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Deviation bounds and kNN



Parenthesis: a nice proof for the technicalities of Bernstein

From [Pollard, MiniEmpirical ex.14, http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf]
For any sufficiently smooth real-valued function ¢ defined at least in a neighborhood of 0 let

_ (9 — 6(0) — x&'(0)

— if x # 0, and G(0) = ¢''(0) .

G(x)
By Taylor's integral formula

$(x) — $(0) — x¢/(0) = /0 " (u)(x — u)du = 2 /0 e - o)

Thus, G(x) = [ ¢"'(sx)dv(s), where dv(s) = 2(1 — s)1{0 < s < 1}ds.

Hence, if ¢ is convex then ¢/ > 0 and G > 0. Moreover, if ¢’ is increasing then the functions
x + ¢''(sx) for s € [0,1] are all increasing and G is also increasing as an average of increasing
functions. For ¢(u) = exp(u), this yields that (exp(u) — u — 1)/u? is increasing, as required for
the proof of Bernstein's inequality.

Similarly, if ¢’ is convex then G is also convex as an average of convex functions

(x — ¢"(sx)) . Moreover, by Jensen's inequality applied to convex function ¥ (s) = ¢'’(xs) with
s

the probability measure dv(s) = 2(1 — s)1{0 < s < 1}ds

6= [ 6 0s) 20— s)as 2 o (x ["sx 20— sjas) = (%) -

For ¢(u) = (14 u)log(l + u) — u, ¢"'(u) = 1/(1 + u) and this yields:

P(u) m U\ 1
u2/22¢ (§>*1+u/3‘ 2



http://www.stat.yale.edu/~pollard/Books/Mini/Basic.pdf

Exercise: for X; < B(u), P(X, > 2u) < exp(—nx?)

Chernoff + Taylor: since log(u) > (u —1)/u,

—2u

1
kl(2u, p) = 2plog(2) + (1 — 2pu) log i > 2plog(2) — p= p(2log(2) — 1) ~ 0.386 1 .

Chernoff with convexity:

2p—w)?/2 3
Mu ) > P2 3 6375,
4/3u 8

Improved Hoeffding:

2p — p)?/2 w?/2 1
> —

klu, p) > —mM————— —pu=0.25u.
(2p, 1) 2 max, <uy<2u U(l —u) = 2p 4 o -
Bennett:
2p
2plog — — (2 — p) = p(2log(2) — 1) ~ 0.386 1 .
m
Bernstein: ) )
2u — 2 2 3
(2n—n)y/ v/ — = 0.375u .

p(l—p)+Q2u—p)/3 ~ p+u/38

Hoeffding: 2(2p — p)? = 2u?, very poor (as expected) when i is small.



Recall: risk bound for k-nearest neighbours

Let Cc be an e-covering of X:
Vx € X,3Ix" € C.:d(x,x") <e.

If ) is c-Lipschitz continuous: Vx,x' € X, |n(x) — n(x')| < cd(x,x’),
then for all k > 2 and all m > 1:

A 1 2k|C|
L(AFYN) — L(h*) < ——= + =" + 4ce
~ Vke
= f ( k)#l
1 ak ) 7 or e = (&5
< + (2 +4¢) <> m ’
Vke m if [Ce| < e

< (3 + 4¢) (%)% for k = (g)f .

of the risk.



Room for improvement

. 1
e Lower bound? in m— 4.

Margin conditions
— fast rates

More regularity?
— weighted nearest neighbors

Is regularity required everywhere?
—> What matters are the balls of mass ~ k/m near the
decision boundary.
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CLASSIFICATION WITH THE NEAREST NEIGHBOR
RULE IN GENERAL FINITE DIMENSIONAL SPACES
BY SEBASTIEN GADAT AND THIERRY KLEIN AND CLEMENT MARTEAU

Toulouse School of Economics, Université Toulouse I Capitole

classification in general finite Institut Mathématiques de Toulouse, Université Paul Sabatier

Given an r-sampl of random vectors (X, ¥asuco whose joint

fe i ko, the longstanding problen of sy
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X T this contest, the earcst neighor rule 5 popular flodble and
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pecially when the support of t
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by Sébastien Gadat, Thierry Klein, e bl b vyl i it o o
are proposed at the end of the paper to help illustrate the discussion.

in the case of ¢ cighbor

and Clément Marteau

1. Introduction. The supervised classification model has been at the core
tical literature in recent years. Tt contin-
ues to provide interesting problems, both from the theoretical and practical
point of views. The classical task in supervised classification is to predict

An na |S O‘F Statistics Vol ume 44, a feature Y € M when a variable of interest X € RY is observed, the set

M being finite. Tn this paper, we focus on the binary classification problem

Number 3 (2016), 982-1009. et on

In order to [)l()\l e a prediction of the label Y of X, it is assumed that a
training set S, (X1, Y1), (X, Vo)) is at our disposal, where (X, Y;)
areiid. and with a common law P.y. This training set 5, makes it possible
to retrieve some information on the joint law of (X,Y) and to provide, de-
pending on some technical conditions, a pertinent prediction. In particular,

of numerous contributions to st

00 subject classifications: Primary 62G05; sccondary 62G20
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rules, minimax classification rates
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est neighbor classification
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joy Dasgupta

Advances in Neural Information
Processing Systems 27 (NIPS
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https://papers.nips.cc/paper/5439-rates—of-

convergence-for-nearest-neighbor-classification

Rates of convergence for nearest neighbor
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Abstract
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Kullback-Leibler divergence




Kullback-Leibler divergence

Let P and @ be two probability distributions on a measurable set €.
The Kullback-Leibler divergence from Q to P is defined as follows:

if P is not absolutely continuous with respect to Q, then
KL(P, Q) =

otherwise, Iet be the Radon-Nikodym derivative of P with
respect to Q. Then

KL(P,Q):/ Iog%dP / ZQ IogEdQ
Property: 0 < KL(P, Q) < +o0, KL(P, Q) =0 iff P = Q.
IFP < Qand f = 95 Jo flog(f) d@ = fq [flog(f)] | dQ — [q [flog(f)] _ dQ, the later is finite since [flog(f)] _ < 1/e.
Examples:

KL (B(p),B(q)) = kl(p, q), KL (/\/(ul, a?), N(ug,az)) — ()’

202




lf P=P,® P, and Q@ = Q; ® @, then

KL(P, Q) = KL(P1, Q1) + KL(P2, Q) .

Let (2,.A4) be a measurable space, and let P and Q be two probability
measures on (2, .A). Let X : Q — (X, B) be a random variable, and let
PX (resp. @) be the push-forward measures, ie the laws of X wrt P
(resp. Q). Then

KL (PX, Q%) < KL(P, Q).

Let P, Q@ € M1(Q2, A). Then

1P~ Qllrv 2 sup |P(a) - @A) </ KD
AcA 0



Proof: contraction

Contraction: if KL(P, Q) = +o0, the result is obvious. Otherwise, P < Q and there exists
45 : Q — R such that for all measurable f : Q@ — R, [, fdP = [, f 95 dQ.

o We first prove that PX < Q¥ and, if v(x) := Eq[25|X = x] is the Q-a.s. unique function
5
such that Eq [%|X] = y(X), then v = SS—X. Indeed, for all B € B,

X(B) = - 9P o=x5, [
P (B)—P(XEB)_/XEB 599 =Eo [don{xes}}

—Eq {EQ [%1{x & B}’XH =Eq []1{x € B}Eq [%‘x”

= Eo[1{X € ()] = [ _,x)de = [ vae”

and hence PX < QX and % =~

e Now,
KL (PX, @) = [ yiog d@* = [ 4(x)toga(x) d
JXx Q
dP .
=Eq |:¢ (EQ [E ‘X:| >:| where ¢ := x — x log(x) is convex
< Eq |:1EQ [q& (E) ‘XH by (conditional) Jensen’s inequality

ufs(Z)] o )



Proof: Pinsker

Let A€ A, p = P(A) and g = Q(A). By contraction,

KL(P, Q) > KL(P'4, @™4) = KL (B(P(4)), B(Q(A)) ) = K (P(A), Q(A)) > 2(P(A)—Q(A))’ .

11



Application: Lower bound

” Chernoff’s bound is asymptotically almost tight”

Let s € (0,1). X1,..., Y~ B(p), and let x € (1, 1]. Then

i log P(Y, > x) > —kl(x, ) .
n n

Proof: Let € > 0 and on the same probability space let Xi,..., X, i B(x + €) and
Yi, ... Yo 2 B(1). Then
nkl(x + e, u) = KL (P*, PY) by tensorization
> KL (Pl{x”zx}, Pl“—/”zx}) by contraction
=kl (P(X, > x),P(Y, > x))

> P(X, > x) log m — log(2)

1 1
since kl(p, g) = —h(p) + plog = + (1 — p) log T . Hence, by Hoeffding's inequality,
q —q

—nkl(x + €, u) + Iog(2)
n(1 — exp(—2ne?))

1 _
liminf — log P(Y, > x) > liminf —kI(x + €, 1)
m . n n

for all € > 0, and we conclude by the continuity of kl(-, p).
Note that one can also derive non-asymptotic lower bounds.

12



PAC learning




Learning framework

e Underlying distribution D on X x ).

e Sample S <D (otherwise: transductive learning).

e h: X — ), h € H hypothesis class.

e loss function /(y, y’) (regression, classification)

e generalization error (loss) Lp(h)

e training error Ls(h)

e Realizable assumption: there exists h* such that Ls(h*) = 0.

e Antonym: agnostic learning.

13



Empirical risk minimization with inductive bias

Definition

Any learning algorithm hm of the form

ERMjy(S) € argmin Ls(h)
heH

is called a empirical risk minimizer.

Risk of overfitting

14



PAC learnability: “probably approximately correct”

Definition

A hypothesis class H is PAC learnable if there exists a function

my : (0,1)2 = N and a learning algorithm S — h,,, such that for every
€,0 € (0,1), for every distribution Dx on X and for every labelling
function f : X — {0,1}, if the realizable assumption holds with respect
to M, Dx, f then when S = ((X1, f(X1)), ..., (Xm, f(Xn)) with

(Xi)1i<i<m % Dx,

P(Lioer) (hm) 2 €) 10

for all m > my (e, 9).
The smallest possible function my is called the sample complexity of
learning H.

Remark: Valiant's PAC requires also sample complexity and running time
polynomial in 1/¢ and 1/4.

15



ETNIES

o 1 ={h,:ac R} where hy(x) = 1{x < a} is PAC-learnable with
sample complexity

/og%

e

my(€,0) <

Proof: let a* be such that Lp(h,x ) = 0 and let ag = inf{a : Dx([a, a*]) < €} and a1 = sup{a : Dy([a*, a]) < e}.
An ERM is g (x) = 1, < 7 where T € [Bo, By], with By = max{x : (x, 1)'nS} and By = min{x : (x, 0)'nS}. Then
P(L(hg) > €) <= P(By < ag) + P(By > a1). Since Dy (ap, a*) > ¢ and
P(By < ag) < (1 — Dx([ag, a*])™ < exp(—me).

e Exercise: Learning axis-aligned rectangles: given real numbers
a1 < by and a> < by, let

1 ifalgxlgblandazgngbz;

ha by ,az, X1, X2) =
(a1, 1,az,b2)( ) 0 otherwise .

Let H2, = {h(ahbba%bz) ta1 < by and a, < bz}. Show that H2., is
PAC-learnable, with sample complexity

4/og§-‘
€

mH(e, 5) S ’V



Finite hypothese classes are PAC-learnable

The sample complexity of finite hypothese classes in the realizable case is
log Al
o .

€

smaller than m >

Theorem

Let H be a finite hypothesis class. Let €,6 € (0,1) and let m be an
integer that satisfies

[#]
log -5 .

€

m >

Then, for any labeling function 7 and for any distribution Dx on X,
under the realizability assumption, with probability at least 1 — § over
the choice of iid sample S of size m, any ERM hypothesis h,, is such
that

L(Dx,f)(}:’m) S € .

17



The realizability assumption implies that an ERM hs has empirical risk
Lg(ﬁs) = 0. Hence,

P (L(hs) > €) = DF™({S € X" :3h € M, Ls(h) =0 and Lp(h) > ¢})

:Df?m( U Sh) where S, = {§ € X" : L,(h) =0}
e

h:Lp(h)>

< Y DR"(Sh)

h:Lp(h)>e

= 2 TIoxxex: =0}

hiLp(h)>e i=1

=1—Lp(h)<l—e¢

Y. e -9 <[H|@ - ™ < [H|exp(—me) .

h:L(DX7f)(h)ZE i=1

IN

log 151

This quantity is smaller than § for m > . s
€
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