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Convex functions in R¢



Convex functions and subgradients

Convex function

Let X C RY be a convex set. The function f : X — R is convex if

Vx,y € X,VA € [0,1], F((1—=A)x+Ay) < (1= X)F(x)+ A(y).

Subgradients
A vector g € R" is a subgradient of f at x € X if for any y € X,

Fy) = f(x) + (g,y =x) -
The set of subgradients of f at x is denoted Jf(x).
Proposition

o If Of(x) # 0 for all x € X, then f is convex.
e If f is convex, then Vx € X, df (x) # 0.
e If f is convex and differentiable at x, then Of (x {Vf }



Convex functions and optimization

Proposition

Let f be convex. Then

e x is local minimum of f iff 0 € 9f(x),
e and in that case, x is a global minimum of f;
e if X is closed and if f is differentiable on X, then

x =argminf(x) iff Vye X, (Vf(x),y—x)>0.
XEX

Black-box optimization model
The set X is known, f : X — R is unknown but accessible thru:

e a zeroth-order oracle: given x € X, yields f(x),

e and possibly a first-order oracle: given x € X, yields g € 0f(x).



Gradient Descent



Gradient Descent algorithms

A memoryless algorithm for first-order black-box optimization:

Algorithm: Gradient Descent

Input: convex function f, step size ¢,
initial point xp
1fort=0...T—1do
2 Compute gt € Of(x)
L Xet1 < X — Yt 8t

w

Xg+ - X7

4 return xr or
T

Questions:

o xr — x* def arg min £? e at what speed?

oo e works in high dimension?

o f(xr) — f(x*)=minf? '
U=es e do some properties help?

e under which conditions? .

X0+ xroa, e can other algorithms do

e what about better?



Monotonicity of gradient

Property
Let f be a convex function on X', and let x,y € X'. For every
8« € Of(x) and every g, € 0f(y),

(&« — g x—y)20.

In fact, a differentiable mapping f is convex iff

Vx,y € X,<Vf(x) —Vf(y),x—y> >0.

In particular, (g, x —x*) > 0.
= the negative gradient does not point the the wrong direction.

Under some assumptions (to come), this inequality can be strenghtened,
making gradient descent more relevant.



Convergence of GD for Convex-Lipschitz functions

Lipschitz Assumption

For every x € X and every g € 0f(x), ||g| < L.

This implies |f(y) — f(x)| < |(g,y —x)| < Llly —x|.
Theorem

Under the Lipschitz assumption, GD with v; = v = L\LFT satisfies
T-1
1 RL
fl= x| —f(x*) < —=.
(F57) < 7

e Of course, can return arg min; ;7 f(x;) instead (not always better).
i 22 - ..
It requires T, =~ RGZL steps to ensure precision e.
. . _ R ) .
Online version ~y; = vz bound in 3RL/V/'T (see Hazan).

Works just as well for constrained optimization with

Xpy1 I'IX(xt — 'ytVf(xt)) thanks to Pythagore projection theorem.



Intuition: what can happen?

The step must be large enough to
reach the region of the minimum,
but not too large too avoid skip- .
ping over it.

Let X = B(0, R) C R? and

R
7“X1,X2 = Xl +LX2
( ) \@le |+ L|x*]
which is L-Lipschitz for v > \/g_T_ Then, if xg = (%7%) c X,
1 R Rt 1 R_.
othﬁ3:?andxi§ﬁ, N L
¢ X25+1:T’Y_7L:_%’X225_T’y and)_(?rz%
Hence
R R vL 1 /[ R?
F(5473) 2 +L:(_~_L2)’
Gri 2 e tte “alm Tl
which is minimal for v = L\Lﬁ where f();%)—(%_) ~ %'



Cosinus theorem = generalized Pythagore theorem = Alkashi's theorem:
2(a, b) = ||al* + [[b]* — [la — b]|* .
Hence for every 0 < t < T:

f(xe) — F(x*) < {ge, xe — x¥)
1

= *<Xt — X415, Xt — X*>

S
1 * (12 2 * (2
2 (e =X I o e = el = s = x7I)

1 ]2 *2) 2l 2
3 (e =2 = llvers =" 1) + 3 el

and hence
T=il

o 1 . . [>4T LVTR? [?RT
FOe)=F(x") < o (Iro—x* IP=llxr—x"|?) +—5— <

+
= 2 2R 2LVT

Y
= =
and by convexity f( X,') < f(xe)-



Smoothness



Definition
A continuously differentiable function f is S-smooth if the gradient V£
is B-Lipschitz, that is if for all x,y € X,

IVE(y) = VIO < Blly = x| -

Property
If f is S-smooth, then for any x,y € &

|F(y) = f(x) = (VF(x),y —x)| <

N[

ly = |1

e f is convex and [-smooth iff x — ngH2 — f(x) is convex iff Vx,y € X

f(x) +(VF(x),y = x) < fy) < F(x) +(VF(x),y —x) + g\ly —x|*.

e If f is twice differentiable, then f is a-strongly convex iff all the
eigenvalues of the Hessian of f are at most equal to . 9



Convergence of GD for smooth convex functions

Theorem

Let f be a convex and B-smooth function on R?. Then GD with
Ve =7 = 3 satisfies:

* 26 |X0 _X*||2
fxr) — f(x") < H—T

Thus it requires T, ~ MTR steps to ensure precision €.

10



Majoration/minoration

Taking v = % is a "safe” choice ensuring progress:

xT défxfévf( ) = arg min f(x +<Vf 7X>+§HY*XH2
y

is such that f(xT) < f(x) HVf || . Indeed,

F(x*) = F(x) < (VF(x),x" —x) + §|Ix* —x|?
2 1 D)
= SIS + 551977 = - 590
— Descent method.

Moreover, x* is "on the same side of x* as x” (no overshooting): since
[VECN = [[VF(x) = V()] < Bllx — x*]l,
(VF(x),x —x*) < ||[VF(x)|[lIx = x*|| < BlIx — x*||> and thus

<x* —xT, x* —x> =

x* — x|+ <BVf(x),x* —x)>0.

11



Lemma: the gradient shoots in the right direction

Lemma
For every x € X,
(VF(),x = x*) > %HW(X)H? :

We already now that f(x*) < f(x — %Vf(x)) < f(x) — %”Vf(x)”2 In addition, taking
z=x"+ %Vf(x):

f(x™) = f(z) + f(x") — f(2)
> 00 + (VF() 2 = x) = 2z = "I
= f(x) + <Vf(x),x* — X> + <Vf(x),z — x*> — %HVf(x)”z

= f(x) + (VFf(x),x" —x) + %”Vf(x)“z .

1 1
Thus f(x) + (VF(x), x* — x) + ﬁ||Vf(x)H2 < F(x*) < f(x) — ﬁ||w(x)||2.
In fact, this lemma is a corrolary of the co-coercivity of the gradient: Vx,y € X,
1
(V) = Vi) x = y) 2 SIIVF) = VEWI

which holds iff the convex, differentiable function f is 3-smooth.
12



Proof step 1: the it

Applying the preceeding lemma to x = x;, we get

) 2
*
[Ixe+1 — x7||I” =

1 *
X; — BVf(Xt) —x

2 ) 1
= |Ixe — X*HQ - E<Vf(xt),xf - x"y+ EHVI(()Q)HQ
. 1
< [l =x"IF = IV FGal?
< e =717 -
— it's good, but it can be slow...
4
X

START

13



Proof step 2: the values of the iterates converge

1
We have seen that f(x; 1) — f(x;) < —ﬁ”wm)uz_ Hence, if §; = f(x;) — f(x*), then
o B o
b0 = f(x0) — f(x7) < EHXO — X ||2

1
and §ep1 < ¢ — ﬁ||Vf(xt)||2. But

6 < <Vf(xt),xt 7x*> < HVf(xt)”th 7X*H .

5

Therefore, since §; is decreasing with t, ;41 < 6y — ——————.
2B||x0 — x*||?

Thinking to the
coresponding ODE, one sets u; = 1/4;, which yields:

Uy 1
Upp1 > 7 Zut<1+ = ):ur+ =G
= Blgor T 2B1x0 — x* |7 ue 2B|1x0 — x* ||

T 2 T T+4

Hence, ur > up +

> + = :
2Bxo = x*[12 7 Bllxo =x*[12  2Bllx0 = x* 12 28]x0 — x*[|2

14



Strong convexity



Strong convexity

Definition
f: X — R is a-strongly convex if for all x,y € X, for any g, € 9f(x),

Fly) = F(x) + (g y — x)

. . a 2 8
e f is a-strongly convex iff f(x) — 5||x||* is convex.
e « measures the curvature of f.

e If f is twice differentiable, then f is a-strongly convex iff all the
eigenvalues of the Hessian of f are larger than a.

15



Faster rates for Lipschitz functions through strong convexity

Theorem
Let f be a a-strongly convex and L-Lipschitz. Under the Lipschitz
assumption, GD with ~; = ﬁ satisfies:

1= . L2log(T)
f(T;X')f(X)SaT'

Note : returning another weighted average with v; = yields:

2

a(t+1)
/—|—1 DR

x| = Fx) < —==— .

( T(T+1) ) (X)_a(T+1)

Thus it requires T, = u—( steps to ensure precision €.

16



Cosinus theorem = generalized Pythagore theorem = Alkashi's theorem:
2(a, b) = ||al|* + ||l — [|la = b]> .
Hence for every 0 < t < T, by a-strong convexity:
* * Q 2
f(xe) = F(x*) < (e, xe — x*) — EHXt*X °
1 o @ .
= ¥<Xt = Xe41, Xe — X)) — §||Xt =X ||2

1 «
= 5 (e =2 4 I = el = e = x°I) = G e = x|

_ ta a2 (t+1)a |2 1 2
= Sl - EE e L
since vy = ﬁ and hence
T-1 T-1
0%« L2 1 L2 log(T)
F(xe)—F(x*) < [P x| P <
>~ ls)=F(x7) £ S5 por e Gl gy 3 g <

t=0

and by convexity f (% Z,-T:Bl Xi) <+ o F(xe). 17



Strong convexity

Smooth and Strongly Convex Functions

18



Smoothness and strong convexity: sandwiching f by squares

Let x € X.

For every y € X,

X- X* X+ X
[B-smoothness implies:

F(Y) < () +(VF(,y = x) + 5y = P

def f(x) = f(xT) + §’|y—X+H2 .

Moreoever, a-strong convexity implies, with x~ = x — LV (x),
e
f(y) 2 £0) +(VF(x),y = x) + Slly = x|

% f(x) = F(x7) + %Hy —x|*.

19



Convergence of GD for smooth and strongly convex functions

Theorem
Let f be a S-smooth and a-strongly convex function. Then GD with
the choice v = v = % satisfies

Flxr) = F(x) < e7% (F(x0) — F(x")) ,
where K = g > 1 is the condition number of f.

osc(f)

€

Linear convergence: it requires T, = mlog( ) steps to ensure

precision €.

20



Proof: every step fills a constant part of the gap

The choice v = % gives simultaneously
f(xt+1):f(xt+)§f(xt+):f(xt BHVf Xt H ,

and
f(x*) > £(x") > f(x;) = f(x) — ||Vf Xt || .

Hence, every step fills at least a part % of the gap:

) = Fxe) > 5 (FGx) = £(7)
It follows that
)= 667 < (15 ) (or-) = )

21



Using coercivity

Lemma

If f is a-strongly convex then for all x,y € X,

<Vf(X) - Vf(y),x—y> > allx —y|?.

Proof: monotonicity of the gradient of the convex function x — f(x) — a|x||?/2.

Lemma
If f is c-strongly convex and (-smooth, then for all x,y € X,

af
a+p

(V) = V1) x =) 2 22l =yl + 5[ 9F0 - VAP

Proof: co-coercivity of the (8 — a)-smooth and convex function x — f(x) — a|x||?/2.

22



Stronger result by coercivity

Theorem
Let f be a S-smooth and a-strongly convex function. Then GD with
the choice v = v = satisfies

Ixr = x*|2 < =7 [|xo — X"

where k = g > 1 is the condition number of f.

B
2

2 this

Corollary: since by S-smoothness f(x7) — f(x*) <

bound implies

f(xr)—f(x*) < gexp </¢+1> lIxo — x H2

23



Using the coercivity inequality,

2

*

Ixe = x*|1? = ||xe—1 — YV F(xe—1) —
(VF(xe—1), Xe—1 — x*) + ’)/2||Vf(Xt_1)H2

2
(1_2%) Ixe—r — X2+ | ~ —T”B 1V F ()|
—_———

=0

24



Lower bounds lower bound for
Lipschitz convex optimization




General first-order black-box optimization algorithm = sequence of maps
(X0, &0y - - - s Xt, 8¢) — Xer1. We assume:

® Xp = 0
® X;11 € Span(go, e ,gt),
Theorem

For every T > 1,L, R > 0 there exists a convex and L-Lipschitz
function f on R+ such that for any black-box procedure as above,

min_f(x;) — min f(x)>L
ostsT sk 0 T 2(14+V/T 1)

e Minimax lower bound: f and even d depend on T...

e ...but not limited to gradient descent algorithms.

e For a fixed dimension, exponential rates are always possible by other
means (e.g. center of gravity method).

e — the above GD algorithm is minimax rate-optimal! 2=



Proof

— _ LVd _ L
Letd=T+1, p= = and o = R(H\/E),and let

F() = p max x' + 2. x|

Then

Of (x) = ax + p Conv <{e,- 8 (] B 29 = r<na<xd>g}>

If ||x|| < R, then Vg € 9f(x), ||g|| < @R + p which means that f is «R + p = L-Lipschitz. For
simplicity of notation, we assume that the first-order oracle returns ax + pe; where i is the first
coordinate such that x; = max;<j<g x’.

e Thus x; € Span(e;), and by induction x; € Span(er, ..., e).
e Hence for every j € {t+1,...,d},x{:0, and f(x) >0forall t < T=d—1.
. . P ] . * * 2
e f reaches its minimum at x* = (— £;,..., —2£;) since 0 € Of(x"), ||x 1?2 = ﬁ = R?
and ) )
* «a RL
f(x):_i+fo L s
ad 2 a?d 2ad 21+ VT +1)

26



Other lower bounds

2

For a-strongly convex and Lipschitz functions, lower bound in T
e’

= GD is order-optimal.

Blixo — x|
—.

2B|x0 — x*|?
T+4

For S-smooth convex functions, the lower bound is in

= room for improvement over GD with reaches

For a-strongly convex and -smooth functions, lower bound in

lIxo — x*|Pe™ 7~

. . _I
= room for improvement over GD which reaches ||xo — x*||?e™ .

For proofs, see [Bubeck].

27



What more?




Need more?

e Constrained optimization
e projected gradient descent

Yt = Xt — Yt 8t, Xt41 = nX(}/t+1) .
e Frank-Wolfe

yer1 = argmin (Vf(xt),y), Xep1 = (1 — ¥e)Xe + Yeyer1 -

yeX

e Nesterov acceleration
1 VE—1 VE—1
=x: — =VIf(x), Xep1 = | 1+ -Vt
Yt+1 t 3 ( t) t+1 < \/E+1) Yt+1 \/E_’_l)’t
e Second-order methods, Newton and quasi-Newton
=il

Xep1l = Xp — [V2f(x)] Vi(x) .

e Mirror descent: for a given convex potention ®,
VO(yi11) = VO(x:) — 81, Xeg1 € M3 (yes1) -

e Structured optimization, proximal methods

e Example: f(x) = L(x) + A||x]}1 28



Nesterov Momentum acceleration for 5-smooth convex functions

Taken from https://blogs.princeton.edu/imabandit

Algorithm: Nesterov Accelerated Gradient Descent

Input: convex function f, initial point xg
1dyg< 0, N 1;
2 fort=0...T —1do
3 Ve & X + di;
4 Xe41 < Yt — %Vf(Yt)?

5 Ae+1 ¢ largest solution of A2 ; — A\py1 = A%
A—1 VY

6 dt+1 — Aera (Xt+1 Xt),

7 return x7

e d; = momentum term (" heavy ball"), well-known practical trick to

accelerate convergence, intensity A;: 5
t

© A\ 2 t/2+1: let 6 = Ac — Ae—1 > 0 and observe that A2 — A2, = §,(2X; — &;) = A,
from which one deduces that 1/2 < 6, = ﬁ <1, thus1+t/2< XA <1+t hence
5 < m <1/2+1/(t+1)and 1+t/2 < A < t/2+ log(t+ 1)+ 1.

29


https://blogs.princeton.edu/imabandit

Nesterov Acceleration

Theorem

Let f be a convex and S-smooth function on R?. Then Nesterov
Accelerated Gradient descent algorithm satisfies:

L 2o =X

flxr) - F(x") =

e Thus it requires T, ~ % steps to ensure precision €.

e Nesterov acceleration also works for S-smooth, a-strongly convex
functions and permits to reach the minimax rate ||xo — x*||?e” 77 :
see for example [Bubeck].

30



Proof

Let 6, = f(x:) — f(x*). Denoting g = —B 'V f(x + d;), one has:
Ot41 — 0 = f(xe1) — F(xe 4 di) + F(xe + di) — f(xt)

< —%Hvr(xr AP+ (VO + ), de) = —g (gl +2(ge, )
and Spp1 = f(xeq1) — F(xe + de) + F(xe + di) — F(x™)

2
S=g5 |V F(xe + de)||> + (VFxe + de), xe + de — x™) = fg (ngnz +2(ge,xe +di = x7))
Hence, (/\t = 1) (6t+1 - 5:) + 041 < *g (/\r”gr”2 T 2<anr + Aedr — X*>)
= *2Li\t (H/\tgt + Xt + Aedr — X*Hz - HXt + Aede — X*HZ)

= *% (HXt+1 + Aty1de1 — X*”2 = ||Xt + Aedy — x* Hz) ,
t

since the choice of the momentum intensity is precisely ensuring that x; + A\¢gr + A¢d: =

Xe1 + (Ae — 1)(ge + de) = xer1 + (Ar — 1)(Xer1 — Xe) = Xe1 + Ae1 —

(X2+1 — Xz)~

It follows from the choice of \; that
dry1

AférAl—Af,lét = Aféwl_()\?_)\r)(sr < —g <||><r+1 + App1deyr — x* ||2 — ||Xr + Aede — X7 Hz)

and hence, since A_; =0 and A\; > (t+1)/2:

T\ B a2 — Bl — x|
(E) 67 S A7187 < b+ Aoch — IIZ:M' 31



Research article 4

INCREMENTAL MAJORIZATION-MINIMIZATION OPTIMIZATION
WITH APPLICATION TO LARGE-SCALE MACHINE LEARNING®

JULIEN MAIRAL!

Incremental Majorization-
Minimization Optimization
with Application to Large-
Scale Machine Learning

DOL 10.1157/1

by Julien Mairal

SIAM Journal on Optimization
Vol. 25 Issue 2, 2015 Pages 829- i
855
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Stochastic Gradient Descent




Big data: an evaluation of f can be very expensive, and useless!
(especially at the begining).

1 |M/
Wl - 1 Wl,* 1

Src: https://arxiv.org/pdf/1606.04838.pdf

— often faster and cheaper for the required precision.

33
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Research article 5

The Tradeoffs of Large Scale Learning

The Tradeoffs of Large Scale TUTROR e

Leongbottou.org ariv:

Learning

Abstract

{ o a,d;Lf;~“z;=:t";:,z'm;2::‘“;;;:'.;‘:;";;‘*"*":Pr"';:;'::::rzr::;;:':;':
by Léon Bottou and Olivier Bousquet B S T L

Igorithms in non-rivial

1 Motivation

Advances in Neural Information Pro- il wim s
B e e s R

cessing Systems, NIPS Foundation : =

s o mportan xanplescome 0 mind:
( htt p: / / books.ni ps.cc ) ( 2008 ) . s of d %Z“}‘:“ﬁli‘.“:!'E‘iic‘“n‘)”n:?iﬂi."“p%‘;.:;!é Sty St iy ety

power.
Thc)dar: one nceds Ieaming algorithms that scale roughly lincarly with the total volume.
of data

pp. 161-168 B ———

o dta
gencrte by our i sense, using i amouns of Sugar 2 & souce of power. This

scale roughly lincarly with the total volume of data.

This contiution fnds s soure i the idea that spproximate opimization slgorihms might be
ulfcent or kaming prpass, The it pat pRODoss e decoupasiion of e et ero where

. " H " an additional term represents the impact of approximate optimization. In the case of small-scale

eur award: test of time eaming probloms, thi decomposition educes 10 he well Known radeoff between approximation
it i etimtion s I e ca o age e Kaming problems, (e el & more com:

P ekt s fh computaions oty of h kaming Ao The <ccond po

o i

¥ proper g y
ingsgorkiensunder vrions assunptons ganling e ssisicl etioion ks ssocind wily
hat the

ety I b g g Nyt mre st ot gorh P el
regardless of the assumed rat for the satisical es6mation crror
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Stochastic Gradient Descent Algorithms

SN

i=1

We consider a function to miminize f(x

3\'—'

Algorithm: Stochastic Gradient Descent

Input: convex function f, step size ¢,
initial point xg
fort=0...T —1do
Pick I, ~U({1,..., m})
Compute g+ € 91, (xt)
Xe41 < Xt — Ve 8t
Xo+ -+ X7
—

s W =

5 return x  or

def . ?
o xT T_> x* % arg min £7 at what speed?
—0

e works in high dimension?
o f(xr) — f(x*)=minf? 2
r=es e do some properties help?
e under which conditions? .
X0+ +X7_1 e can other algorithms do
e what about ——=7 35

better?



Noisy Gradient Descent

Let 7t = o(lo, ..., lt), where F_; = {Q,0}. Note that x; is
Fi_1-measurable, i.e. x; depends only on lo,..., l;_1.
Lemma

For all t > 0,
El:gt|-/rt71} € 3f(xt) o

Proof: let y € X. Since g; € 0fi,(xt), fi,(y) > fi.(xt) + (gt,y — xt). Taking
expectation conditionnal on F:_; (i.e. integrating on I;), and using that x; is

F:_1-measurable, one obtains:

f(}/) > f(Xt) + E[(gt,y - Xt|]:t—1>] = f(Xt) + <E[gt|]:t71} Y — Xt> .

More generally, SGD for the optimization of functions f that are
accessible by a noisy first-order example, i.e. for which it is possible to
obtain at every point an independent, unbiased estimate of the gradient.
Two distinct objective functions:

Ls(0) = %Z&(hg(x,-),y,-) and Lp(6) = E[ﬁ(he(X), Y)} . .



Convergence for Lipschitz convex functions

Theorem
Assume that for all /, all x € X’ and all g € 9fi(x), ||gt]| < L. Then
SGD with v, = v = L\LFT satisfies

Exactly the same bound as for GD in the Lipschitz convex case.

R
62

steps to ensure precision .

As before, it requires T, =

Bound only in expectation.

In contrast to the deterministic case, smoothness does not improve
the speed of convergence in general.

37



Proof: exactly the same as for GD

Cosinus theorem = generalized Pythagore theorem = Alkashi's theorem:
2(a, b) = ||al|* + ||l — [|la = b]> .
Hence for every 0 < t < T, since E[g¢|Fe—1] € 0f(x),

E[f(x) — F(x*)|Fea] < <E[gt|ft,1},xt - x*>

— xep1 | Feo1]5 X —X*>

1
,<E
S
E { o =P+ flxe = xea I = [l —x*||2)|ft1}

— 8 |5 (b= X2 = Iesa = <) + Hlel?| 7]

and hence, taking expectation:

A

1 L°~T
E f(x) — f(x* — — x*|1? = E[Jber—=*1PT
2 =t )]_QW(HXO | )+ =5
<LﬁR2+L2RT e
- 2R AT




A lot more to know

e Faster rate for the strongly convex case:
same proof as before.

e No improvement in general by using smoothness only.

e Ruppert-Polyak averaging.

e Improvement for sums of smooth and strongly convex functions, etc.
e Analysis in expectation only is rather weak.

e Mini-batch SGD: the best of the two worlds.

e Beyond SGD methods: momentum, simulated annealing, etc.

39



Convergence in quadratic mean

Theorem

Let (F;): be an increasing family of o-fields. For every t > 0, let f; be
a convex, differentiable, S-smooth, square-integrable, F;-measurable
function on X. Further, assume that for every x € X and every t > 1,
E[Vf(x)|Fi—1] = VF(x), where f is an a-strongly convex function
reaching its minimum at x* € X. Also assume that for all t > 0,
E[||V£(x*)|[?|Fi—1] < 02 Then, denoting = £, the SGD with

Ve = ) satisfies:

1
o (t+1+2/<a2

262||x0 — x*||2 + 25 log (5L + 1)
T + 2K2

E[llxr - x*|2] <
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Proof 1/2: induction formula for the quadratic r

We observe that
B[V, )| | Fems] < 2B [ Vi) = G | Fica] + 2B [ 9 ) | 7o
< 28%||xe—1 — x*||* + 207 .
Hence,
E[th —x"||? |Fr71] = [[xe—1 = x7||* = 27em1{xe—1 = X", VF(xem1)) + 7:271E[||Vﬁf()<r—1)“2 |fffl}
< s = x*[[? = 23enallxes — x4 ¥ B[ Ve [ 1 Fe
< (1= 2a7m1 +28°92,) | xe—1 — X7 ||? + 20792,
< (1= ayemn) s — "2+ 20797,

thanks to the fact that for all t > 0, ary: > 2/32%2 <~ 7 < a/(2ﬂ2) =~y_1, and 7; is
decreasing in t. Hence, denoting §; = E[||x; — x*||?], by taking expectation we obtain that

6 < (1 — oz'yt_l)(it_l + 2027371 .

Note that unfolding the induction formula leads to an explicit upper-bound for d;:

=1l

6r<H(1_U/W< ) + 207 Zw IT @—pw).

=l i=k+1
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Proof 2/2: solving the induction

One may either use the closed form for d;, or (with the hint of the corresponding ODE) set
ur = (t + 2x%)3, and note that

u = (t+ 2&2)&

Ui—1 2 2
<(t+2:)((1—ayey) —————— 42
< (t+2x )(( ave 1)(t_1+2n2)+ U'yt,1>
t— 1+ 2k2 _ 20%(t + 2k>
< (t+2+7) ren teot o (t+2r)
t+2k2  (t—142kK?) a?(t + 2k?)?
2072 1
=u-_1+ —

a? (t+2k?)

IN

202 & 1

up + — —
0T 2 52:1: (s + 2K?)
202
25260 + = log
«

t+ 2K2
262

IA

Hence for every t
2 2 2 .2
262150 — x* |12 + 225 log 257

t + 2K2

Remark: with some more technical work, the analysis works for all 7;, possibly of the form
v=t P forB<1: see [Bach&Moulines '11].
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