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The result of last lecture on the nearest-neighbor classifier

Al. Y ={0,1}.
A2. X =[0,1[¢.

A3. 7 is c-Lipschitz continuous:

Vx,x" € X, |n(x) — n(x)| < c|x =X .

Theorem
Under the previous assumptions, for all distributions D and all m > 1
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Numerically




What does the analysis say?

e Where is the analysis loose? (sanity check: uniform Dx)

e finite sample bound: explicit, non-asympototic

e The second term m%i}fl) is distribution-free

e Does not give the trajectorial decreasing rate of the risk

e Exponential bound d (cannot be avoided...)
= curse of dimensionality

e Is is better than a simple grid approach?
= adaptivity to the dimension of manifold supporting data

e How to improve the classifier?
— k-nearest neighbors



More neighbors are better?

In general, yes in the sense that for m large enough, larger k is better.
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But one can find counterexamples: Vk > 3,Vm > k,
Run (HENN) > R, (AV)
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Deviation Bound for Bernoulli
Variables



Remember: Jensen’s Inequality

Let X be a convex set and ¢ : x — R be a convex function.
Basic: For all x,x" € X, ¢(tx + (1 — t)x’) < top(x) + (1 — t)p(x)).

Probabilistic version: If ¢ : X — R is convex and if X is a random
variable with range in X, then ¢(E[X]) < E[¢(X)].

Conditional version: If X and Y are random variables and the range of
X in included in X, if ¢(X) is integrable then ¢(E[X|Y]) < E[¢(X)|Y].

Example: For a real-valued random variable X with finite expectation,
E[X?] > E[X]? and thus Var[X] = E[X?] — E[X]? > 0.

Make a picture. Think about equality case.



Chernoff’s Bound

Theorem (Chernoff-Hoeffding Deviation Bound)

Let pn € (0,1). Xy, ..., Xy & B(u), and let x € (1, 1].

(i) Chernoffs’ bound for Bernoulli variables:
P(Xy > x) < exp (= n ki(x, 1)) , (1)

il =
where kl(p, q) = plog 2 + (1 — p)log lip Same for left deviations.
q q

(i) If ¢(x) = KI(x, p), then ¢"'(x) = 1/[x(1 — x)] and

N2
x ) = S5 76 (o= ) 200 - )

(x — p)y?
= —9
1

~ 2maxy<y<p u(l — u)

2 o 1
HTJFX by Jensen, since ¢’ is convex and / s2(1 — s)ds = B
0

with X =
(x— u? > 2(x— p)?.

(iii) Hoeffding's bound for Bernoulli variables:
P(Xy > x) < exp (— 2n(x — p)?) . (2)

(iv) Inequalities (1) and (2) hold for arbitrary independent random variables with range [0, 1] 7
and expectation .



o If u<1/2,

P <)‘<k > ;) < exp <§(1 - 2#)2) :

(Consequence of Chernoff or direct computation with (1 — u)¥ < exp(—k u), or of

Hoeffding).

e For all 11 € [0,1], Chernoff's bound with log(u) > (v — 1)/u yields

_ 1 —log(2
P (Xm < g) S exp (_;g() mu) ~ exp (—0153 m/z) S exp (_g)

Hoeffding yields a very poor result, but (ii) gives:

P ()_(m < %) < exp (—;Om,u> = exp (—0.15 mu) < exp (—%) .



Sub-Gaussian inequalities

Bennett’s and Bernstein’s inequalities
Let (Xi)1<i<n be independent random variables upper-bounded by 1, let
i = (E[X1] + -+ + E[X,])/n, let 02 be such that E[X?] < o2 for all i
and let ¢(u) = (1 + u)log(1 + u) — u. Then, for all x > 0,
2
= - 2 [ % nx</2

2

X
Bernstein from Bennett: ¢(x) > ———
R

Extension: if X; < b with b > 0,

> _ no? bx nx2/2

Example: for X with range in [0, 1],

S w 3 3 1 3mu
) < —m(Zlog> - = < _ ,
P(Xm<2)exp( m(2|og2 2>,u>exp< 28

since 9(x) = 2 (1 + %) ¢(x) — x> > 0.




Parenthesis: a nice proof for the technicalities of Bernstein

From [Pollard, MiniEmpirical ex.14, http://wwu.stat .yale.edu/~pollard/Books/Mini/Basic.pdf]
For any sufficiently smooth real-valued function g defined at least in a neighborhood of 0 let

g(x) — g(0) — xg’(0)

¢l = x2/2

if x #0, and G(0) = g”(0) .

By Taylor’s integral formula
x 1
£0) — 80— xg'0) = [ ¢"()x— uydu = [ ¢ (501 - s
J0 J0

Thus, G(x) = [ g"'(sx)dv(s), where dv(s) = 2(1 — s)1{0 < s < 1}ds.

Hence, if g is convex then g’/ > 0 and G > 0. Moreover, if g’/ is increasing then the functions

x +— g'’(sx) for s € [0, 1] are all increasing and G is also increasing as an average of increasing

functions. For g(u) = exp(u), this yields that (exp(u) — u — 1)/u? is increasing, as required for

the proof of Bernstein's inequality.

Similarly, if g’’ is convex then G is also convex as an average of convex functions (x — g”(sx)) .
s

Moreover, by Jensen's inequality applied to convex function v(s) = g’’(xs) with the probability
measure dv(s) = 2(1 — s)1{0 < s < 1}ds

G(x) = /Olg”(xs) 2(1 —s)ds > g”’ (X/Ols x 2(1 — s)ds> g <>3<>

For g(u) = (1 + u) log(1 + u) — u, g"”"(u) = 1/(1 + u) and this yields:

g(v) > g ) = 71 . 10
2)2 = 3)  1+u/3



http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf

Exercise: for X; < B(i), P(Xm > 2u) < exp(—mx?)

Chernoff + Taylor: since log(u) > (u —1)/u,

& > 2ulog(2) — p = p(2log(2) — 1) ~ 0.386 1 .

kI(2p, p) = 2plog(2) + (1 — 2u) log
1—-2p

Chernoff with convexity:

2p —w)?/2 3
Mu ) > GEZW/2 3 o375,
4/3u 8
Improved Hoeffding:
2u — p)?/2 22 1
KI(2p, p) > Ll V. > £ /2 _ —~ =025
max,, <,<2, U(1 — u) 2u 4
Bennett: 2
2ulog 22— (2 — p) = p(2log(2) — 1) ~ 0.386 1 .
o
Bernstein:

(2 —p)/2 w2 3 e
-+ @u—w/3 = utppzel T T

Hoeffding: 2(2p — p)? = 2u?, very poor (as expected) when i is small.
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k-nearest neighbours




Let X be a (pre-compact) metric space with distance d.
R¥NN - x = 1{A(x) > 1/2} = plugin for Bayes classifier with estimator
k
1
=% Z
where ¥, is a random permutation defined by:

d(Xs, 1), x) < d(Xs,(2),%) < -+ < d (X, (m), X) -

12



Risk bound

Let C. be an e-covering of &
Vx € X,3x € C.: d(x,x") <e

If  is c-Lipschitz continuous: Vx,x' € X, |n(x) — n(x")| < cd(x,x'),
then for all kK > 2 and all m > 1:

. X 1 2k|C]
Ron (VY)Y — L(h*) < er —— Fdce
1 _1
1 ak\ for e = (M)"“ ,
S+(2+4c)<> m
Vke m if |Cc] < ae™d

of the risk.
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S h of the analysis

*)=E [|2n(X) — 1 L {RW h*(X)}]

h
<P (d(X, Xry00) > 2¢) +E [[20(X) — 1| 1{BE"™ # 1" (X)} 1{d (X, X ) < 2¢}]

2k|C.
P (d(X,XS,-gmBX(k)) > 25) <> TPR(X €, Ne < k) < %

c€Ce

e For x such that n(x) < 1/2 — 2ce,
A k
P (AN (x) = 11X = x,d (X, X5, (i) < 2€) < exp <—§(27](X) + 4ce — 1)2> .

Same for n(x) > 1/2 + 2ce. And for 1/2 — 2ce < n(x) < 1/2 + 2ce the probability is
upper-bounded by 1. In all cases, on {d(X,X:X(k)) < 2e}:

£ NN . 2 15) — ace 4 —L_
[2n(X) — 1|P(hy " (X) # A" (X)) < 4ce+§;%ue><p(—ku /2) = 4ce + T

14



Room for improvement

. 1
Lower bound? in m— 4.

e Margin conditions
— fast rates

More regularity?
— weighted nearest neighbors

Is regularity required everywhere?
= What matters are the balls of mass ~ k/m near the
decision boundary.

15



Research Article 1

CLASSIFICATION WITH THE NEAREST NEIGHBOR
RULE IN GENERAL FINITE DIMENSIONAL SPACES

By SEBASTIEN GADAT AND THIERRY KLEIN AND CLEMENT MARTEAU

Toulouse School of Economics, Université Toulouse I Capitole

Classification in general finite Institut Mathématiques de Toulouse, Université Paul Sabatier

Given an resaanple of random ectors (X,,Y)

- - . law is Amklmwu.zh: long-standing pll)bkem of supervised classifica-

dimensional spaces with the k- iy e 1 o s

. it method i o paramet e tuations. Bven f (his orithin

nearest neig hbor rule DA i Ry S
s eepecinly whn e st of . ety of the o

is R This paper is devoted to the study of the statistic xl | properties

ention ¢ o 1o e gl e of . e el the oot

, . ) . and margin propertics of the regression function 1(X) = EY|X)

We identify two necessary and sufficient conditions to obtain uni-

by Sébastien Gadat, Thierry Klein, e e

o eae of the earest nehbor rle. S e xpermente

are proposed at the ﬂ\d'u[ the paper to help Lustrate nmx‘m ussion.

» whose joint

and Clément Marteau

1. Introduction. The supervised classification model has been at the core
of numerous contributions to statistical literature in recent years. Tt contin-
ues to provide interesting problems, both from the theoretical and practical
point of views. The classical task in supervised classification is to predict

Annals of Statistics Volume 44, a feature Y € M when a variable of interest X € RY is observed, the set

M being finite. Tn this paper, we focus on the binary classification problem
where M = {0,1}

Number 3 (2016), 982-1009.
In order to provide a prediction of the label Y of X, it is assumed that a

training set S, = {(X1, Y1), .., (X,, Y;)} is at our disposal, where (X, Y;)
arelid. and with a common law Px.y. This tralning set 5, makes it possible
to retrieve some information on the joint law of (X,Y) and to provide, de-
pending on some technical conditions, a pertinent prediction. In particular,

AMS 2000 subject classifications: Primary 62G0
Keywords and phrases: Supervised classification, n
rules, minimax classification rates

62620
neighbor algorithm, plug in
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Research Article 2

Rates of convergence for nearest neighbor
classification

Rates of convergence for near-
est neighbor classification

ika Chaudhuri y
i Computer Science and Engineering
University of California

Abstract

We analyze the behavior of nearest neighbor classification in metic spaces and
distributon-dependent rates of conver et minimal

by Kamalika Chaudhuri and San- Bt B o e

bounds by induing 2 e smootbness casscusomizd o et g
classification inder the Tsybakov margin condition the

e ot g e seccny T ower hounds
Tornonparametic chssiicaion

joy Dasgupta

1 Introduction

Ininspaper, e dest with by prdicton in meic spaes. A clssifcaton probln i o
by a metric space (¥, p) from which instances are drawn, a space of possible labels = {0.1),

Advances in Neural Information — jiiif o ST it T08 e e

best such function s casy fo

Processing Systems 27 (NIPS :;:;::::::’;::’L:‘:::rr,.:kw

drawn independently at random from 7.

.

https://papers.nips.cc/paper/5439-rates-of-

Fandom varible
tofirst determine

Coner uul Hart {3

convergence-for-nearest-neighbor-classification

0 For e NN it ey found e S i

oy NN with k1 o0 and /L 0, - Forpoints in Euchdean space,

of reuls g with St (3] etablsed consistency withoutany disrbutional ssumptons
x ow-NN i paticular, K almost surly 51

sults place nearest neighbor methods n a favored category of nonparaniric
estimators. But for a fuller understanding i is important o also have rates of conver
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