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VC dimension and Sauer’s lemma



Definition

Let H be a class of functions X — {0,1} and let
C={a,...,cm} C X. The restriction of H to C is the set of
functions C — {0,1} that can be derived from #:

He = {(cl,...,cm) = (h(ct), ... h(cm)) th € H} .

Shattering
A hypothesis class H shatters a finite set C C X if Hc = {0,1}€.
Example:

o H = {]1(,90,3] ac R}
° er(: = {]l[al,bl]x[az,bg] . ai S b1 and an S bg}



Definition

The Vapnik Chervonenkis dimension VCdim(#) of a hypothesis class H
is the maximal size of a set C C & that can be shattered by . If H
can shatter sets of arbitrarily large size we say that VCdim(#) = oo.

Theorem

Let H be a class of infinite VC-dimension. Then H is not
PAC-learnable.

Proof: for every training size m, there exists a set C of size 2m that is
shattered by #H. By the NFL theorem, for every learning algorithm A
there exists a probability distribution D over X x {0,1} such that

Lp(h) = 0 but with probability at least 1/7 over the training set, we have
Lp(A(S)) > 1/8.



Fundamental theorem of PAC learning

Let H be a hypothesis class of functions from a domain X to {0,1} and
let the loss function of 0 — 1 loss. Then the following propositions are
equivalent:

. H has the uniform convergence property,
any ERM rule is a successful agnostic PAC learner for H,
. H is agnostic PAC learnable,

. H is PAC learnable,
any ERM rule is a sucessful PAC learner for H,
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. H has finite VC-dimension.



Fundamental theorem of PAC learning (quantitative version)

Let H be a hypothesis class of functions from a domain X" to {0,1} and
let the loss function of 0 — 1 loss. Assume thatVCdim(#) < co. Then
there exist constants C;, G, such that:

1. H has the uniform convergence property with sample complexity

d + log(1/5)

d + log(1l/6
G +og(/)§m%c =

2 (6,6) < G

)

2. H is agnostic PAC learnable with sample complexity

d + log(1/6 d + log(1/6
6IHRe) ) < 2t Ioe/D)

)

3. H is PAC learnable with sample complexity

d + log(1/9) < mYC(e,8) < C2d|og(1/6) + log(1/6) .
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Sauer’s lemma

Definition

Let H be a hypothesis class. Then the growth function of H, denoted
74 : N — N, is defined as the maximal number of different functions
that can be obtained by restricting 7 to a set of size m:

T (m) = Cc)rp:lacxlzm |’Hc| .

Note: if VCdim(#) = d, then for any m < d we have 73 (m) = 2™.

Sauer’s lemma
Let H be a hypothesis class with d = VCdim(H) < co. Then, for all

m>d, .,
mim <> (7)< ()"

i=0

Think of example: H = {1(_o 4 : @ € R} with d = VCdim(H) = 1. .



Proof of Sauer’s lemma 1/2

In fact we prove the stronger claim:
d m
[#He| < [{B C C: H shatters B}| < ( ) .
i=0 '

where the last inequality holds since no set of size larger than d is shattered by 7. The proof is by induction.

m=1: The empty set is always considered to be shattered by . Hence, either |#(C)| = 1 and d = 0, inequality 1 < 1, ord > 1and
the inequality is 2 < 2

Induction: Let C = {cy,...,cm}, and let C’ = {cp, ..., cm}. We note functions like vectors, and we define
Yo = {(Y2= coym) 0y, - uym) € Heor(Lya, oo sym) € He}, and
Yl:{(yz,...,y,,,):(O,yz,...,ym)EHCand(l,yz,...,ym)GHC}.

Then |H | = |Yg| + | Y1 |- Moreover, Yo = H -/ and hence by the induction hypothesis:

1Yol < |Her| < [{B C €'« H shatters B} = [{B C C: | ¢ B and H shatters B}|
Next, define

H/:{heﬂzah/eHs,t,wgfgn,h’(c,-):{l’h(cl)'f’jl }

h(c;) otherwise
Note that H/ shatters B C C” iff H/ shatters B U {c; }, and that Y| = HIC,. Hence, by the induction hypothesis,

’ ’

Y1l = {’H’C/{ <|{B C ¢’ H/ shatters B} = |{B C ¢’ M/ shatters B U {c1}}]
=|{B C C:c € BandH  shatters B}| < [{B C C:c; € Band H shatters B}| .

Overall,

[Hel = 1Yol + Y1l < [{B C C:cy ¢ Band H shatters B}| + [{B C C:c; € Band H shatters B}| = [{B C C : H shatters B}| .



Proof of Sauer’s lemma 2/2

For the last inequality, one may observe that if m > 2d, defining N ~ B(m, 1/2), Chernoff’s
inequality and inequality log(u) > (u — 1)/u yield
d 1 2d 2(m — d)
—logP(N < d) > mkl( —,= ) >dlog— + (m— d)log ——=
m 2 m m
—d/m
(m—d)/m

%

d
mlog(2) + dlog — + (m — d)
m

d
mlog(2) + dlog — ,
em

and hence
9 m - d em\ ¢
Z() —2"P(N < d) <exp(—dlog— )= () .
=L em d
Besides, for the case d < m < 2d, the inequality is obvious since (em/d)d > 2™: indeed, function
f : x — —xlog(x/e) is increasing on [0, 1], and hence for all d < m < 2d:

d 1
Zlog & = £(d/m) > £(1/2) = - log(2e) > log(2) ,
m d 2
which implies
d
<?> = exp (dlog ?) > exp(mlog(2)) =2 .

Alternately, you may simply observe that for all m > d,

FYEOZE OZE O-(+) =,

m
i=0



Finite VC dimension implies
Uniform Convergence




Finite VC dimension implies Uniform Convergence

Theorem

Let #H be a class and let 73, be its growth function. Then, for every
distribution D dans for every ¢ € (0, 1), with probability at least 1 — §
over the choice of the sample S ~ D®™ we have

1+ /log (T%(2m))
:£5|LD(h)_LS(h)| < ; m;

Note: this result is sufficient to prove that finite VC-dim = learnable,
but the dependency in § is not correct at all: roughly speaking, the factor
1/6 can be replaced by log(1/9).



Proof: symmetrization and Rademacher complexity (1/2)

We consider the 0-1 loss £(h, (x, y)) = 1{h(x) # y}, or any [0, 1]—valued loss ¢. We denote
Z; = (Xi, Y;), and observe that Lp(h) = EZI [€(h, Zi)] = Eg/[Lg/ (h)] if Y = le, e Z,;’ denotes
another iid sample of D. Hence,

Bs [sup |Lo(h) — Ls(h)]| = B | sup [Eo Lo ()] = LA} ]| = Bs [ sup [Es (Lo (8) = L5 |
eH heH heH

< Es [sup Egs [|Lsr () - u(h)}]} < Es [Es/ [ sup |Lsr (k) - Ls(hn]]

=Eg o |:sup Z 7€h2)}
=E sup — ) — £(h, Z; for all o € {£1}"
o [ 2 S0, 2 - 6020 | 1)

m

Sowi(Uh, Z)) ~ e(h,zf))‘

if X~ U({£1}7)

m

1
= EsEg s |:sup =
: heH

] .

Now, for every S, S, let C = Cg 5/ be the instances appearing in S and S’. Then Vo € {—1,1}",

; > wi(e(h, Z) - eh, Z)))

m

S oi(eh, ) — (h, Z))) ' .

i=1

m

sup L Z o (e(h, Z]) — £(h, Z,-))‘ = max %

her m | €Hc
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Proof: symmetrization and Rademacher complexity (2/2)

Moreover, for every h € Hc let Z, = L 3>, 5;(€(h, Z/) — £(h, Z;)). Then Ex[Z;] = 0, each
summand belongs to [—1, 1] and by Hoeffding’s inequality, for every ¢ > 0:

2
Ps[|Zs] > €] < 2exp (—"%) .

Hence, by the union bound,

m62

Pi[hfé‘%xc |Zn| > €] <2|Hc|exp <77> .

The following lemma permits to deduce that

L+ Vieg([Hcl) 1+ Vlog(rn(2m))

E VAR
b Lg\g{xc\ hl] <

m/2 m/2
Hence,
Es = [Lo(h) — Ls(h))} < Es s Ex [hseujp{% ;)Z,-(If(h,z,.’) - Z(h,z,-))H < %\/%’;Qm)) ,

and we conclude by using Markov's inequality (poor idea! Better: McDiarmid's inequality).

11



Technical Lemma

Lemma
Let a >0, b > 1, and let Z be a real-valued random variable such that

t
forall t >0, P(Z > t) < 2bexp <—a2>' Then

1
E[Z] < a < log(b) + Iog(b)) .

Proof:

oo oo t2
lEZg/ P(Z > t)dt < a Iogb+/ 2bexp [ ——
[Z] A ( ) \/log(b) e g

oo t t?
< ay/log(b) + 2b /5 2v/108(D) exp (—;)
a° op (7 (a\/log(b))2>

a Iog(b 2 a2

= ay/log(b) +

TTT

= ay/log(b) +

NB: cutting at ay/log(2b) gives a better but less nice inequality for our use. 12



Finite VC-dimension implies
learnability




Application: Finite VC-dim classes are agnostically learnable

It suffices to prove that finite VC-dim implies the uniform convergence
property. From Sauer’s lemma, for all m > d/2 we have

T3(2m) < (2em/d)9. With the previous theorem, this yields that with
probability at least 1 — §:

» 1+ dlog 2em/d U1 8d log(2em/d)
— Ls(

m

sup |Lp(h)
heH

(2}

as soon as y/d log (2em/d) > 1. To ensure that this is at most €, one
may choose

m 8dlog(m)  8dlog(2e/d)
— (0e)? GO
By the following lemma, it is sufficient that
4d
s 32dlog (W) 16d log (%)
(e GO

13



Technical Lemma

Lemma
Let a > 0. Then

x >2alog(a) = x> alog(x).

Proof: For a < e, true for every x > 0. Otherwise, for a > /e we have
2alog(a) > a and thus for every t > 2alog(a), as f : t — t — alog(t) is
increasing on [a,00), f(t) > f(2alog(a)) = alog(a) — alog(2log(a)) > 0,
since for every a > 0 it holds that a > 2log(a).

Lemma

Let a>1,b> 0. Then

x > 4alog(2a)+2b = x> alog(x)+b.

Proof: It suffices to check that x > 2alog(x) (given by the above
lemma) and that x > 2b (obvious since 4alog(2a) > 0). 14
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