
Colloquium - UCA

MDP OPTIMIZATION:
BEYOND EXPECTATIONS

Aurélien Garivier



1. Introduction

2. Classical Planning

3. Distributional RL and Entropic Utilities

4. Optimality Front and Entropic-Var

31/03/2025 2



Talk based on
Neurips 2023 with Preprint

31/03/2025 3



Reinforcement Learning
TD-Gammon. [Tesauro ’92-’95]: backgam-
mon world champion

KnightCap [Baxter et al. ’98]: chess (2500
ELO)

Computer poker [Alberta, ’08...]

Computer go [Mogo ’06], [AlphaGo ’15, Alp-
hazero ’18]

Atari, Starcraft, etc. [Deepmind ’10 sqq]

Robotics: jugglers, acrobots, ... [Schaal et
Atkeson ’94 sqq]

Navigation: robot guide in Smithonian Mu-
seum [Thrun et al. ’99]

Lift command [Crites et Barto ’96]

Maintenance [Mahadevan et al. ’97]

Internet Packet Routing [Boyan et Littman
’93]

Task Scheduling [Zhang et Dietterich ’95]

Social Networks [Acemoglu et Ozdaglar ’10]

Yield Management, pricing [Gosavi ’10]

Load forecasting [Meynn ’10]

Recommendation systems [Asfar et al. ’21]

Protein structure prediction [Jumper et al.
’21]

Reinforcement learning with human feed-
back for LLM [Ouyang et al. ’23]

…

31/03/2025 4



Example 1: Cliff

31/03/2025 5



Example 2: Retail Store Management

During week t, the (random) demand is Ut units.

On Monday morning you may command At units:
they are delivered immediately before the shop opens.

Maintenance cost:
h(s) for s units in stock left from the previous week

Command cost: C(a) for a units

Sales profit: f(q) for q units sold

Constraints:
warehouse has maximal capacity of M units
cannot sell units that are not in stock

31/03/2025 6



Model: Markov Decision Process

MDP
M = (S,A, P (·|·, ·), r(·, ·, ·))

S = state space

A = action space

P (·|·, ·) = transition kernel:
P (s′|s, a) = probability, if you choose action a, to jump from state s to state s′

r(·, ·, ·) = reward function
r(s, a, s′) = reward associated to a transition from state s to state s′ choosing action a

31/03/2025 7



Session

Intial state S0 = s0 ∈ S

Horizon H = total number of steps

Policy π = (πt)0≤t<H

At time t, the chosen action is πt(s)

Given policy π, the trajectory (St)0≤t≤H is a (non-homogeneous) Markov chain with kernels
Pπt(s′|s) = P (s′|s, πt(s))

Cumulated reward: WH =

H−1∑
t=0

r
(
St, πt(St), St+1

)
We write Pπ (resp. Eπ ) for the law of this process (resp. its expectation)

Stationary policy: πt = π0 for all t

31/03/2025 8



Markov Decision Process

31/03/2025 9



Example 1: Cliff

Random move with probability ϵ ≥ 0 Reward: 1 per step spent in the goal state

31/03/2025 10



Example 2 : Retail Store Management

State = number of units in stock before the week starts

S = {0, . . . ,M}

Action = number of units commanded

A = {0, . . . ,M}

Dynamic: St+1 = max
(
0,min(M,St +At)− Ut

)
Reward: r(s, a, s′) = −C(a)− h(s) + f

(
min(M, s+ a)− s′

)
Possible policy: always buy E[Ut] bikes (?)

31/03/2025 11



Goals

Planning: knowing the model M = (S,A, P, r), find a policy π maximizing the cumulative
reward WH in expectation:

max
π

Eπ

[
H−1∑
t=0

r
(
St, πt(St), St+1

)]

Learning: Knowing only the structure of the model S,A but not the dynamic P and the
reward function r, and having access to a simluator, play several sessions so as to find the
best policy
regret minimization or best policy identification
trajectory or transition simulator
etc…

31/03/2025 12



1. Introduction

2. Classical Planning

3. Distributional RL and Entropic Utilities

4. Optimality Front and Entropic-Var

31/03/2025 13



Policy Evaluation

The value function
(
V π
t

)
0≤t≤H

of a policy π is defined by

V π
t (s) = Eπ

[
H−1∑
k=t

r
(
Sk, πt(Sk), Sk+1

)∣∣∣∣∣St = s

]

and can be computed recursively: for all s ∈ S,
V π
H (s) = 0

V π
t (s) =

∑
s′∈A

P (s′|s, πt(s))
(
r(s, a, s′) + V π

t+1(s
′)
)

since V π
t (s) = Eπ[Eπ[r(s, πt(s), St+1)

∣∣ St+1
] + V π

t+1(St+1)
∣∣∣St = s

]

NB: V π
0 (s0) = Eπ[WH ]

31/03/2025 14



Backward induction on the table

31/03/2025 15



Operator formulation

The Bellman operator T π : RS → RS is defined by

T πv(s) =
∑
s′∈S

P
(
s′|s, π(s)

)(
r(s, π(s), s′) + v(s′)

)
Backward induction on the expected cumulated reward:

Policy Evaluation Algorithm
V ← 0S

for t = H − 1 down to 0:
V ← T πV

return V (s0)

31/03/2025 16



Planning: Dynamic Programming

Since SH = SH−1 + r(SH−1, πH−1(SH−1), SH),

VH−1(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′)+0

)
by choosing πH−1(s) = argmax

a∈A

∑
s′∈S

P (s′|s, a)r(s, a, s′)

Thus, one can obtain on average on the last two steps

VH−2(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + VH(s′)

)
by choosing πH−2(s) = argmax

a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + VH−1(s

′)
)

31/03/2025 17



Backward induction on the table

31/03/2025 18



Backward induction on the table

31/03/2025 19



Backward induction on the table

31/03/2025 20



Backward induction on the table

31/03/2025 21



Backward induction on the table

31/03/2025 22



Example 1: the Cliff Environment

31/03/2025 23



Example 1: the Cliff Environment

31/03/2025 24



Example 1: the Cliff Environment

31/03/2025 25



Example 1: the Cliff Environment

31/03/2025 26



Example 1: the Cliff Environment

31/03/2025 27



Example 1: the Cliff Environment

31/03/2025 28



Example 1: the Cliff Environment

31/03/2025 29



Example 1: the Cliff Environment

31/03/2025 30



Example 1: the Cliff Environment

31/03/2025 31



Example 1: the Cliff Environment

The iterates may converge to a fixed point, but this is another story…
31/03/2025 32



Bellman iterations
Greedy action: G∗(s, v) = argmax

a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + v(s′)

)
Bellman optimal operator T ∗ : RS → RS defined by

T ∗v(s) = max
a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + v(s′)

)
=
∑
s′∈S

P
(
s′|s,G∗(s, v))(r(s,G∗(s, v), s′) + v(s′)

)

31/03/2025 33



Planning by Value Iteration

Value Iteration Algorithm
V ← 0S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗(s, V )
V ← T ∗V

return π and V (s0)

The iterates may converge to a fixed point, but this is another story…

31/03/2025 34



1. Introduction

2. Classical Planning

3. Distributional RL and Entropic Utilities

4. Optimality Front and Entropic-Var

31/03/2025 35



Reward distribution

The expectation of WH may not be a good decision
criterion

Risk-aware RL: optimize other functionals of WH

quantiles

conditional value-at-risk

etc…

31/03/2025 36



Backward Induction is pretty general

probability of reaching a state

time spent in a state

higher moments of the total reward

etc…

31/03/2025 37



Example: entropic utility

Def: If X is a [a, b]-valued random variable, for all β ∈ R

Uβ(X) =
1

β
logE

[
eβX

]
Properties:

If β ≤ β′ then a ≤ Uβ(X) ≤ Uβ′(X) ≤ b

β 7→ Uβ(X) is continuous with U0(X) = E[X]

Example: if X ∼ N (µ, σ2), then Uβ(X) = µ+ σ2

2
β

More generally, Uβ(X) = E[X] + V(X)
2

β + o(β)

31/03/2025 38



Example: entropic utility

31/03/2025 39



Example: entropic utility

31/03/2025 40



Example: entropic utility

31/03/2025 41



Example: entropic utility

31/03/2025 42



Example: entropic utility

31/03/2025 43



Example: entropic utility

31/03/2025 44



Example: entropic utility

31/03/2025 45



Example: entropic utility

31/03/2025 46



Example: entropic utility

31/03/2025 47



Example: entropic utility

31/03/2025 48



Example: entropic utility

31/03/2025 49



Computing entropic utilities of WH

The β-value function
(
V π
β,t)0≤t≤H of policy π

V π
β,t(s) =

1

β
logEπ

[
exp

(
β

H−1∑
k=t

r
(
Sk, πt(Sk), Sk+1

))∣∣∣∣∣St = s

]

can also be computed recursively: for all s ∈ S,
Vβ,H(s) = 0

V π
β,t(s) =

1

β
log

∑
s′∈S

P (s′|s, πt(s)) exp
(
β
(
r(s, πt(s), s

′) + V π
t+1(s

′)
))

since β exp (V π
t (s)) = Eπ

[
Eπ
[

exp
(
βr(s, πt(s), St+1)

)∣∣ St+1

]
exp

(
βV π

t+1(St+1)
)∣∣∣St = s

]

31/03/2025 50



β-entropic Value Iteration

[[R. A. Howard and J. E. Matheson. Risk-Sensitive Markov Decision Processes. 1972]]
- β-entropic greedy action: G∗β(s, v) = argmax

a∈A

∑
s′∈S

P (s′|s, a) exp
(
β
(
r(s, a, s′) + v(s′)

))
- β-entropic Bellman optimal operator:

T ∗
β v(s) =

1

β
log max

a∈A

∑
s′∈S

P (s′|s, a) exp
(
β
(
r(s, a, s′) + v(s′)

))
β-entropic Value Iteration Algorithm
V ← 0S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗β(s, V )
V ← T ∗

β V

return π and V (s0)

31/03/2025 51



What else?
Standard VI uses the linearity of expectation

V ∗
t (s) = max

a∈A

∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + V ∗

t+1(s
′)
)

Entropic VI uses conditional indep. and ea+b = ea eb

V ∗
β,t(s) =

1

β
log max

a∈A

∑
s′∈S

P (s′|s, a) exp
(
r(s, a, s′) + V ∗

β,t+1(s
′)
)

The proof does not work for other utilities (ex: quantiles)

31/03/2025 52



Propagating the distribution

Src: [Bellemare, Dabney and Rowland. Distributional Reinforcement Learning. 2023.]

31/03/2025 53



Propagating the distribution

Distributional value function
(
Vπ
t

)
0≤t≤H

of a policy π:

Vπ
t (s) = Pπ

(
H−1∑
k=t

r
(
St, πt(St), St+1

)∣∣∣∣∣St = s

)
∈M1(R)

It can be computed recursively: for all s ∈ S,

- VH(s) = δ0

- Vπ
t (s) =

∑
s′∈S

P
(
s′|s, πt(s)

)(
δr(s,a,s′) ∗ Vπ

t+1(s
′)
)

where ∗ is the convolution on M1(R)
Vπ
t (s) is hence a mixture of Dirac measures

31/03/2025 54



Example 2: Retail Store Management

31/03/2025 55



Example 2: Retail Store Management

31/03/2025 56



Example 2: Retail Store Management

31/03/2025 57



Example 2: Retail Store Management

31/03/2025 58



Example 2: Retail Store Management

31/03/2025 59



Example 2: Retail Store Management

31/03/2025 60



Example 2: Retail Store Management

31/03/2025 61



Example 2: Retail Store Management

31/03/2025 62



Example 2: Retail Store Management

31/03/2025 63



Example 2: Retail Store Management

31/03/2025 64



Example 2: Retail Store Management

31/03/2025 65



Example 2: Retail Store Management

31/03/2025 66



Example 2: Retail Store Management

31/03/2025 67



Example 2: Retail Store Management

31/03/2025 68



Example 2: Retail Store Management

31/03/2025 69



References on Distributional RL

[Bellemare, Dabney and Rowland]

[Bellemare, Dabney & Munos ’17]

31/03/2025 70



Operator formulation

Distributional Bellman operator T π :M1(R)S →M1(R)S

T πV(s) =
∑
s′∈S

P
(
s′|s, π(s)

)
δr(s,π(s),s′) ∗ V(s′)

The law of cumulated reward WH under policy π can be computed recursively:

Distributional Dynamic Programming
V ← δ0

S

for t = H − 1 down to 0:
V ← T πV

return V(s0)

31/03/2025 71



Idea: optimize any functional

- The greedy action for the functional Ψ is defined by

G∗(s,V) = argmax
a∈A

Ψ

(∑
s′∈S

P (s′|s, a) δr(s,a,s′) ∗ V(s′)

)

- The distributional Bellman optimal operator T ∗ : RS → RS for the functional Ψ is defined by

T ∗V(s) =
∑
s′∈S

P
(
s′|s,G∗(s, ν)

)
δr(s,G∗(s,ν),s′) ∗ V(s′)

31/03/2025 72



Distrib-VI

Distributional Value Iteration Algorithm for functional Ψ"
V ← δ0

S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗(s,V)
V ← T ∗V

return π and V (s0)

31/03/2025 73



Distrib-VI

Distributional Value Iteration Algorithm for functional Ψ"
V ← δ0

S

for t = H − 1 down to 0:
for each s ∈ S, πt(s)← G∗(s,V)
V ← T ∗V

return π and V (s0)

What does it optimize??

31/03/2025 74



Understanding what functionals distrib-VI can optimize

- expectation and β-entropies are optimizable

- of course, all monotone transforms of optimizable functionals are optimizable

- some utilities like quantiles are *not* optimized this way

- we assume that the decision criterion Ψ is such that if ν is stochastically dominated by ν′,
then Ψ(ν) ≤ Ψ(ν′).

31/03/2025 75



Ingredient 1 : reduction to utilities

31/03/2025 76



Proof of the VNM utility theorem

- by induction, if ∀i,Ψ(νi) = Ψ(ν′
i) then Ψ

(∑
piνi

)
= Ψ

(∑
piν

′
i

)
- assume that Supp(ν) ⊂

[
x, x
]
.

- for every x ∈
[
x, x
]
, by the stochastic domination property there exists an (increasing)

f(x) ∈ [0, 1] such that
Ψ(δx) =

(
1− f(x)

)
Ψ(δx) + f(x)Ψ(δx)

- define u(ν) =
∫
f dν

- then
Ψ
(∑

i

piδxi

)
= Ψ

(∑
i

pi
((

1− f(xi)
)
δx + f(xi)δx

))
= Ψ

((
1− u

(∑
i

piδxi

))
δx + u

(∑
i

piδxi

)
δx
)

- hence

Ψ(ν) ≤ Ψ(ν′) ⇐⇒ Ψ
((

1− u(ν)
)
δx + u(ν)δx

)
≤ Ψ

((
1− u(ν′)

)
δx + u(ν′)δx

)
⇐⇒

(
1− u(ν)

)
δx + u(ν)δx is stochastically dominated by

(
1− u(ν′)

)
δx + u(ν′)δx

⇐⇒ u(ν) ≤ u(ν′)

31/03/2025 77



Ingredient 2: invariance by translation

31/03/2025 78



Mixing the ingredients

31/03/2025 79



What can DistribRL optimize?

Theorem
The only ”smooth” functionals of the cumulated reward
that can be optimized are the entropic utilities

...but we have seen that direct DP works for them :-|

31/03/2025 80



Remarks

Limit cases
β →∞: maximize the highest cumulated reward reachable with positive probability
β → −∞: maximize the lowest cumulated reward reachable with positive probability

Distribution representation: many interesting problems

The possibilities offered by Distributional RL are not unlimited

Some gains in stability have been experimentally observed

β-entropies provide a good surrogates for risk-sensitive RL

Q-learning for β-entropies works as well, see [V. S. Borkar. Q-learning for risk-sensitive
control. 2002.]

Possible interest in inverse RL

31/03/2025 81



1. Introduction

2. Classical Planning

3. Distributional RL and Entropic Utilities

4. Optimality Front and Entropic-Var

31/03/2025 82



31/03/2025 83



31/03/2025 84



31/03/2025 85



31/03/2025 86



31/03/2025 87



31/03/2025 88



31/03/2025 89



31/03/2025 90



31/03/2025 91



31/03/2025 92



31/03/2025 93



31/03/2025 94



31/03/2025 95


	Introduction
	Classical Planning
	Distributional RL and Entropic Utilities
	Optimality Front and Entropic-Var

