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PAC learning



PAC learnability: “probably approximately correct”

Definition

A hypothesis class H is PAC learnable if there exists a function

mH : (0, 1)2 → N and a learning algorithm S 7→ ĥm such that for every

ε, δ ∈ (0, 1), for every distribution DX on X and for every labelling

function f : X → {0, 1}, if the realizable assumption holds with respect

to H,DX , f then when S =
(
(X1, f (X1)), . . . , (Xm, f (Xm)

)
with

(Xi )1≤i≤m
iid∼ DX ,

P
(
L(DX ,f )

(
ĥm
)
≥ ε
)
≤ δ

for all m ≥ mH(ε, δ).

The smallest possible function mH is called the sample complexity of

learning H.

Remark: Valiant’s PAC requires also sample complexity and running time

polynomial in 1/ε and 1/δ.
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Finite hypothese classes are PAC-learnable

The sample complexity of finite hypothese classes in the realizable case is

smaller than
log |H|δ
ε

:

Theorem

Let H be a finite hypothesis class. Let ε, δ ∈ (0, 1) and let m be an

integer that satisfies

m ≥
log |H|δ
ε

.

Then, for any labeling function f and for any distribution DX on X ,

under the realizability assumption, with probability at least 1− δ over

the choice of iid sample S of size m, any ERM hypothesis ĥm is such

that

L(DX ,f )(ĥm) ≤ ε .
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Proof

The realizability assumption implies that an ERM ĥS has empirical risk

LS
(
ĥS
)

= 0. Hence,

P
(
L
(
ĥS
)
≥ ε
)

= D⊗mX

({
S ∈ Xm : ∃h ∈ H, LS(h) = 0 and LD(h) ≥ ε

})
= D⊗mX

 ⋃
h:LD (h)≥ε

Sh

 where Sh =
{
S ∈ Xm : Ls(h) = 0

}
≤

∑
h:LD (h)≥ε

D⊗mX

(
Sh
)

=
∑

h:LD (h)≥ε

m∏
i=1

DX

({
x ∈ X : h(x) = f (x)

})︸ ︷︷ ︸
=1−LD (h)≤1−ε

≤
∑

h:L(DX ,f )(h)≥ε

m∏
i=1

(1− ε) ≤
∣∣H∣∣(1− ε)m ≤

∣∣H∣∣ exp(−mε) .

This quantity is smaller than δ for m ≥
log |H|δ
ε

.
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Agnostic PAC learnability

Definition

A hypothesis class H is agnostic PAC learnable if there exists a function

mH : (0, 1)2 → N and a learning algorithm S 7→ ĥm such that for every

ε, δ ∈ (0, 1), for every distribution D on X × Y when

S =
(
(X1,Y1), . . . , (Xm,Ym)

) iid∼ D,

P
(
LD
(
ĥm
)
≥ min

h′∈H
LD(h′) + ε

)
≤ δ

for all m ≥ mH(ε, δ).

The smallest possible function mH is called the sample complexity of

learning H.

If the realizable assumption holds, boils down to PAC learnability.

Otherwise, recall that the best Bayes classifier has a risk not larger than

minh′∈H LD(h′).
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Learning via uniform convergence

Definition

A training set S is called ε-representative (wrt domain X × Y,

hypothese class H, loss function l and distribution D) if

∀h ∈ H,
∣∣LS(h)− LD(h)

∣∣ ≤ ε .
Lemma

If S is ε/2-representative, then any ERM ĥm defined by

ĥm ∈ arg minh∈H LS(h) satisfies:

LD
(
ĥm
)
≤ min

h∈H
LD(h) + ε .

Proof: for every h ∈ H,

LD
(
ĥm
)
≤ LS

(
ĥm
)

+
ε

2
≤ LS

(
h
)

+
ε

2
≤ LD

(
h
)

+
ε

2
+
ε

2
.
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Uniform Convergence Property

Definition

A hypothesis class H has the uniform convergence property (wrt X ×Y
and l) if there exists a function mUC

H : (0, 1)2 → N such that for every

ε, δ ∈ (0, 1) and for every distribution D over X × Y, a sample

S =
(
(X1,Y1), . . . , (Xm,Ym)

) iid∼ D of size m ≥ mUC
H (ε, δ) has

probability at least 1− δ to be ε-representative.

Corollary

If H has the uniform convergence property with a function mUC
H , then

H is agnostically PAC learnable with a sample complexity

mH(ε, δ) ≤ mUC
H
(
ε
2 , δ
)
. Furthermore, the ERM is a successful PAC

learner for H.
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Finite classes are agnostically PAC-learnable

Theorem

Let H be a finite hypothesis class. Then H enjoys the uniform

convergence property with sample complexity

mUC
H (ε, δ) ≤

⌈
log 2|H|

δ

2ε2

⌉
.

Moreover, H is agnostically PAC learnable using an ERM algorithm

with sample complexity

mH(ε, δ) ≤ 2mUC
H

( ε
2
, δ
)
≤

⌈
2 log 2|H|

δ

ε2

⌉
.

Proof: Hoeffding’s inequality and the union bound.
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No-Free-Lunch theorems: when

learning is not possible



The No-Free-Lunch theorem

Theorem

Let A be any learning algorithm for binary classification over a domain

X . If the training set size is m ≤ |X |/2, then there exists a distribution

D over X × {0, 1} such that:

• there exists a function f : X → {0, 1} with LD(f ) = 0;

• with probability at least 1/7 over the choice of S ∼ D⊗m,

LD
(
A(S)

)
≥ 1

8
.

Note that the ERM over H = {f }, or over any set H such that

m ≥ 8 log(7|H|/6), is a successful learner in that setting.
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Proof

Take C ⊂ X of cardinality 2m, and {0, 1}C = {f1, . . . , fT } where T = 22m . For each 1 ≤ i ≤ T , we denote by Di the

probability distribution on C × {0, 1} defined by

Di
(
{x, y}

)
=

 1
2m

if y = fi (x) ,

0 otherwise.

We will show that max1≤i≤T E
[
LDi

(A(S))
]
≥ 1/4, which entails the result thanks to the small lemma: if P(0 ≤ Z ≤ 1) = 1 and

E[Z ] ≥ 1/4, then P(Z ≥ 1/8) ≥ 1/7. Indeed, 1/4 ≤ E[Z ] ≤ P(Z < 1/8)/8 + P(Z ≥ 1/8) = 1/8 − 7 P(Z ≥ 1/8)/8.

All the X -samples SX1 , . . . , SXk , for k = m2m , are equaly likely. For 1 ≤ j ≤ k, if SXj = (x1, . . . , xm) we denote by

Sij =
(

(x1, fi (x1)), . . . , (xm, fi (xm)
)

, and f̂ ij = A
(
Sij

)
.

max
1≤i≤T

E
[
LDi

(
A(S)

)]
= max

1≤i≤T

1

k

k∑
j=1

LDi

(
f̂ ij

)
≥

1

T

T∑
i=1

1

k

k∑
j=1

LDi

(
f̂ ij

)

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi

(
f̂ ij

)
≥ min

1≤j≤k

1

T

T∑
i=1

LDi

(
f̂ ij

)
.

Fix 1 ≤ j ≤ k, denote SXj = (x1, . . . , xm) and define {v1, . . . , vp} = C \ {x1, . . . , xm}, where p ≥ m. Then

LDi

(
f̂ ij

)
=

1

2m

∑
x∈C

1
{
f̂ ij (x) 6= fi (x)

}
≥

1

2p

p∑
r=1

1
{
f̂ ij (vr ) 6= fi (vr )

}
and hence

1

T

T∑
i=1

LDi

(
f̂ ij

)
≥

1

T

T∑
i=1

1

2p

p∑
r=1

1
{
f̂ ij (vr ) 6= fi (vr )

}
≥

1

2
min

1≤r≤p

1

T

T∑
i=1

1
{
f̂ ij (vr ) 6= fi (vr )

}
.

Fix 1 ≤ r ≤ p. Then the functions {fi : 1 ≤ i ≤ T} can be grouped into T/2 pairs of functions
(
f̃ 0
i , f̃ 1

i

)
, 1 ≤ i ≤ T/2 which

agree on all x ∈ C except on vr , and for all 1 ≤ i ≤ T/2 it holds that 1
{
f̂ ij (vr ) 6= f̃ 0

i (vr )
}

+ 1
{
f̂ ij (vr ) 6= f̃ 1

i (vr )
}

= 1. Hence,

T∑
i=1

1
{
f̂ ij (vr ) 6= fi (vr )

}
=

T/2∑
i=1

1
{
f̂ ij (vr ) 6= f̃ 0

i (vr )
}

+ 1
{
f̂ ij (vr ) 6= f̃ 1

i (vr )
}

= T/2, which concludes the proof. 11



Consequence: Curse of Dimensionality

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for

binary classification over a domain X = [0, 1]d . If the training set size is

m ≤ (c + 1)d/2, then there exists a distribution D over [0, 1]d × {0, 1}
such that:

• η(x) is c-Lipschitz;

• the Bayes error of the distribution is 0;

• with probability at least 1/7 over the choice of S ∼ D⊗m,

LD
(
A(S)

)
≥ 1

8
.
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Uniform convergence for infinite

classes: VC dimension



Shattering

Definition

Let H be a class of functions X → {0, 1} and let

C = {c1, . . . , cm} ⊂ X . The restriction of H to C is the set of

functions C → {0, 1} that can be derived from H:

HC =
{

(c1, . . . , cm)→
(
h(c1), . . . , h(cm)

)
: h ∈ H

}
.

Shattering

A hypothesis class H shatters a finite set C ⊂ X if HC = {0, 1}C .

Example:

• H =
{
ha : a ∈ R}.

• H2
rec =

{
h(a1,b1,a2,b2) : a1 ≤ b1 and a2 ≤ b2

}
where

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2 ;

0 otherwise .
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VC dimension

Definition

The Vapnik Chervonenkis dimension VCdim(H) of a hypothesis class H
is the maximal size of a set C ⊂ X that can be shattered by H. If H
can shatter sets of arbitrarily large size we say that VCdim(H) =∞.

Theorem

Let H be a class of infinite VC-dimension. Then H is not

PAC-learnable.

Proof: for every training size m, there exists a set C of size 2m that is

shattered by H. By the NFL theorem, for every learning algorithm A

there exists a probability distribution D over X × {0, 1} such that

LD(h) = 0 but with probability at least 1/7 over the training set, we have

LD
(
A(S)

)
≥ 1/8.
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