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Abstract

What are the functionals of the reward that can be computed and optimized exactly
in Markov Decision Processes? In the finite-horizon, undiscounted setting, Dy-
namic Programming (DP) can only handle these operations efficiently for certain
classes of statistics. We summarize the characterization of these classes for policy
evaluation, and give a new answer for the planning problem. Interestingly, we prove
that only generalized means can be optimized exactly. even in the more general
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Preprint

Efficient Risk-sensitive Planning via Entropic Risk Measures

Abstract

Ri ning aims to identify policies
maximizing some tail-focused merics in Markov
Decision Processes (MDPs). Such an optimiza-

deed, previous work showed that only Entropic
Risk Measures (EntRM) can be efficiently
mized through dynamic programming, leaving a
hard-to-interpret par c

Weshow e e computaton o e fl o o7

Alexandre Marthe ' Samuel Bounan '

Aurélien Garivier ! Claire Vernade”

2015).
One of the central challenges in risk-sensitive RL is 0 iden-
tify risk criteria that are both (1) meaningful for real-world
W (2) ractable in an MDP context. Pop-
ular approaches often revolve around the quanile-based
Value at Risk (VaR) and Conditional Value at Risk (CVaR)
(Artzner et al., 1999; Rockafellar et al., 2000), which are
widely used in finance and operations rescarch for bounding
itk Anothercommon bicive el on controling
‘Threshold Probabil bility
that total returns fall below a specified level

White, 1993

pi y properties.
ly and efficiently

leads o tight approximation fo the metrics of

rest. We prove tha this optimality front can be:
comped ffectnely thanke 0 a ovel aructoal
analysis and smoothness properties of entropic
risks. Empirical results demonstrate that our ap-
proach achieves strong performance in a variety
of decision-making scenarios.

1. Introduction

NS OE tYON

oplmizs i MDPs (Mt o ol 2024 Rowhod e ol
2019). Our work addresses preciscly this gap by connect-
ing the Thrcshold Probabilty and he (CNAR meien 10
the moment-generating function. In fact, in the context of
MDP wesho hat tese oo apinizaton probies can

reflly spprosimaed by e Entopc (xponcntial)
Risk Measure (EntRM) (Howard & Matheson. 1972).

‘The work of (Follmer & Schied. 2011: Marthe et a. 2024)
shows that EntRM is unique among non-linear transforma-
tions of the return in admitfing a dynamic programming
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Reinforcement Learning

TD-Gammon. [Tesauro '92-'95]:
mon world champion

backgam-

KnightCap [Baxter et al.
ELO)

Computer poker [Alberta, ‘08...]

Computer go [Mogo '06], [AlphaGo 15, Alp-
hazero 18]

Atari, Starcraft, etc. [Deepmind "10 sqq]
[Schaal et

'‘98]: chess (2500

Robotics: jugglers, acrobots, ...
Atkeson ‘94 sqq]

Navigation: robot guide in Smithonian Mu-
seum [Thrun et al. '99]

Lift command [Crites et Barto '96]

. 31/03/2025
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Maintenance [Mahadevan et al. '97]

Internet Packet Routing [Boyan et Littman
'93]

Task Scheduling [Zhang et Dietterich '95]
Social Networks [Acemoglu et Ozdaglar “10]
Yield Management, pricing [Gosavi “10]

Load forecasting [Meynn "10]
Recommendation systems [Asfar et al. '21]

Protein structure prediction [Jumper et al.
21]

Reinforcement learning with human feed-
back for LLM [Ouyang et al. ‘23]
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Example 1: Cliff
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Example 2: Retail Store Management

During week ¢, the (random) demand is U; units.

On Monday morning you may command A; units:
they are delivered immediately before the shop opens.

Maintenance cost:
h(s) for s units in stock left from the previous week

Command cost: C(a) for a units
Sales profit: f(q) for g units sold

Constraints:

warehouse has maximal capacity of M units
cannot sell units that are not in stock

. 31/03/2025
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Model: Markov Decision Process

MDP
M= (SvAv P(-|~,-),T(-, v))J

S = state space
A = action space

P(]-,+) = transition kernel:

P(s|s, a) = probability, if you choose action a, to jump from state s to state s’

r(-,+,+) = reward function

r(s,a,s’) = reward associated to a transition from state s to state s’ choosing action a

. 31/03/2025 =Ei=
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Session

Intial state Sop =s0 € S
Horizon H = total number of steps

Policy m = (m¢)o<t<n
At time ¢, the chosen action is m¢(s)

Given policy «, the trajectory (Si)o<:i<m i @ (non-homogeneous) Markov chain with kernels
PT(s]s) = P(s']s, m(s))

H-1

Cumulated reward: Wi = > r(Si, m(S), Si41)

t=0
We write P™ (resp. E™) for the law of this process (resp. its expectation)
p. p p p

Stationary policy: m = mo for all ¢

. 31/03/2025 =Ei=
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Markov Decision Process

o o——
S

Pl

1+ » + o 4+ Hpo +RByy + By = Wy
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Example 1: Cliff

UV'PA

Random move with probability € > 0

. 31/03/2025

Reward: 1 per step spent in the goal state
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Example 2 : Retail Store Management

State = number of units in stock before the week starts
§=1{0,...,M}

Action = number of units commanded
A={0,...,M}

Dynamic: Si1 = max (0, min(M, Sy + Ay) — Uy)

Reward: r(s,a,s’) = —C(a) — h(s) + f(min(M,s +a) — s')

Possible policy: always buy E[U;] bikes (?)

. 31/03/2025 =Ei= n
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Goals

Planning: knowing the model M = (S, A4, P,r), find a policy = maximizing the cumulative
reward Wy in expectation:

H-1
maXIETr [Z 7(Se, m(St) St+1):|
=0

Learning: Knowing only the structure of the model S, A but not the dynamic P and the
reward function r, and having access to a simluator, play several sessions so as to find the
best policy

regret minimization or best policy identification

trajectory or transition simulator

etc..

. 31/03/2025 =Ei=
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2. Classical Planning
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Policy Evaluation

The value function (V{") of a policy « is defined by

0<t<H

H—

Z (Sk, m(Sk), Sk11)

k=t

St—5:|

and can be computed recursively: for all s € S,

Vi(s)=0
Vi(s) = Y P(s|s,me(s)) (r(s,a,8) + ViGa(s))
s'eA

since V™ (5) = E"[E"[r(s, t(5), St+1) Se+1] + Vi1 (St41)[St = 3]
NB: Vi (so) = E™[Wix]

. 31/03/2025
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Backward induction on the table

[]

. 31/03/2025 =Ei=
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Operator formulation
The Bellman operator 7™ : RS — RS is defined by
T o(s) = D> P(s'|s,w(s)) (r(s,m(s), s) +v(s))
s'eS
Backward induction on the expected cumulated reward:
Policy Evaluation Algorithm
V 0%
for t=H —1 down to O:
VTV

return V(so)

. 31/03/2025
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Planning: Dynamic Programming
Since Sg = Su-1+r(Sa-1,mH-1(SH-1), SH),

Vi1 ( maxZP \s a)(r(s a,s/)
s'eS

by choosing mr—1(s) = argmax Z s'ls,a)r(s,a,s")
acA
s'eS
Thus, one can obtain on average on the last two steps

Vi_2(s) = = max Z s'ls,a)(r(s,a,s") + Vu(s"))

by choosing mr—2(s) = argmax Z s'ls,a)(r(s,a,s") + Vu—1(s"))
acA
s'eS

31/03/2025 ]
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Backward induction on the table

e Lvou
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Backward induction on the table

=

=
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Backward induction on the table

EK
©
°
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Backward induction on the table

UV'PA
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Backward induction on the table

UV'PA
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Example 1: the Cliff Environment

. 31/03/2025
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Example 1: the Cliff Environment
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Example 1: the Cliff Environment
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Example 1: the Cliff Environment
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Example 1: the Cliff Environment
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Example 1: the Cliff Environment
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Example 1: the Cliff Environment

. 31/03/2025
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Example 1: the Cliff Environment

UV'PA
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Example 1: the Cliff Environment

UV'PA
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Example 1: the Cliff Environment

. The iterates may converge to a fixed point, but this is another story...
31/03/2025 — Ejm
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Bellman iterations

Greedy action: G*(s,v) = argmax Z P(s'|s,a)(r(s,a,s") + v(s"))
acA s'eS

Bellman optimal operator 7+ : RS — RS defined by

T v(s) = max Z P(s'|s,a)(r(s,a,s") + v(s"))

s’eS

= 3" P(s/)5,G7 (5,0)) (s, G" (5,), ) + v(s))

s'eS

. 31/03/2025
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Planning by Value Iteration

Value Iteration Algorithm
V ¢+ 0°
for t=H —1 down to 0:

for each s €S, m(s) « G*(s,V)
VTV

return m and V(so)

The iterates may converge to a fixed point, but this is another story...

. 31/03/2025
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3. Distributional RL and Entropic Utilities

35
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Reward distribution

The expectation of Wx may not be a good decision
criterion

Risk-aware RL: optimize other functionals of Wx
quantiles

conditional value-at-risk
etc...

31/03/2025
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== Risky Policy
== Safe Policy

36
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Backward Induction is pretty general

probability of reaching a state
time spent in a state
higher moments of the total reward

etc..

. 31/03/2025
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Example: entropic utility
Def: If X is a [a, b]-valued random variable, for all 8 € R

Us(X) = % log E [¢"¥]

Properties:
If B< B then a < Us(X) < Ug(X)<b

B — Us(X) is continuous with Up(X) = E[X]
Example: if X ~ N (u,0?), then Ug(X) = pu+ "72,6

More generally, Us(X) = E[X] + Y23 + o(8)

. 31/03/2025
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Example: entropic utility
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Example: entropic utility

. 31/03/2025

B =-20

40



P

Example: entropic utility

p=-07

Ul'PA

. 31/03/2025

e Lvou

4



P

Ul'PA

Example: entropic utility

. 31/03/2025

f=-02

e Lvou
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Example: entropic utility

. 31/03/2025

B =-0.05

e Lvou
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Example: entropic utility

. 31/03/2025
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Example: entropic utility

. 31/03/2025

B =0.05

I
e Lvou
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Example: entropic utility
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B=02
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Example: entropic utility

. 31/03/2025
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Example: entropic utility
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Example: entropic utility

. 31/03/2025
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Computing entropic utilities of Wy

The B-value function (V§,)o<t<u of policy

H-1
1
Vi(s) = BIOgEW exp (ﬁ Z T(Smﬂ't(sk),skﬂ)) Sy = 5]
k=t
can also be computed recursively: for all s € S
Vs, u(s ) 0
Via(s) = glos 3 P(s/ls.mu(s)) exp (8(r(s,mi(s), ) + Vi ()

s'eS
since Bexp (V4" (s)) = E™ [EW [exp (Br(s,mi(s), St41))| Sev1] exp (BVi41(Si41))

. 31/03/2025
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p-entropic Value Iteration

[[R. A. Howard and J. E. Matheson. Risk-Sensitive Markov Decision Processes. 1972]]

- B-entropic greedy action: Gs(s,v) = argmax » _ P(s'|s, a) (r(s,a,s") +v(s)
ac s'eS
- B-entropic Bellman optimal operator:
* _ ! / /
Tsv(s) = max EP(S s, a) (r(s,a,s") +v(s"))

B-entropic Value Iteration Algorithm
V 0%
for t=H — 1 down to 0O:

for each s €S, m(s) + Gs(s,V)
VT3V

return 7 and V(so)

51
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What else?

Standard VI uses the linearity of expectation

Vi (s) = max SP(s/|s,a) (r(s, a,s’) + Vtil(sl))
s'e

Entropic VI uses conditional indep. and et = ¢®¢®

_ !

Vﬂ*,t(s) ﬁ

l P / ( / * / )
og max gs (s'|s,a)exp (r(s,a,s) + Vg q1(s)

The proof does not work for other utilities (ex: quantiles)

. 31/03/2025
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Propagating the distribution
lv)

Reward

S,

Reward Return
(b y) ‘

Reward

Return

. A

Return

Reward

Src: [Bellemare, Dabney and Rowland. Distributional Reinforcement Learning. 2023.]

31/03/2025
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Propagating the distribution

Distributional value function (V[) of a policy =

0<t<H
H-1
Vi(s) =P~ (Z 7(Se, me(Se), Seg1) | St = s) € Mi(R)
k=t
It can be computed recursively: for all s € S,
- VH(S) = 50
-Vi(s) = Z P(s/|s,7rt(s)) (5T(S7a75/) * Vfﬂ(s/))

s'eS
where x is the convolution on M;(R)
V[ (s) is hence a mixture of Dirac measures

31/03/2025
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Example 2: Retail Store Management

| ||||||||. S
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Example 2: Retail Store Management
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Example 2: Retail Store M
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Example 2: Retail Store Management
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Example 2: Retail Store Management
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Example 2: Retail Store Management

Q a1

S E— |
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Example 2: Retail Store Management

] " \"mm

- S— ] |
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Example 2: Retail Store Management

g L L]
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Example 2: Retail Store Management
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Example 2: Retail Store Management

s

. . el .
. 31/03/2025 =Ei=
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Example 2: Retail Store Management

s . e L =
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Example 2: Retail Store Management

. eam
. 31/03/2025 =Ei=
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Example 2: Retail Store Management
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References on Distributional RL
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[Bellemare, Dabney and Rowland]

DISTRIBUTIONAL
REINFORCEMENT
LEARNING

[Bellemare, Dabney & Munos “17]

A Distributional Perspective on Reinforcement Learning

Marc G, Bellemare,
Will Dabney,
and Mark Rowland

Mare G. Bellemare ' Will Dabney "' Rémi Munos '

Abstract

In this paper we argue for the fundamental impor-
tance of the value distribution: the distribution

ment leaming. Specifically, the main object of our study is
the randomreturn Z whose expectation is the value ). This
random return is also described by a recursive equation, but
one of a distributional nature:

of the random return received by a
learning agent. This is in contrast to the com-
mon approach to reinforcement learning which
models the expectation of this return, or value.
Although there is an established body of liter-
ature studying the value distribution, thus far it
has always been used for a specific purpose such
as implementing risk-aware behaviour. We begin
with theoretical results in both the policy eval-
uation and control settings, exposing a signifi-
cant distributional instability in the latter. We
then use the distributional perspective to design
a new algorithm which applies Bellman's equa-
tion to the learning of approximate value distri-
butions. We evaluate our algorithm using the
suite of games from the Arcade Leaming En-
vironment. We obtain both state-of-the-art re-
sults and anecdotal evidence demonstrating the
importance of the value distribution in approxi-
mate reinforcement learning. Finally, we com-

Z(z,a) 2 R(z,a) + 7Z(X", A')

“The distributional Bellman equation states that the distribu-
tion of Z is characterized by the interaction of three random
variables: the reward £, the next state-action (X”, 4'), and
its random return Z(X', A'). By analogy with the well-
known case, we call this quantity the value distribution.

Although the distributional perspective is almost as old
as Bellman's equation itself (Jaquette, 1973; Sobel, 1982;
White, 1988). in reinforcement learning it has thus far been
subordinated to specific purposes: to model parametric un-
certainty (Dearden et al.. 1998). to design risk-sensitive al-
‘gorithms (Morimura et al., 2010bza), or for theoretical anal-
ysis (Azaretal., 2012; Lattimore & Hutter, 2012). By con-
trast, we believe the value distribution has a central role to
play in reinforcement learning.

Contraction of the policy evaluation Bellman aperator.
Basing ourselves on results by Rosler (1992) we show that,

bine theoretical and empirical evidence tcaifighm==—= ==y 1 fixed policy. the Bellman operator over value distribu-

light the ways in which the value
pacts learning in the approximate sctting.

e e dions is & in a maximal form of the Wasserstein

(also called Kantorovich or Mallows) metric. Our partic-

PR T AT
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Operator formulation
Distributional Bellman operator 7™ : My (R)S — M;(R)®
T™V(s) = > P(s'|s,7(5)) Sr(an(s).an) * V(')
s'eS

The law of cumulated reward Wy under policy = can be computed recursively:

Distributional Dynamic Programming
Y« 60°

for t=H — 1 down to 0:

VTV

return V(so)

71

. 31/03/2025
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Idea: optimize any functional

- The greedy action for the functional V¥ is defined by

G*(s,V) = argmax ¥ (Z P(s'|s,a) 6r(s,a,57) * V(Sl)>

acA ses
- The distributional Bellman optimal operator 7~ : RS — R® for the functional ¥ is defined by

TV(s) = Z P(s'|5,G7(5,1)) 8r(s,0%(s.),5) * V(5')

s'eS

. 31/03/2025
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Distrib-VI

Distributional Value Iteration Algorithm for functional "
V<« 60°
for t=H — 1 down to O:

for each s €S, m(s) « G (s,V)
VTV

return m and V(so)

. 31/03/2025 =Ei=
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Distrib-VI

Distributional Value Iteration Algorithm for functional "
V<« 60°
for t=H — 1 down to O:

for each s €S, m(s) « G (s,V)
VTV

return m and V(so)

What does it optimize??

. 31/03/2025 =Ei=

74



i UV'PA

Understanding what functionals distrib-VI can optimize
- expectation and S-entropies are optimizable

- of course, all monotone transforms of optimizable functionals are optimizable

- some utilities like quantiles are *not* optimized this way

- we assume that the decision criterion ¥ is such that if v is stochastically dominated by ¢/,
then T(v) < T().

. 31/03/2025

75



ol UlPA

Ingredient 1 : reduction to utilities

« ForallA € Randall vy, va, v’ M, (R),

o X W) < U(ry) = T(Awy + (1 A') < T (g + (1 - A)p)
™ « Von Neumann - Morgenstern theorem: there exists f : R — R such that
N
K[7\] 5 ! W) < 20 = [ i< [ i
[1 ?\ z —> wlog we focus on utilities ¥ (v) = ffdy
[1-] 0 a

action 0

action 1

Xeov,Y e, Z v
. 31/03/2025
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Proof of the VNM utility theorem

- by induction, if Vi, ¥(v;) = U () then (> pivi) = U( > pivs)
- assume that Supp(v) C [z,7].
- for every = € [z,7], by the stochastic domination property there exists an (increasing)
f(z) € 0,1] such that
V(02) = (1= f(2)¥(dz) + f(2) T (dx)

- define u(v) = [ fdv
- then

@(Zp,.azi) (Zp (0= 7 @)oe + Fli)s) ) = ¥ (1= u( X pide,))de +u( Y pid,)oz)

- herzlce ' '

V() < V() < \1/((1%(1/))5 T u(v)os ) < \1/((1%( ) oe + u(v ’)57)
<= (1 —u(v))ds + u(v)dz is stochastically dominated by (1 —u(v'))ds + u(v')éx
<« uv) <u()

. 31/03/2025 ==
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Ingredient 2: invariance by translation

XA
Kb
P C
N~
Y=

. 31/03/2025

Forallz € R and all random variables X, Y

Y(X) < W(Y) = V(z+X)<U(z+Y)

Hence, it is necessary that

P(X)=T(Y) = Y(z+X)=T(z+7)

78
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Mixing the ingredients

n—{ ] g
O a0

X

« hence f" = Af’
[1/2] —h-D
—h " q(h) h ©ifFB=0,f(z) =ar+ec¢ = expectation

o otherwise, f(z) = ae”™ + ¢ = B-entropy

action 0

action 1 s W(v) = [ fdvwith f € C3(R) and f'(0) # 0
« let for hsmall enoughm(h) = 1 (W) =Bt +o(h?) 5T
e foralle € R, f(n(h)) = %f(—h) + %f(h) implies

F () = 3 fe+ ) + 5 fz ~b)
1@+ (2) B +o(h?) = f() + 1"(2) b + o(?)

. 31/03/2025 =Ei= 79
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What can DistribRL optimize?

Theorem

The only “smooth” functionals of the cumulated reward
that can be optimized are the entropic utilities

...but we have seen that direct DP works for them :-|

. 31/03/2025
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Remarks

Limit cases
B — oo maximize the highest cumulated reward reachable with positive probability
B — —oo: maximize the lowest cumulated reward reachable with positive probability

Distribution representation: many interesting problems

The possibilities offered by Distributional RL are not unlimited
Some gains in stability have been experimentally observed
B-entropies provide a good surrogates for risk-sensitive RL

Q-learning for g-entropies works as well, see [V. S. Borkar. Q-learning for risk-sensitive
control. 2002.]

Possible interest in inverse RL

. 31/03/2025 =Ei= 81
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4. Optimality Front and Entropic-Var
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What about the VaR / CVaR then?

* Augmented state space: add Z;{ to the state
* Remark: No longer finite state space
* Bduerle & Ott (2011) and Pires et al. (2025): VI OK, DQN implementations.
* Hau et al. (2024): discretizing the augmented state space gives mixed results

* Approximations:
* Bauerle & Glauner (2022): pretend Vl is OK, it does not work
* Hau et al. (2023): Use the Entropic Risk Measure, VI OK (Borkar 2002,2010)

% log(E[e?X]), if
EntRM,[x] < 4 7 08(EE7), i 50,
. 31/03/2025 E[X], if ,3 =0.
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Entropic Value-at-Risk

* Recall that the VaR is a threshold for a given risk: P(X < VarRra)r —a
* By Chernoff’s inequality, for any 8 < 0, we have:
P(X < ¢) < E[ePX] exp(—p¢)
1

* Solving “rhs = ¢, weget (= %ln (E[e?X]) — Eln(a) = ax(a,f)

* Which means P(X < ax(B,a)) < a,and indeed  ax(a,) < VaR,(X)

*« Weget supax(a,f3) —[sup 1 In (E[e”*]) — = In(a)|< VaR,(X)
<0 B

s<o0 B
31/03/2025
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Dual Optimization Problem

[EVaRa(X) = ZliPO % In (E[e”*]) —

% ln(a)J

* For a given ﬁEntRM optimization problem:

75 = arg max EntRMg(Z"™)
B<0
* Search the WE space to maximize EVaR:

. 31/03/2025

[arg max EntRM(Z75) — ln(a)}
B<0 B

Easy via DP
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Optimality Front EarngmRMﬂ( 77y — IH(Q)J

B<0 B

* Infinitely many values of 5 ®
* Discretize? (Hau et al. 2023) Smart Grid Search:

0 (szAH (%)2)

* Can we do better?

. 31/03/2025

86



ol

Ul'PA

A Decision Problem

Which restaurant should you choose?

1 )
Us (Rpizza) — E In (]E[eBRp.an
1 k
= E In <Z P(Rpizza = v)eﬂv)
v=1
1 1 1
= Eln (Eele3 + §e3><5)
2751 — pizza
2.50
_ 225
E 2.00
5 175
150
125
-4 -2 0 2 4

beta
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A Decision Problem

Which restaurant should you choose?

1 — pizza
| — fish
-4 2 0 2 4
beta
Pizza is opt. Fish is opt. |:

[ ]
w ok Ok % K * % ok ok K
1.2 3 4 5 1 2 3 4 5

. 31/03/2025 BREAKPOINT
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Finding the Breakpoints

UV'PA

* The optimal policy is piecewise constant as a function of I}

* The Optimality Front is the finite set of optimal policies (and
according breakpoints)

. 31/03/2025

1 — pizza

fish

-5 -4 -3 -2

Idea 1: Search on a fine grid of
beta values.

Can we find the breakpoints
more efficiently?

89
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Finding the Breakpoints

. 31/03/2025

Theorem (Marthe, Bounan, Garivier, V., 2025)

Fix 8 # (and define the Generalized Advantage Function for the EntRM:
A} s(z,a) = EntRMg[R}(z)] — EntRMg[R] (x,a))
and the optimality gap

Awg T,a
A= @ min min —h’B( )
2 hez a#ny () h

*

Then, for any ﬂ' € [ﬂ —A,B —}—th(k]optimal policy remains g

Remark: Definition of gaps slightly differs for =0
Algorithm: Start from 8 =0

+ Compute Ag

« Update Bit1 < Bi + Aﬂi

(Proceed similarly for negative values)

920
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In practice...

d
on a simple 1-state, 2-actions problem /’
//
e
e
.
e
1.4 4 Riay) e
,
Rlay) R4

13 Values computed

104 Maximal accuracy
T 0.8
£
ETE D D

0.4 4

0.2 4

0.0 4 TN TN - ] 1

T + T - T - T -
1 2 3 4 5 6 7 8

0
31/03/2025

Risk parameter g

Ul'PA

— Riay)
— Rla:)
0.875 4 == Values computed
== Maximal accuracy

0.900

0.800 4

0.775 4

0.750

38 39 10
Risk parameter §
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DOLFIN

Distributional Optimality Front Iteration

. 31/03/2025

* |nitialize Bmin <(Qosen or computed)
* Initial interval: 7y = [Buin, 0]

* For h=H...1:
* For each state, compute the breakpoints and associated . “jump
optimal actions, 7, (s method”
(parallel)

* Update the set of intervals for next step 7 < Z, UZy 11

* Return the set of intervals and optimal policies
{m5,; Br breakpoint in 7, }

) * . *
* Compute: 77, = arg;nln p(ms, )

92
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DOLFIN

Distributional Optimality Front Iteration

Ul'PA

—

|

I
[ A I Y I

. 31/03/2025

10
5 o
X
E
0 ®
]
(1
-5
~10
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T\ o s *
Conclusions naxp (Z )E;;Mmkm p(g,)

(CvaRr) (EVaR)

* Risk-sensitive optimization in MDPs is hard.

* In general, risk measures cannot be directly optimized via dynamic
programming (Marthe et al. 2023).

* Relevant risk measures like CVaR can be approximated by the EVaR
(Ahmadi-Javid, 2012), Which can be optimized efficiently.

* We show how to compute the Optimality Front for EVaR, and
optimize CVaR on this discrete space (marthe et al. 2025).
* Open Problems:

* Quality of the approximation?
* Learning when the model is unknown
. 31/03/2025
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