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PAC learning



PAC learnability: “probably approximately correct”

Definition
A hypothesis class # is PAC learnable if there exists a function
my : (0,1)2 = N and a learning algorithm S — h,,, such that for every
€,0 € (0,1), for every distribution Dx on X and for every labelling
function 7 : X — {0,1}, if the realizable assumption holds with respect
to H, Dx, f then when S = ((Xl, f(X1)), .-y (Xims f(Xm)) with
(Xi)i<i<m % Dy,

P<L(Dx,f)(i7m) > 6) < )

for all m > my(e, 9).
The smallest possible function my is called the sample complexity of

learning H.

Remark: Valiant’s PAC requires also sample complexity and running time

polynomial in 1/¢ and 1/4.



Finite hypothese classes are PAC-learnable

The sample complexity of finite hypothese classes in the realizable case is

[H]
log 5~
€

smaller than

Theorem

Let H be a finite hypothesis class. Let €, € (0,1) and let m be an
integer that satisfies

[#]
log -5 '

€

m >

Then, for any labeling function f and for any distribution Dx on X,
under the realizability assumption, with probability at least 1 — ¢ over
the choice of iid sample S of size m, any ERM hypothesis B is such
that

Lipy.ry(hm) < €.



The realizability assumption implies that an ERM /A75 has empirical risk
Ls(lAvs) = 0. Hence,

P(L(hs) = ¢) = D™ ({S € X" : 3h € H, Ls(h) = 0 and Lp(h) > c})

:Df?’"( U Sh) where S = {S € X™: Ly(h) =0}
)>e

h:Lp(h)>

< D DE™(Sh)

h:Lp(h)>e

> f[ Dx({x € X : h(x) = f(x)})

h:Lp(h)>e i=1

=1—Lp(h)<l—e¢

Y. e -9 <@ - o™ < [H]|exp(—me) .

h:L(DX,f)(h)ZE i=1

IN

log %1

€ 5)

This quantity is smaller than § for m >




Agnostic PAC learnability

Definition

A hypothesis class H is agnostic PAC learnable if there exists a function
my ¢ (0,1)> — N and a learning algorithm S By such that for every
€,0 € (0,1), for every distribution D on X x ) when

S=((X1, Ya)s- -, (Xm, Ym)) © D,

P (Lo (hm) > ) <6

for all m > my (e, 9).
The smallest possible function my is called the sample complexity of
learning H.

If the realizable assumption holds, boils down to PAC learnability.
Otherwise, recall that the best has a risk not larger than

minh/e;«.[ LD(h/)



Learning via uniform convergence

Definition
A training set S is called e-representative (wrt domain X' x ,

hypothese class #, loss function / and distribution D) if

VheH,|Ls(h) — Lp(h)| <.

Lemma
If S is €/2-representative, then any ERM B defined by

hm € argmin; o4, Ls(h) satisfies:

LD(Em) < l?;l”ll:lt LD(h) GG
Proof: for every h € H,
Lo (hm) < Ls(hm) +5 < Ls(h) + 5 < Lo(h) + 5+ 5 -



Uniform Convergence Property

Definition

A hypothesis class H has the uniform convergence property (wrt X x )
and /) if there exists a function m¥‘ : (0,1)? — N such that for every
€,0 € (0,1) and for every d|str|but|on D over X x ), a sample

S= (X1, Y1), -, (Xm, Ym)) ~ D of size m > m¥f (e, ) has
probability at Ieast 1 — ¢ to be e-representative.

Corollary

If H has the uniform convergence property with a function m?L_/[C’ then
‘H is agnostically PAC learnable with a sample complexity

my(€,0) < myc(5,6). Furthermore, the ERM is a successful PAC
learner for H.



Finite classes are agnostically PAC-learnable

Theorem

Let ‘H be a finite hypothesis class. Then H enjoys the uniform
convergence property with sample complexity

log 2‘7'”
mé_/lC(e,(S) < { 262 .

Moreover, H is agnostically PAC learnable using an ERM algorithm
with sample complexity

€ 2log 2|H‘
) < 2 (5,6) < |2EE ]

€

Proof: Hoeffding's inequality and the union bound.



No-Free-Lunch theorems: when
learning is not possible




The No-Free-Lunch theorem

Theorem
Let A be any learning algorithm for binary classification over a domain
X. If the training set size is m < |X|/2, then there exists a distribution

D over X x {0,1} such that:

e there exists a function f : X — {0, 1} with Lp(f) = 0;
e with probability at least 1/7 over the choice of S ~ D®™,

| =

Lp(A(S)) =

Note that the ERM over H = {f}, or over any set H such that
m > 8log(7|H|/6), is a successful learner in that setting.
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Proof

Take C C X of cardinality 2m, and {0, 1}C = {f, ..., fr} where T = 22™. Foreach 1 < i < T, we denote by D; the
probability distribution on C x {0, 1} defined by

D ({x,y}) = {ﬁ ify=1fi(x),

0 otherwise.

We will show that max; < ;< 7 E[Lp. (A(S))] > 1/4, which entails the result thanks to the small lemma: if P(0 < Z < 1) = 1 and
<i< i

E[Z] > 1/4, then P(Z > 1/8) > 1/7. Indeed, 1/4 < E[Z] < P(Z < 1/8)/8 + B(Z > 1/8) = 1/8 — TP(Z > 1/8)/8.

Al the X-samples S, . . ., S, for k = m®™, are equaly likely. For 1 < j < k, if st =(x

sj!' = (1 FG0))s - -+ (xm), fi(xm)). and 9’ = A(sj).

, ..., Xm) we denote by

e B [Lp, (a)] =

i

Fix1 < j < k, denoteij = (x1, .- ., xm)and define {vy,...,vp} = C\ {x1,...,xm}, where p > m. Then

" 1 - 1 P -
Lo, (§) = - X Hffed #50} 2 = 3 1 {f ) # fitw)}

2m xec P =1
and hence
iL (f")> li ! il{f"( ) # fi( )}>1 i lil{f"( ) # fi(vr)}
— ; — — < (v V) - min — 2 (v V)
SO g g T S adizer g T T

Fix1 < r < p. Then the functions {f; : 1 < i < T} can be grouped into T /2 pairs of functions (70, £1), 1 < i < T /2 which
agree on all x € C except on v, and for all 1 < i < T /2 it holds that 1{@."@,) #0(ve)} + 1{?]."@,) # FL(vr)} = 1. Hence,
T T/2

b 1{@’@,) # v} = > 1{@’@,) # )} + 11{5."@,) # 1 (vr)} = T /2, which concludes the proof. 11
i=1 i=1



Consequence: Curse of Dimensionality

Theorem
Let ¢ > 1 be a Lipschitz constant. Let A be any learning algorithm for
binary classification over a domain X' = [0, 1]?. If the training set size is
m < (c +1)9/2, then there exists a distribution D over [0,1] x {0,1}
such that:

e 7)(x) is c-Lipschitz;

e the Bayes error of the distribution is 0;

e with probability at least 1/7 over the choice of S ~ D®™,

Lp(A(S)) >

| =

12



Uniform convergence for infinite
classes: VC dimension




Definition

Let H be a class of functions X — {0,1} and let
C={a,...,cm} C X. The restriction of H to C is the set of
functions C — {0, 1} that can be derived from #:

e {(cl,...,cm) — (h(cy), .. h(cm)) s h e 7—[} .

Shattering
A hypothesis class H shatters a finite set C C X if Hc = {0,1}€.

Example:

o H=1{h,:acR}
o M. = {h(al.bhag,bg) ta; < by and ay < bz} where

1 ifalgxlgblandazgngbg;

h(ahbhaz,bz)(leXz) = {

0 otherwise .
13



Definition

The Vapnik Chervonenkis dimension VCdim(#) of a hypothesis class H
is the maximal size of a set C C & that can be shattered by . If H
can shatter sets of arbitrarily large size we say that VCdim(#) = oo.

Theorem

Let H be a class of infinite VC-dimension. Then H is not
PAC-learnable.

Proof: for every training size m, there exists a set C of size 2m that is
shattered by #H. By the NFL theorem, for every learning algorithm A
there exists a probability distribution D over X x {0,1} such that

Lp(h) = 0 but with probability at least 1/7 over the training set, we have
Lp(A(S)) > 1/8.

14
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