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Dimensionality reduction

-
X1

e Data: X = : € Mpp(R), p> 1.
Xy

e Dimensionality reduction: replace x; with y; = Wkx;, where

W e My ,(R), d < p.
e Hopefully, we do not loose too much by replacing x; by y;.

2 approaches:

e Quasi-invertibility: there exists a recovering matrix U € M, 4(R)
such that for all i € {1,...,n},

)?,' = Uy,- ~ X .
e More modest goal: distance-preserving property

Vi<ij<n oy =yl = lixi —xll



Dimension reduction: PCA



PCA

PCA aims at finding the compression matrix W and the recovering
matrix U such that the total squared distance between the original and
the recovered vectors is minimal:

. - UWx; 2
e BT S U

Property. A solution (W, U) is such that UTU = Iy and W = U'.
Proof. Let W € Mg, ,(R), U € M, 4(R), and let R = {UWx : x € RP}. dim(R) < d, and we

can assume that dim(R) =d. Let V.= ( w1 | ... | v4 ) € M, q(R) be an orthogonal basis of
R, hence V'V = I, and for every X € R there exists y € RY such that % = Vy. But for every
x € RP,

arg m|n lIx — %[> = V.argmin [|[x — Vy||> = V.argmin ||x|| + [ly|* —2y" (VTx) = WTx
y€eRrd y€eRrd

(as can be seen easily by differentiation in y), and hence

3l - wal* 2 3 s —
i=1 i=1



The PCA solution

Corollary: the optimization problem can be rewritten

arg min ZHX, UUTX,'H2
UeM, 4(R):UTU=ly 75

Since ||x; — UUTx,-H2 = [|xi||* = Tr (UTxix U), this is equivalent to

arg max Tr <UT Zx,-x,-T U) .
i=1

UelUeM, 4(R):UTU=Iy

Let A= Z i1 Xix;', and let A= VDV be its spectral decomposition: D
is diagonal, with Dl,l >-->D,,>0and Viv=wT= /o



Solving PCA by SVD

Theorem Let A = Zle x,-x,-T, and let uy, ..., uy be the eigenvectors of
A corresponding to the d largest eigenvalues of A. Then the solution to
the PCA optimization problem is U = ( Uy ‘ ‘ Uy ) and W=UT".

Proof. Let U € M, 4(R) be such that UT U = Iy, and let B = VT U. Then VB = U, and
UTAU = B"VTVDVT VB = BT DB, hence

P d
Tr(UTAU)=>"D;; > B
j=1 i=1

Since BB = UTwWTU = I, the columns of B are orthonormal and ij’zl 7:1 Bf,. =d.

In addition, completing the columns of B to an orthonormal basis of RP one gets B such that
BTB = Ip, and for every j one has 3°7 5’2 =1, hence E ;<L

Thus,
P

d
Tr (UTAU) < max DB =S "D;,
( )< peo P umugd; e Jg‘ ”

which can be reached if U is made of the d leading eigenvectors of A.



Interpretation: PCA aims at max-

imizing the projected variance.

Often, the quality of the result is

measured by the proportion of the
variance explained by the d princi-

d
Zi:l Di,i -4
pal components: S

: 6
i=1 =11 =8 6 -4 -2 0 2 4 6 8 10

[Src: wikipedia.org]

In practice: if p > n, it is cheaper to diagonalize B = XXT € M,(R),
since if u is such that Bu = Au then for v = X Tu/|| X" u|| one has
Av = Av.

This remark is also at the basis of kernel PCA.


wikipedia.org

Computing the PCA: iteration method

Let Ay > A\ > -+ > ), be the eigenvalues of A, and let v be such that
vl =1 and Av = A\jv. Goal: approximate v.

Algorithm: up = [% R } where €; 'ZgZ/{({—l, 1}), then |Juo® = 1.

=
Ay

U Tau]]

Theorem

With probability at least 3/16,

3,0\ 2t
|(ug, v)| > 1=2n (/\i> .

2
log °
1
2 log Xo

|(ug, v)| > 1 — € with probability at least 3/16.

Thus, it takes at most t = iterations to ensure that

Remark: one can similarly show that with non-vanishing probability

1—e¢
<Ut, Aut> Z Al X m http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf.


http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf

Complexity of the iteration method 1/2

Observe that (uo, v) has expectation 0 and variance 7 (v;)?/n=1/n.
Hence, Z = (uo, v)? has expectation 1/n and

an[Zﬂ :E[ Z e,-ejeke/] = Z (v,) +6 Z (v;)?(vi)?

1<i.j,k,1<d 1<j<d 1<j<k<d

=3(IvP)" —2 3 () <3.

1<j<d

By the Cauchy-Schwartz inequality, for every ¢ € (0,1)

E[Z] = E[Z1{Z < 6E[Z]}]+E[Z1{Z > ¢E[Z]}] < 5IE‘.[Z]+\/IE [Z2]P(Z > 6E[Z]) .

and hence, for 6 = 1/4:

>3
— 16

Wl

P(Z 2 E12]) 2 (1-of G2 > (%) =2 x



Complexity of the iteration method 2/2

But since, if v! = v and Vi € {2,...,n}, ||V =1 and AV = \;v/':
Ay 3 Ao, vV
= T = = —

4 ol i1 (M {wo, V’>)2

u

whenever (ug, v)2 > 1/(4n):

}(Ut v>{ = |<UO7 VMM = :
’ V2 (o, VI)2AF 0 N\ 2
i 1_"_ 1 Z<u0 Vi>2 ﬁ
(up,v)? — Z N
- 1

n ) b 2t
1+ 4nz<u0, v'y? ()\—2>
i=2 !

)\2 2t
>1- Z) .
>1 2n</\1)



Dimension reduction: random
projections




Johnson-Lindenstrauss Lemma

Theorem

4 log(n)

Let x9,...,x, € RP, and let ¢ > 0. Then, for every d > —————,
e —log(1+¢)

there exists a matrix A € My ,(R) such that

Vi<i<j (1=e)lb—x[° < A% - Ag[* < @+

Remark 1: d is independent of p (!)
Remark 1: on the dependence on ¢

4log(n) 8log(n) €\?2
eflog(1+e)§ €2 (1+ ) '

Remark 2: how to find such a matrix A?
4log(n) + 2log(1/9)
e —log(l+¢)
with entries A; ; XN (0, %) satisfies the lemma is larger than 1 —§.

For every d > , the probability that a random matrix

10



Proof of the Johnson-Lindenstrauss Lemma

Method: (constructive) probabilistic method: we choose A; ; N (0,2). Let
y €RPand Y = Ay. Then, forall 1< i<d, Yi= Y0, Ajy; ~ N (o, ”yd”z).
Hence E[|| Y||°] = |ly||*>. Besides, by the deviation bound for the *
distribution given in the next slide,

P(IVIP 2 G+olyl) =P <Z (ﬁyf) > d(1+ e)) < exp (~d67() < 5

2
2\ Tyl n

. « 1

and similarly IP’(HYH2 <(1- e)Hsz) <exp(—do(e)) < = .
n

Applying this result to all y;; = xi — x;, 1 < i < j < n, we obtain the

conclusion by the union bound:

P( U A —yi)|| = L+ e) U||Ayi —y)| < (1 - e))

1<i<j<n
n(n—1)

<
= B2

<1,

and hence there exists at least a matrix A for which the lemma holds.
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Deviations of the Y2 distribution: rate func

Lemma

If U~ N(0,1) and X = U? — 1, then

x — log(1 + x) - x2
T

¢*(x) =supAx — log E [eAX] =
A

Proof: For every A < 1/2,

-

2 1-2))u?
E[e’\x] = i e’\(”271)e77du: ¢ /ef( 2 ) du:ef’\é .
V2r Jr V2r Jr V1—2X\

Hence ¢(\) = log E [eAX] = —Llog(1 — 2)\) — X. The concave function X — Ax — ¢(A) is

maximized at A\* s.t. x = ¢'(A*) = 25+ — 1, thatisat A" = 3 (1 - ﬁ) = s Hence

8700 = X"x — g(x7) = X 180X

The last inequality is obtained by "Pollard’s trick” applied to g(x) = x — log(1 + x): since
g(0) = g’(0) = 0 and since g’’/(x) = 1/(1 + x)? is convex, by Jensen’s inequality

%5124”) _ ./Olg//(sx)2(1 —s)ds > g"’ </01 sx2(1 — s)ds) =g" (g) .
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Deviations of the x?(d) distribution

dist

By Chernoff's method, if Z ~ x2(d) =" U2 + - - - + U2 where U; % N/(0,1):

2
P(Z > d(1+€)) <exp(—dp*(e)) < exp <774 (ft 5)2>
3

Moreover, since ¢*(—¢) = — E1=9 — 157 €0 > L5 (~1)F g = ¢7(e),
P(Z < d(1—¢€)) < exp(—dp*(c)) and since ¢*(—¢) = 7%(1_6) > /4,
P(Z <d(1—¢€)) <exp <7dT€2>
Note: the Laurent-Massart inequality states that for every u > 0,
P(Z > d+2Vdu+2u) <exp(—u) .

It can be deduced from the previous bound by noting that for every x > 0
1 2%)?
" (2vx +2x) = x + 5 <2f—|og <1+2\/§+ @))

> x+ %(2f — log (exp(2x/?))) = x,and

P(Z > d+2Vdu+2u) =P(3 30 (U7 —1) > 2/Z+24) < exp(—dg*(2,/T +24)) < e "

The proof of Laurent and Massart (which takes elements from Birgé and Massart 1998) is a bit different: they note that

1 o (ax)k o 42x)t > A2
H(A) = ——log(1 —2x) — A= > T = »? — <Ny enf = ., and deduce that
2 = 2k i=h2Ae+2) = 1—2x
2
A x+1— 2 +1
¢™(x) > ¥ (x) = sup Ax — = ——  whilex > 0and 9 *(x) = uimplies x = 2y/u + 2u. Also note in
X 1—2x 2

2

B 13
a(14+2¢)%/?

passing that by Pollard’s trick ¢™ (x) > ™ (x) >



	Dimension reduction: PCA
	Dimension reduction: random projections

