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Computational complexity of a learning algorithm 1/2

Definition

An algorithm A solves the learning task with domain set X x ),
hypothesis class H and 0-1 loss in time O(f) if there exists some
constant ¢ > 0 such that for every probability distribution D over

X x Y, and every ¢, > 0, when A receives as input iid samples of D:

e A terminates after performing at most cf (e, d) operations,

e the output of A, denoted by h 4, can perform a prediction on a new
datapoint by performing at most cf (e, d) operations,

e hy is (e,0)—PAC: with probability at most 1 — 4,
PD(h_A(X) 7é Y) S minhe% ]PD(/‘)(X) 7é Y) =F G

NB: the second point is to ensure that the learning process is not "hidden"” in
the prediction function.



Computational complexity of a learning algorithm 2/2

Definition

A sequence X, X V,, H, of learning problems is solved by algorithm A
in time O(g), where g : N x(0,1)? — N, if for all n A solves the task
(X X Vo, Hpy £y) in time O(f,), where £, : (0,1)?> — N is defined by

fo(€,9) = g(n, ¢, 9).
NB: in this definition the constant ¢ of the O(f) may depend on n.

A is efficient if one can choose g polynomial (wrt all variables).

Example: a finite hypothese class has polynomial sample complexity, but
the ERM can be long to find if ]7—[,7‘ is not polynomial in n.



Learning Boolean functions



Boolean conjunctions

For a positive integer n, 1 < k,r <nand 1 < iy, ... 0k, J1,---5Jr <N,

the boolean conjunction
Vi Ao Avi A=vy A= Ay,
defines the function h: X = {0,1}" — Y = {0,1} by

h(V—{l ifV,'lz...:V,'k:landle:...:\/jr:O’

0 otherwise.

Ex: for n =2, formula —v; defines the function h(vq,v») =1 — vy.

The class of all boolean conjunctions over {0,1}" is denoted by HZ, and
has size at most 3" + 1 ( < 22n for Iarge n) (either each variable appears at most

once, negated or not, or the formula is always false: think of n = 1).

: o nlog(3/0
Hence, its sample complexity is at most M
€



Learning boolean conjunctions

Theorem

e In the realizable case, it is possible to compute an ERM in time
O(mn).
e Unless P=NP, there is no algorithm running in time polynomial in n

and m that is guaranteed to find an ERM hypothesis in the agnostic
case.

Proof for realizable case: start with formula hg = vi A =vy A
s AVyp A vy, and for 1 < i < mlet hy = hj—1 if Y; =0,
and otherwise h; is obtained from h;_; by removing the literals
incompatible example (Xj,1). Then h,, is the most restrictive
formula agreeing with all positive examples (hence satisfying the
negative ones in the realizable case).

Reference: An Introduction to Computational
Learning Theory (Section 1.4),

by Michael J. Kearns and Umesh Vazirani,

MIT Press (1994). 5
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Learning 3-term DNF

The class H5p e of 3-term Disjunctive Normal Form formulas is made of

the boolean functions of the form
h(v) = A1(v) V Ax(v) V As(v) ,
the A; : {0,1}" — {0, 1} being boolean conjunctions. It has size at most

337 and is thus learnable with sample complexity at most 3nlog(3/4)/e.
But from a computational perspective, even the realizable case is hard.

Theorem
Unless RP=NP, no algorithm properly learns a sequence of 3-term DNF
problems in polynomial time.

Idea: if you can properly learn 3-term DNF, you have a random algorithm able
to compute an ERM whp by taking e = 1/(2m) and D = uniform distribution
on the sample; but computing an ERM is NP-hard (see next slide).

Theorem
There exists a representation independent learning algorithm for 3-term
DNF problems in time O(n®m). 6



Proof: computing an ERM is NP-hard

Idea: reduction of the graph 3-coloring problem. A graph G = (V,E) is
3-colorable if there exists a mapping f : V — {1,2,3} such that

(u,v) € E = f(u) # f(v).

Assume that an algorithm computes an ERM for H in polynomial time in n and

m. For any graph G = (V,E), where V ={1,...,n}, let m=|V|+ |E| and
S e ({0,1}" x {o, 1})m be the sample containing:

o forevery i € {1,...,n}, the pair (e~;, 1), where e_; = (1,...,1) — e;;
e for every edge (i,j) € E, the pair (e_j,0), where e_j = e_j — &;.

Then:

o if there exists h € H5pyr that has zero error on S, then G is 3-colorable:
take f(i/) = min{c: Ac(e—;) =1}. If f(i) =f(j) =c,
Ac(e—i) = Ac(e—;) = 1; but (e—;)i = 0 whereas (e_;); = 1, hence Ac does
not involve v;: as e_j; differs from ¢; just at v;, Ac(e—;j) =1 = h(e—j) and
hence (/,j) ¢ E.

e if G is 3-colorable, then there exists h € H3pyr with zero error on S: for
c € {1,2,3} take Ac(v) = A, ¢(i)x Vii then h(e—i) = Af(e—i) =1 and if
(i,j) € E, f(i) # f(j) implies Ac(e—;) = 0 for all c.



Proof: 3-term DNF are representation-independent learnable

For every v € {0,1}" let u¥ € {0,1}?" by v} = v; if 1 < i < n and
uf = v if n4+1<7<2n. For c€{1,2,3}, we write Ac = A\, L.
Since V distributes over A,

h(v) = A LV VL. (1)

L1EALLEAL L3EAS

Let ¢ : {0,1}" — {0,1}"" be such that [y(v)], . .
By Equation (1), there exists a conjunction H : {0,1}(2"° — {0,1} such
that for every v € {0,1}", h(v) = H(¥(v)).
Hence, since we saw earlier that conjunctions of (2n)3 variables are
efficiently learnable with sample complexity at most n®log(1/6)/e, there
exists an algorithm computing a function A : {0, 1}(2”3) —{0,1}
compatible with all the examples {(w(x),y) (x,y) € 5} in O(mn®)
operations. It permits to define A : {0,1}" — {0,1} by h(x) = I:I(il)(x))
which agrees with all samples: it is an ERM. This does not contradict the
NP-hardness result above: h is generically not a 3-term DNF.

=u! VulVuy.
1 2 3



Learning axis-aligned rectangles

Theorem
Let H].. = {h(317b17~--7an7bn) cap < by,...,a, < b,,} where
1 ifap<x3 <bi,...,a, < X < by
h(al,bl,...,an,b,,)(xlv--~7Xn) = .
0 otherwise .

e In the realizable case, an ERM can be computed in O(nm)
operations: pick a; = min {x; : (x,1) € S} and
bi = max {x; : (x,1) € §}.

e In the agnostic case, solving the ERM is NP-hard: unless P=NP,
there is on algorithm whose running time is polynomial in m and n
that is guaranteed to find an ERM.

e However, for a fixed dimension n, the ERM can be computed in
polynomial time in m (try all subsets of the sample of size 2n).
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