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Computational Complexity of
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Computational complexity of a learning algorithm 1/2

Definition

An algorithm A solves the learning task with domain set X x ),
hypothesis class H and 0-1 loss in time O(f) if there exists some
constant ¢ > 0 such that for every probability distribution D over

X x Y, and every ¢, > 0, when A receives as input iid samples of D:

e A terminates after performing at most cf (e, §) operations,

e the output of A, denoted by h 4, can perform a prediction on a new
datapoint by performing at most cf (e, ) operations,

e hyis (e,0)—PAC: with probability at most 1 — 4,
Pp(ha(X) # Y) < minpen Pp(h(X) # Y) +e.

NB: the second point is to ensure that the learning process is not "hidden” in
the prediction function.



Computational complexity of a learning algorithm 2/2

Definition

A sequence X, X V,, H, of learning problems is solved by algorithm A
in time O(g), where g : N x(0,1)? — N, if for all n A solves the task
(X X Y, Hn, £y) in time O(f,), where £, : (0,1)?> — N is defined by

fa(€,9) = g(n, €, 9).
NB: in this definition the constant ¢ of the O(f) may depend on n.

A is efficient if one can choose g polynomial (wrt all variables).

Example: a finite hypothese class has polynomial sample complexity, but
the ERM can be long to find if |H,| is not polynomial in n.



Learning Boolean functions



Boolean conjunctions

For a positive integer n, 1 < k,r < nand 1 <i1,... 0k J1,---,Jr < N,
the boolean conjunction

Xy N A X N=xg A A X,

defines the function h: X = {0,1}" — Y = {0,1} by

h(X: 1 ifX,'l:...:X,'kzlandle:...:)9.’:07
0 otherwise.

The class of all boolean functions over {0,1}" is denoted by H{, and has
nlog(3/90)

size at most 3”7 4+ 1. Hence, its sample complexity is at most ————=.
y €



Learning boolean conjunctions

Theorem

e In the realizable case, it is possible to compute an ERM in time
O(mn).

e Unless P=NP, there is no algorithm running in time polynomial in n
and m that is guaranteed to find an ERM hypothesis in the agnostic
case.

Reference: An Introduction to Computational
Learning Theory,

by Michael J. Kearns and Umesh Vazirani,

MIT Press (1994).

COMPUTATIONAL

LEARNING THEORY




Learning 3-term DNF

The class H5p e of 3-term Disjunctive Normal Form formulas is made of
the boolean functions of the form

h(x) = A1(x) V Ax(x) V As3(x)

where the A;(x) are boolean conjunctions. It has size at most 3% and is

thus learnable with sample complexity at most 3nlog(3/d)/e. But from a
computational perspective, even the realizable case is hard.

Theorem

Unless RP=NP, no algorithm properly learns a sequence of 3-term DNF
problems in polynomial time.

Idea: if you can properly learn 3-term DNF, you have random algorithm able to
compute an ERM whp by taking ¢ = 1/(2m) and D = uniform distribution on
the sample; but computing an ERM is NP-hard (see next slide).

Theorem

There exists a representation independent learning algorithm for 3-term
DNF problems in time O(n3m). 6



Proof: computing an ERM is NP-hard

Idea: reduction of the graph 3-coloring problem. A graph G = (V,E) is
3-colorable if there exists a mapping f : V — {1,2,3} such that

(u,v) € E = f(u) # f(v).

Assume that an algorithm computes an ERM for H in polynomial time in n and
m. For any graph G = (V,E), where V ={1,...,n}, let m=|V|+ |E| and
S e (R" x {0,1})" be the sample containing:

o forevery i € {1,...,n}, the pair (e~;, 1), where e_; = (1,...,1) — e;;
e for every edge (i,j) € E, the pair (e_;,0), where e_; = e_j — ¢;.

Then:

e if there exists h € H that has zero error on S, then G is 3-colorable: take
f(i) = min{c: Ac(e=;) = 1}. If f(i) = f(j) = c, Ac(e=i) = Ac(e—j) = 1;
but (e—;); = 0 whereas (e_;); = 1, hence Ac does not involve x;: as e_j
differs from e; just at x;, Ac(e—jj) =1 and by construction (/,j) ¢ E.

e if G is 3-colorable, then there exists h € H with zero error on S: for
c € {1,2,3} take Ac(x) = A, (. Xii then h(e_;) = Af(e-i) =1 and if
(i,j) € E, (i) # f(j) implies Ac(e—;) = 0 for all c.



Proof: 3-term DNF are representation-independent learnable

For every x € {0,1}" let u* € {0,1}?" by uX¥ = x; if 1 </ < n and
uf =~ if n+1<i<2n We write, for c € {1,2,3}, Ac = A\ ¢4 u.
Since V distributes over A,

h(X) = /\ uy VuyVuz. (1)
U1 €A1, U €A u3EA3
Let ¢ : {0,1}" — {0,1}")" be such that [¥:(x)], , , = uX V u V u.

By Equation (1), there exists a conjunction H : {0, 1}(2”)3 — {0,1} such
that for every x € {0,1}", h(x) = H(¢(x)).

Hence, since we saw earlier that conjunctions of (2n)3 variables are
efficiently learnable with sample complexity at most n®log(1/6)/e, there
exists an algorithm computing a function A : {0, 1}(2"3) —{0,1}
compatible with all the examples {(w(x),y) t(xy) € 5} in O(mn?)
operations. It permits to define h: {0,1}" — {0,1} by h(x) = A(¢(x)),
which agrees with all samples: it is an ERM. This does not contradict the
NP-hardness result above: h is generically not a 3-term DNF.



Learning axis-aligned rectangles

Theorem
Let Ho = { Aoy br,....anby) 1 31 < b1, ..., an < by} where

1 ifanglgbl,...,anSXnSbn;

0 otherwise .

h(alyblv'uxambn)(Xl’ 000 ,X,,) - {

e In the realizable case, an ERM can be computed in O(nm)
operations: pick a; = min {x; : (x,1) € S} and
bi = max {x; : (x,1) € S}.

e In the agnostic case, solving the ERM is NP-hard: unless P=NP,
there is on algorithm whose running time is polynomial in m and n
that is guaranteed to find an ERM.

e However, for a fixed dimension n, the ERM can be computed in
polynomial time in m (try all subsets of the sample of size 2n).
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