively: for all s ∈ S,
V π
H (s) = 0

V π
t (s) =

∑
s′∈A

P (s′|s, πt(s))
(
r(s, a, s′) + V π

t+1(s
′)
)

since V π
t (s) = Eπ[Eπ[r(s, πt(s), St+1)

∣∣ St+1
] + V π

t+1(St+1)
∣∣∣St = s

]

NB: V π
0 (s0) = Eπ[WH ]
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Backward induction on the table

31/03/2025 15



Operator formulation

The Bellman operator T π : RS → RS is defined by

T πv(s) =
∑
s′∈S

P
(
s′|s, π(s)

)(
r(s, π(s), s′) + v(s′)

)
Backward induction on the expected cumulated reward:

Policy Evaluation Algorithm
V ← 0S

for t = H − 1 down to 0:
V ← T πV

return V (s0)
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Planning: Dynamic Programming

Since SH = SH−1 + r(SH−1, πH−1(SH−1), SH),

VH−1(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′)+0

)
by choosing πH−1(s) = argmax

a∈A

∑
s′∈S

P (s′|s, a)r(s, a, s′)

Thus, one can obtain on average on the last two steps

VH−2(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + VH(s′)

)
by choosing πH−2(s) = argmax

a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + VH−1(s

′)
)
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Backward induction on the table
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Example 1: the Cliff Environment

The iterates may converge to a fixed point, but this is another story…
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Bellman iterations
Greedy action: G∗(s, v) = argmax

a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + v(s′)

)
Bellman optimal operator T ∗ : RS → RS defined by

T ∗v(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + v(s′)

)
=
∑
s′∈S

P
(
s′|s,G∗(s, v))(r(s,G∗(s, v), s′) + v(s′)

)
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Planning by Value Iteration

Value Iteration Algorithm
V ← 0S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗(s, V )
V ← T ∗V

return π and V (s0)

The iterates may converge to a fixed point, but this is another story…
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Reward distribution

The expectation of WH may not be a good decision
criterion

Risk-aware RL: optimize other functionals of WH

quantiles

conditional value-at-risk

etc…
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Backward Induction is pretty general

probability of reaching a state

time spent in a state

higher moments of the total reward

etc…
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Example: entropic utility

Def: If X is a [a, b]-valued random variable, for all β ∈ R

Uβ(X) =
1

β
logE

[
eβX

]
Properties:

If β ≤ β′ then a ≤ Uβ(X) ≤ Uβ′(X) ≤ b

β 7→ Uβ(X) is continuous with U0(X) = E[X]

Example: if X ∼ N (µ, σ2), then Uβ(X) = µ+ σ2

2
β

More generally, Uβ(X) = E[X] + V(X)
2

β + o(β)
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Computing entropic utilities of WH

The β-value function
(
V π
β,t)0≤t≤H of policy π

V π
β,t(s) =

1

β
logEπ

[
exp

(
β

H−1∑
k=t

r
(
Sk, πt(Sk), Sk+1

))∣∣∣∣∣St = s

]

can also be computed recursively: for all s ∈ S,
Vβ,H(s) = 0

V π
β,t(s) =

1

β
log

∑
s′∈S

P (s′|s, πt(s)) exp
(
β
(
r(s, πt(s), s

′) + V π
t+1(s

′)
))

since β exp (V π
t (s)) = Eπ

[
Eπ
[

exp
(
βr(s, πt(s), St+1)

)∣∣ St+1

]
exp

(
βV π

t+1(St+1)
)∣∣∣St = s

]
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β-entropic Value Iteration

[[R. A. Howard and J. E. Matheson. Risk-Sensitive Markov Decision Processes. 1972]]
- β-entropic greedy action: G∗β(s, v) = argmax

a∈A

∑
s′∈S

P (s′|s, a) exp
(
β
(
r(s, a, s′) + v(s′)

))
- β-entropic Bellman optimal operator:

T ∗
β v(s) =

1

β
log max

a∈A

∑
s′∈S

P (s′|s, a) exp
(
β
(
r(s, a, s′) + v(s′)

))
β-entropic Value Iteration Algorithm
V ← 0S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗β(s, V )
V ← T ∗

β V

return π and V (s0)
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What else?
Standard VI uses the linearity of expectation

V ∗
t (s) = max

a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + V ∗

t+1(s
′)
)

Entropic VI uses conditional indep. and ea+b = ea eb

V ∗
β,t(s) =

1

β
log max

a∈A

∑
s′∈S

P (s′|s, a) exp
(
r(s, a, s′) + V ∗

β,t+1(s
′)
)

The proof does not work for other utilities (ex: quantiles)
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Propagating the distribution

Src: [Bellemare, Dabney and Rowland. Distributional Reinforcement Learning. 2023.]
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Propagating the distribution

Distributional value function
(
Vπ
t

)
0≤t≤H

of a policy π:

Vπ
t (s) = Pπ

(
H−1∑
k=t

r
(
St, πt(St), St+1

)∣∣∣∣∣St = s

)
∈M1(R)

It can be computed recursively: for all s ∈ S,

- VH(s) = δ0

- Vπ
t (s) =

∑
s′∈S

P
(
s′|s, πt(s)

)(
δr(s,a,s′) ∗ Vπ

t+1(s
′)
)

where ∗ is the convolution on M1(R)
Vπ
t (s) is hence a mixture of Dirac measures
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References on Distributional RL

[Bellemare, Dabney and Rowland]

[Bellemare, Dabney & Munos ’17]
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Operator formulation

Distributional Bellman operator T π :M1(R)S →M1(R)S

T πV(s) =
∑
s′∈S

P
(
s′|s, π(s)

)
δr(s,π(s),s′) ∗ V(s′)

The law of cumulated reward WH under policy π can be computed recursively:

Distributional Dynamic Programming
V ← δ0

S

for t = H − 1 down to 0:
V ← T πV

return V(s0)
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Idea: optimize any functional

- The greedy action for the functional Ψ is defined by

G∗(s,V) = argmax
a∈A

Ψ

(∑
s′∈S

P (s′|s, a) δr(s,a,s′) ∗ V(s′)

)

- The distributional Bellman optimal operator T ∗ : RS → RS for the functional Ψ is defined by

T ∗V(s) =
∑
s′∈S

P
(
s′|s,G∗(s, ν)

)
δr(s,G∗(s,ν),s′) ∗ V(s′)
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Distrib-VI

Distributional Value Iteration Algorithm for functional Ψ"
V ← δ0

S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗(s,V)
V ← T ∗V

return π and V (s0)

31/03/2025 73



Distrib-VI

Distributional Value Iteration Algorithm for functional Ψ"
V ← δ0

S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗(s,V)
V ← T ∗V

return π and V (s0)

What does it optimize??
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Understanding what functionals distrib-VI can optimize

- expectation and β-entropies are optimizable

- of course, all monotone transforms of optimizable functionals are optimizable

- some utilities like quantiles are *not* optimized this way

- we assume that the decision criterion Ψ is such that if ν is stochastically dominated by ν′,
then Ψ(ν) ≤ Ψ(ν′).
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Ingredient 1 : reduction to utilities
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Proof of the VNM utility theorem

- by induction, if ∀i,Ψ(νi) = Ψ(ν′
i) then Ψ

(∑
piνi

)
= Ψ

(∑
piν

′
i

)
- assume that Supp(ν) ⊂

[
x, x
]
.

- for every x ∈
[
x, x
]
, by the stochastic domination property there exists an (increasing)

f(x) ∈ [0, 1] such that
Ψ(δx) =

(
1− f(x)

)
Ψ(δx) + f(x)Ψ(δx)

- define u(ν) =
∫
f dν

- then
Ψ
(∑

i

piδxi

)
= Ψ

(∑
i

pi
((

1− f(xi)
)
δx + f(xi)δx

))
= Ψ

((
1− u

(∑
i

piδxi

))
δx + u

(∑
i

piδxi

)
δx
)

- hence

Ψ(ν) ≤ Ψ(ν′) ⇐⇒ Ψ
((

1− u(ν)
)
δx + u(ν)δx

)
≤ Ψ

((
1− u(ν′)

)
δx + u(ν′)δx

)
⇐⇒

(
1− u(ν)

)
δx + u(ν)δx is stochastically dominated by

(
1− u(ν′)

)
δx + u(ν′)δx

⇐⇒ u(ν) ≤ u(ν′)
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Ingredient 2: invariance by translation
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Mixing the ingredients
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What can DistribRL optimize?

Theorem
The only ”smooth” functionals of the cumulated reward
that can be optimized are the entropic utilities

...but we have seen that direct DP works for them :-|
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Remarks

Limit cases
β →∞: maximize the highest cumulated reward reachable with positive probability
β → −∞: maximize the lowest cumulated reward reachable with positive probability

Distribution representation: many interesting problems

The possibilities offered by Distributional RL are not unlimited

Some gains in stability have been experimentally observed

β-entropies provide a good surrogates for risk-sensitive RL

Q-learning for β-entropies works as well, see [V. S. Borkar. Q-learning for risk-sensitive
control. 2002.]

Possible interest in inverse RL
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