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Dimensionality reduction

• Data: X =

 xT1
...

xTn

 ∈Mn,p(R), p � 1.

• Dimensionality reduction: replace xi with yi = Wxi , where

W ∈Md,p(R), d � p.

• Hopefully, we do not loose too much by replacing xi by yi .

2 approaches:

• Quasi-invertibility: there exists a recovering matrix U ∈Mp,d(R)

such that for all i ∈ {1, . . . , n},

x̃i = Uyi ≈ xi .

• More modest goal: distance-preserving property

∀1 ≤ i , j ≤ n, ‖yi − yj‖ ≈ ‖xi − xj‖
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Dimension reduction: PCA



PCA

PCA aims at finding the compression matrix W and the recovering

matrix U such that the total squared distance between the original and

the recovered vectors is minimal:

arg min
W∈Md,p(R),U∈Mp,d (R)

n∑
i=1

∥∥xi − UWxi
∥∥2
.

Property. A solution (W ,U) is such that UTU = Id and W = UT .

Proof. Let W ∈ Md,p(R),U ∈ Mp,d (R), and let R =
{
UWx : x ∈ Rp

}
. dim(R) ≤ d , and we

can assume that dim(R) = d . Let V =
(

v1 . . . vd
)
∈ Mp,d (R) be an orthogonal basis of

R, hence V TV = Id and for every x̃ ∈ R there exists y ∈ Rd such that x̃ = Vy . But for every

x ∈ Rp ,

arg min
x̃∈R

‖x − x̃‖2 = V . arg min
y∈Rd

‖x − Vy‖2 = V . arg min
y∈Rd

‖x‖ + ‖y‖2 − 2yT (V T x
)

= VV T x

(as can be seen easily by differentiation in y), and hence

n∑
i=1

∥∥xi − UWxi
∥∥2 ≥

n∑
i=1

∥∥xi − VV T xi
∥∥2
.
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The PCA solution

Corollary: the optimization problem can be rewritten

arg min
U∈Mp,d (R):UTU=Id

n∑
i=1

∥∥xi − UUT xi
∥∥2
.

Since
∥∥xi − UUT xi

∥∥2
= ‖xi‖2 − Tr

(
UT xix

T
i U
)
, this is equivalent to

arg max
U∈U∈Mp,d (R):UTU=Id

Tr

(
UT

n∑
i=1

xix
T
i U

)
.

Let A =
∑n

i=1 xix
T
i , and let A = VDV T be its spectral decomposition: D

is diagonal, with D1,1 ≥ · · · ≥ Dp,p ≥ 0 and V TV = VV T = Ip.
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Solving PCA by SVD

Theorem Let A =
∑n

i=1 xix
T
i , and let u1, . . . , ud be the eigenvectors of

A corresponding to the d largest eigenvalues of A. Then the solution to

the PCA optimization problem is U =
(

u1 . . . ud

)
, and W = UT .

Proof. Let U ∈ Mp,d (R) be such that UTU = Id , and let B = V TU. Then VB = U, and

UTAU = BTV TVDV TVB = BTDB, hence

Tr
(
UTAU) =

p∑
j=1

Dj,j

d∑
i=1

B2
j,i .

Since BTB = UTVV TU = Id , the columns of B are orthonormal and
∑p

j=1

∑d
i=1 B

2
j,i = d .

In addition, completing the columns of B to an orthonormal basis of Rp one gets B̃ such that

B̃T B̃ = Ip , and for every j one has
∑p

i=1 B̃
2
j,i = 1, hence

∑d
i=1 B

2
j,i ≤ 1.

Thus,

Tr
(
UTAU

)
≤ max
β∈[0,1]p :‖β‖1≤d

p∑
j=1

Dj,jβj =
d∑

j=1

Dj,j ,

which can be reached if U is made of the d leading eigenvectors of A.
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PCA: comments

Interpretation: PCA aims at max-

imizing the projected variance.

Often, the quality of the result is

measured by the proportion of the

variance explained by the d princi-

pal components:

∑d
i=1 Di,i∑p
i=1 Di,i

.

[Src: wikipedia.org]

In practice: if p ≥ n, it is cheaper to diagonalize B = XXT ∈Mn(R),

since if u is such that Bu = λu then for v = XTu/‖XTu‖ one has

Av = λv .

This remark is also at the basis of kernel PCA.
6

wikipedia.org


Computing the PCA: iteration method

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of A, and let v be such that

‖v‖ = 1 and Av = λ1v . Goal: approximate v .

Algorithm: u0 =
[
ε1√
n
, . . . , εn√

n

]
where εi

iid∼ U
(
{−1, 1}

)
, then ‖u0‖2 = 1.

uk+1 = Auk∥∥Auk∥∥ .

Theorem

With probability at least 3/16,

∣∣〈ut , v〉∣∣ ≥ 1− 2n

(
λ2

λ1

)2t

.

Thus, it takes at most t =
log 2n

ε

2 log
λ1
λ2

iterations to ensure that∣∣〈ut , v〉∣∣ ≥ 1− ε with probability at least 3/16.

Remark: one can similarly show that with non-vanishing probability

〈ut ,Aut〉 ≥ λ1 × 1−ε
1+4n(1−ε)2t . http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf. 7
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Complexity of the iteration method 1/2

Observe that 〈u0, v〉 has expectation 0 and variance
∑n

i=1(vi )
2/n = 1/n.

Hence, Z = 〈u0, v〉2 has expectation 1/n and

n2 E
[
Z 2] = E

 ∑
1≤i,j,k,l≤d

εiεjεkεl

 =
∑

1≤j≤d

(vj)
4 + 6

∑
1≤j<k≤d

(vj)
2(vk)2

= 3
(
‖v‖2

)2

− 2
∑

1≤j≤d

(vj)
4 ≤ 3 .

By the Cauchy-Schwartz inequality, for every δ ∈ (0, 1)

E[Z ] = E
[
Z1{Z < δE[Z ]}

]
+E
[
Z1{Z ≥ δE[Z ]}

]
≤ δE[Z ]+

√
E
[
Z 2]P

(
Z ≥ δE[Z ]

)
.

and hence, for δ = 1/4:

P
(
Z ≥ δE[Z ]

)
≥ (1− δ)2 E[Z ]2

E[Z 2]
≥
(

3

4

)2
1/n2

3/n2
=

9

16
× 1

3
≥ 3

16
.
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Complexity of the iteration method 2/2

But since, if v 1 = v and ∀i ∈ {2, . . . , n}, ‖v i‖ = 1 and Av i = λiv
i :

ut =
Atu0

‖Atu0‖
=

∑n
i=1 λ

t
i 〈u0, v

i 〉v i√∑n
i=1

(
λt
i 〈u0, v i 〉

)2
,

whenever 〈u0, v〉2 > 1/(4n):

∣∣〈ut , v〉∣∣ =

∣∣〈u0, v〉
∣∣λt

1√∑n
i=1〈u0, v i 〉2λ2t

i

=
1√√√√1 + 1

〈u0,v〉2

n∑
i=2

〈u0, v
i 〉2
(
λi

λ1

)2t

≥ 1√√√√1 + 4n
n∑

i=2

〈u0, v
i 〉2
(
λ2

λ1

)2t

≥ 1− 2n

(
λ2

λ1

)2t

.
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Dimension reduction: random

projections



Johnson-Lindenstrauss Lemma

Theorem

Let x1, . . . , xn ∈ Rp, and let ε > 0. Then, for every d ≥ 4 log(n)

ε− log(1 + ε)
,

there exists a matrix A ∈Md,p(R) such that

∀1 ≤ i ≤ j ,
(
1− ε

)∥∥xi − xj
∥∥2 ≤

∥∥Axi − Axj
∥∥2 ≤

(
1 + ε

)∥∥xi − xj
∥∥2
.

Remark 1: d is independent of p (!)

Remark 1: on the dependence on ε

4 log(n)

ε− log(1 + ε)
≤ 8 log(n)

ε2

(
1 +

ε

3

)2

.

Remark 2: how to find such a matrix A?

For every d ≥ 4 log(n) + 2 log(1/δ)

ε− log(1 + ε)
, the probability that a random matrix

with entries Ai,j
iid∼ N

(
0, 1

d

)
satisfies the lemma is larger than 1− δ.
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Proof of the Johnson-Lindenstrauss Lemma

Method: (constructive) probabilistic method: we choose Ai,j
iid∼ N

(
0, 1

d

)
. Let

y ∈ Rp and Y = Ay . Then, for all 1 ≤ i ≤ d , Yi =
∑d

j=1 Ai,jyj ∼ N
(

0, ‖y‖
2

d

)
.

Hence E
[
‖Y ‖2

]
= ‖y‖2. Besides, by the deviation bound for the χ2

distribution given in the next slide,

P
(
‖Y ‖2 ≥ (1+ε)‖y‖2

)
= P

(
d∑

i=1

(√
dYi

‖y‖

)2

≥ d(1 + ε)

)
≤ exp

(
−d φ∗(ε)

)
≤ 1

n2

and similarly P
(
‖Y ‖2 ≤ (1− ε)‖y‖2

)
≤ exp

(
− d φ∗(ε)

)
≤ 1

n2
.

Applying this result to all yi,j = xi − xj , 1 ≤ i < j ≤ n, we obtain the

conclusion by the union bound:

P
( ⋃

1≤i<j≤n

∥∥A(yi − yj)
∥∥ ≥ (1 + ε) ∪

∥∥A(yi − yj)
∥∥ ≤ (1− ε)

)

≤ n(n − 1)

n2
< 1 ,

and hence there exists at least a matrix A for which the lemma holds.
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Deviations of the χ2 distribution: rate function

Lemma

If U ∼ N (0, 1) and X = U2 − 1, then

φ∗(x) = sup
λ
λx − logE

[
eλX

]
=

x − log(1 + x)

2
≥ x2

4
(
1 + x

3

)2 .

Proof: For every λ < 1/2,

E
[
eλX
]

=
1
√

2π

∫
R
eλ(u2−1)e−

u2

2 du =
e−λ
√

2π

∫
R
e−

(1−2λ)u2

2 du = e−λ
1

√
1− 2λ

.

Hence φ(λ) = log E
[
eλX
]

= − 1
2 log(1− 2λ)− λ. The concave function λ 7→ λx − φ(λ) is

maximized at λ∗ s.t. x = φ′(λ∗) = 1
1−2λ∗ − 1, that is at λ∗ = 1

2

(
1− 1

1+x

)
= x

2(1+x) . Hence

φ
∗(x) = λ

∗x − φ(λ∗) =
x − log(1 + x)

2
.

The last inequality is obtained by ”Pollard’s trick” applied to g(x) = x − log(1 + x): since

g(0) = g ′(0) = 0 and since g ′′(x) = 1/(1 + x)2 is convex, by Jensen’s inequality

x − log(1 + x)

x2/2
=

∫ 1

0

g ′′(sx)2(1− s)ds ≥ g ′′
(∫ 1

0

sx2(1− s)ds

)
= g ′′

(
x

3

)
.
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Deviations of the χ2(d) distribution

By Chernoff’s method, if Z ∼ χ2(d)
dist
= U2

1 + · · · + U2
d where Ui

iid∼ N (0, 1):

P
(
Z ≥ d(1 + ε)

)
≤ exp

(
− dφ∗(ε)

)
≤ exp

(
−

dε2

4
(

1 + ε
3

)2

)
.

Moreover, since φ∗(−ε) = − ε+log(1−ε)
2 = 1

2

∑
k≥2

εk

k ≥
1
2

∑
k≥2(−1)k ε

k

k = φ∗(ε),

P
(
Z ≤ d(1− ε)

)
≤ exp(−dφ∗(ε)) and since φ∗(−ε) = − ε+log(1−ε)

2 ≥ ε2/4,

P
(
Z ≤ d(1− ε)

)
≤ exp

(
−

dε2

4

)
.

Note: the Laurent-Massart inequality states that for every u > 0,

P
(
Z ≥ d + 2

√
du + 2u

)
≤ exp

(
− u
)
.

It can be deduced from the previous bound by noting that for every x > 0

φ
∗(2√x + 2x

)
= x +

1

2

(
2
√
x − log

(
1 + 2

√
x +

(
2
√
x
)2

2

))

≥ x +
1

2

(
2
√
x − log

(
exp(2

√
x)
))

= x , and

P
(
Z ≥ d + 2

√
du + 2u

)
= P
(

1
d

∑d
i=1(U2

i − 1) ≥ 2
√

u
d + 2 u

d ) ≤ exp(−dφ∗(2
√

u
d + 2 u

d )) ≤ e−u .

The proof of Laurent and Massart (which takes elements from Birgé and Massart 1998) is a bit different: they note that

φ(λ) = −
1

2
log(1 − 2λ) − λ =

∞∑
k=2

(2λ)k

2k
= λ

2
∞∑
`=0

4(2λ)`

2(` + 2)
≤ λ2

∞∑
`=0

(2λ)` =
λ2

1 − 2λ
, and deduce that

φ
∗(x) ≥ ψ∗(x) = sup

λ
λx −

λ2

1 − 2λ
=

x + 1 −
√

2x + 1

2
, while x > 0 and ψ∗(x) = u implies x = 2

√
u + 2u. Also note in

passing that by Pollard’s trick φ∗(x) ≥ ψ∗(x) ≥ x2

4
(

1+ 2x
3

)3/2
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