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Regularization and Structural
Risk Minimization



Overfitting

Example: linear classification with polynomial features
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— how to get the best from several hypothesis classes?


http://mlwiki.org

Nonuniform Learnability

Definition

A hypothesis class H is nonuniformy learnable if there exists a learning
algorithm A and a function m7"_’[UL :(0,1)? x H — N such that for every
€,0 € (0,1) and for every h € H, if m > m?’YLUL(e,(S, h) then with
probability at least 1 — § over the sample S ~ D®™,

Lp(A(S)) < Lp(h) +e.

Theorem

A hypothesis calss # of binary classifiers is nonuniformly learnable if
and only if fit is a countable union of agnostic PAC learnable hypothesis
classes.



Structural Risk Minimization 1/2

Let H = UgenHd, where each hypothesis class Hy is PAC learnable with
uniform convergence rate m%f and let ¢4 : N x(0,1) — (0,1) be defined

eq(m, &) = min{e € (0,1) : myS(e,0) < m} .

For every h € H let d(h) = min{d : h € H4}. Let also w : N — [0,1] be
such that > 57 w(d) < 1.

Lemma
For every 6 € (0,1) and for every distribution D, with probability at
least 1 — § over the sample S ~ D®™,

VheH, Lp(h) < Ls(h)+ ed(h)<m, W(d(h))a) .



Structural Risk Minimization 2/2

Structural Risk Minimization (SRM)

A(S) € ar’;gegin L.(h) + ed(h)<m, W(d(h))5> :

Typical choice: w(d) = ﬁ gives for SRM the nonuniform learning

rate 65
€
miU (e, 6, h) < miS, (2, 7r2d(h)2> :
If VCdim(Hq) = d, mY<(e/2,8) = C 1B and hence

8C log(2d)
€2 '

mit (e, 8, h) — mY<(e/2,8) <

Remark: other strategy = aggregation, cf PAC-Bayes learning.



Minimum Description Length and Occam’s razor

Entiae non sunt multiplicanda praeter necessitatem
(Entities are not to be multiplied without necessity)
Here: A short explanation tends to be more valid
(generalize better) than a long explanation

Suggests a choice for w(d): should penalize complexity.

More precisely: if |h| is the length of a prefix-free binary code for the
hypothesis h, set
w(h) =271
By Hoeffding's inequality, this typically yields the
Minimum Description Length (MDL) estimator:

h| + log 2
A(S) € argmin Ls(h) + Al +log § .
her 2m

This heuristic needs to be justified statistically (often possible). 6



Regularization and Stability



Stable Rules do not overfit

Theorem

Let D be a distribution on X x {£1}, S = (z1,...,2y) be an iid
sequence of examples, z’ be another independent sample of D, and let |
be an independent sample of the uniform distribution on {1,..., m}.
Forall1<i<m,let SO =(z,...,2 1,2',2i41,...,2m). Then, for
any learning alogrithm A,

Es[Lo(A(S)) = Ls(A(S))| = Es.oni[€(A(SD), 21) = £(A(S), 2)] -

Indeed, Es ./, [£(A(S"), 21)| = Es Lo (A(S))]. and Es,i [£(A(S), 21) | = Es[Ls(A(S))].
Definition

Algorithm A is said to be on-average-replace-one-stable with rate

€ : N — R if for every distribution D and every sample size m € N,

s, [E(A(S(')),z,) - z(A(S),z,)} <em.



Tikhonov Regularization as a Stabilizer

We consider a class H = {hw S Udzo Rd}.
Definition

Tikhonov's Regularized Loss Minimizer is defined as
A(S) € argmin Ls(h) + \||w]?,
hy€H
where A\ > 0 is a parameter.
With square loss on RY, the resulting estimator is called ridge regression:

m

W = arg min z Z 1(<W,x,-> —y,-)2 + A|w? = (2xmly +XTX)_1XTy ,
weRrd M i—1 2

X1 y1
X

where X = 2 and y = V2
Xm Ym



Tikhonov's RLM for convex loss is stable

Denote fs(w) = Ls(w) + Al|wl|[?. If £ is convex, then f is 2\-strongly
convex, and thus

fs(A(SD) — £5(A(S)) > A|AGSD) — AS)||?
and

fs (A(SD)) — £5(A(S)) = Ly (A(SD)) + AAGSD|* = Lsisy (A(S)) — AA(S)|?

M, z) — Z; z') — M), 2/
LA 2) M) 7) | HAS)2) ~ A )

and hence

)\HA(S('.))*A(S)||2 < E(A(S(")),Z;) —5(A(5)7z;) E(A(S)’Z/) — E(A(S(i))’z/)




Lipschitz loss

When the loss ¢(-, z) is p-Lipschitz for every z, we obtain that
2pHA(5<0) - A(S)H

m

AJAGSD) - AS)I? <

; 2
: (Y _ < 4P
when entails ||A(S") — A(S)|| < X

RLM generalizes well Lispchitz Losses

When the loss function ¢(-, z) is convex and p-Lipschitz for all z,
2
Tihkohnov's RLM is on-average-one-stable with rate iim, and hence

Bs [Lo(A(5)) - Ls(A(S))] < 22

Remark: when ¢ is S-smooth and non-negative, and when ¢(0, z) < C for
all z, one can prove that for A > % Tikhonov's RLM satisfies

485 P 485C

Es|Lo(A(S)) — Ls(A(S))| < T-E[Ls(A(9))] < S . "



Controlling Fitting-Stability Tradeoff

Fitting-stability tradeoff:
Es |Lo(A(S))] = Es[Ls(A(S))| + Es[Lo(A(S)) - Ls(A(S))]

fitting error generalization error = stability

The stronger the regularization (the larger \), the better the stability
BUT the higher the bias.

But for every h,, € H,
Es|Ls (A(S))| < Es |Ls(hu) + AlIWIP] = Lo(hw) + Allw|?

Oracle inequality

If the loss function ¢(-, z) is convex and p-Lipschitz for all z, Tikhonov's
RLM satisfies
E [L (A(S))} < inf Lp(hy) + Mw|? + 2
>[TP = hoen 00 Am
1



Corollary
If Yhy, € H,||w| < B and if the loss function ¢(-, z) is convex and

p-Lipschitz for all z, Tikhonov's RLM with A = éffn satisfies:
Es {LD(A(S))} < inf Lo(hy)+pBy/S .
= hyEH m

2 2
89623 then for every distribution D

Es {LD (A(S))} < infren Lp(hw) + €.

Hence, for every € > 0, if m >

The same kind of result can be obtained for S-smooth, non-negative
2
losses: with A = €/(3B?), for every m > %, whatever the

distribution D, Es [LD (A(S))} <infuen Lp(hw) + €.

In practice, X is most often chosen by cross-validation.

12



Example: Ridge regression generalizes well

Theorem

Let D be a distribution over X x [—1, 1], where

X={xeR?: ||x|| <1}. Let H={w e R?: |w| < B}. For any
e € (0,1), let m > my(e) = 15082 /€. Then ridge regression with
parameter \ = ¢/(3B?) satisfies:

Es {LD(A(S))] < vryeljn{ Lp(w)+¢.

Furthermore, for every § € (0,1) and every m > my(e, ) = my(€d),

PS(LD(A(S)) < min Lp(w) + e) >1-4.

Expectation to high-probability PAC learning: the sample complexity can
be reduced to my(€,8) = my(e/2)[ log,(1/8)| + ['°g(4/5)+'°§2(('0g2(1/5)1—‘
when the loss function is bounded by 1.

13



Support Vector Machines




Margin for linear separation

e Training sample S = {(x1,y1), ..., (Xm, ¥m)}, where x; € R? and
yi € {£1}.

e Linearly separable if there exists a halfspace h = (w, b) such that
Vi, y; = sign ((W,x,-> + b).

e What is the best separating hyperplane for generalization?

Distance to hyperplane
If |[w| = 1, then the distance from x to the hyperplane h = (w, b) is
d(x, 1) = [{w,x) + b|.

Proof: Check that min {|lx — v||? : v € h} is reached at
v=x—((w,x)+ b)w.

14



Hard-SVM

Formulation 1:

argmax _min [(w,x;) + b| such that Vi,y;((w,x;) + b) > 0.
(w,b):||wl|=11Sism

Formulation 2:

min |w||> such that Vi, y;((w,x;) + b) > 1.

Remark: b is not penalized.
Proposition
The two formulations are equivalent.

A~

Proof: if (wo, bo) is the solution of Formulation 2, then w = ﬁ b=k s

[wl
a solution of Formulation 1: if (w*, b*) is another solution, then letting

7" = mini<i<m yi ({w, xi) + b) we see that (:—:, :—i) satisfies the constraint of
Formulation 2, hence ||wo]| < Hjﬁ = -+ and thus
minlg,-gm |<W,X,‘> - b! = H'jOH > ’y*.

15



Sample Complexity

Definition

A distribution D over RY x {41} is separable with a (v, p)-margin if
there exists (w*, b*) such that |[w*|| = 1 and with probability 1 on a
pair (X, Y) ~ D, it holds that | X|| < p and Y ((w*, X) + b) > ~.

Remark: by multiplying the x; by «, the margin is mutliplied by a.
Theorem

For any distribution D over R? x {+£1} that satisfies the

(7, p)-separability with margin assumption using a homogenous
halfspace, with probability at least 1 — ¢ over the training set of size m
the 0 — 1 loss of the output of Hard-SVM is at most

\/4(/)/7)2 +\/2|0g,(n2/5)].

m

Remark: depends on dimension d only thru p and 7.
16



When the data is not linearly separable, allow slack variables &;:

m|n )\||WH + = Z{, such that Vi, y; ((w,x;) + b) > 1 —¢ and & >0

i=1

= miB Alwl|? + L2 (w, b)  where (""8°(u) = max(0,1 — u) .

Theorem

Let D be a distribution over B(0, p) x {£1}. If A(S) is the output of
the soft-SVM algorithm on the sample S of D of size m,

. ' 2
E[L5(A(S))| < E[L5™(A(S))] < inf L3 (u) + Allul® + iim

For every B > 0, setting A = % yields:

e[ s ] < B[t )] < o 1+

17



Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

m 0 if Vi, yi{w,x;) > 1,
g(w) = max Za;(l — yi{w, X)) = .
a€[0,+o00)m 4 +o00 otherwise .

Then the hard-SVM problem is equivalent to

1 1
L) LI §HW||2 = min §HW||2 +g(w)

2
= min nax — || W + o 17 w, X,
€, ” H ,El i y1< />)

min—max thm

2
BT+ D1yl x).

m
The inner min is reached at w = Za;y,-x,- and can thus be written as
i=1

(o QioGViVilXis Xi) .
aERma>OZ ! Z 1915 %, %)

2 ivem 18



Support vectors

Still for the homogeneous case of hard-SVM:

Property

Let wp be a solution of and let / = {i : |(wo,x;)| = 1}. There exist

Qai,...,0m such that
Wp = E QX .

iel

The dual problem involves the x; only thru scalar products (x;, x;).
It is of size m (independent of the dimension d).
These computations can be extended to the non-homogeneous soft-SVM

— Kernel trick.

19



Numerically solving Soft-SVM

f(w) = 2lwl|? + LE™%(w) is A-strongly convex.
— Stochastic Gradient Descent with learning rate 1/(At). Stochastic
subgradient of Lg"8°(w) : vi = —y;,x;, 1{y;, (w,x,) < 1}.

t

1 t—1 1 1
Wt+1:Wt_E()\Wt+Vt):th_ﬁvt:_ﬁgvt o

Algorithm: SGD for Soft-SVM

1 Set =0

2fort=0...T —1do

3 Let w; = %Gt

4 Pickltwu({l,...,m})

5 if v, (we, x;,) <1 then

6 | 01 < O+ yix,

7 else

8 t Or 1 < 0;

9 return wr = + Zt 0 Wi 20
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