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Overview

1. Best-Arm Identification: the true complexity, and how to reach it
joint work with Emilie Kaufmann, accepted at COLT’16

2. Why should we use sequential methods?
joint work with Emilie Kaufmann and Tor Lattimore, submitted to NIPS’16

3. Regret minimization: what the Lai&Robbins lower bound does not

say
joint work with Pierre Mnard and Gilles Stoltz, submitted

4. (Bandit and Games: optimizing short tree exploration)
joint work with Emilie Kaufmann and Wouter Koolen, accepted at COLT’16

5. (Fading bandits: already presented by J. Loudec)
joint work with J. Loudec, L. Rossi, M. Chevallier and J. Mothe, accepted at CAP’16
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Best-Arm Identification: the True Complexity, and How to

Reach it

Goal : identify the best arm, a∗, as fast/accurately as possible.

⇒ optimal exploration

The agent’s strategy is made of:

• a sequential sampling strategy (At)

• a stopping rule τ (stopping time)

• a recommendation rule âτ

Possible goals:

Fixed-budget setting Fixed-confidence setting

τ = T minimize E[τ ]

minimize P(âτ 6= a∗) P(âτ 6= a∗) ≤ δ

Motivation: Market research, A/B Testing, clinical trials...
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A New Lower Bound

Theorem

For any δ-PAC algorithm,

Eµ[τ ] ≥ T ∗(µ) log

(
1

2.4δ

)
,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

Moreover, the vector

w∗(µ) = argmax
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)

contains the optimal proportions of arm draws.
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Sampling Rule: Tracking the Optimal Proportions

µ̂(t) = (µ̂1(t), . . . , µ̂K (t)): vector of empirical means

• Introducing

Ut = {a : Na(t) <
√
t},

the arm sampled at round t + 1 is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

[t w∗a (µ̂(t))− Na(t)] (tracking)

Lemma

Under the Tracking sampling rule,

Pµ

(
lim
t→∞

Na(t)

t
= w∗a (µ)

)
= 1.

6



Chernoff’s Stopping Rule: SGLRT

High values of the Generalized Likelihood Ratio

Za,b(t) := log
max{λ:λa≥λb} `(X1, . . . ,Xt ;λ)

max{λ:λa≤λb} `(X1, . . . ,Xt ;λ)
,

reject the hypothesis that (µa < µb).

We stop when one arm is assessed to be significantly larger than all other

arms, according to a SGLR Test:

τδ = inf {t ∈ N : ∃a ∈ {1, . . . ,K},∀b 6= a,Za,b(t) > β(t, δ)}

= inf

{
t ∈ N : max

a∈{1,...,K}
min
b 6=a

Za,b(t) > β(t, δ)

}
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An asymptotically optimal algorithm

Theorem

The Track-and-Stop strategy, that uses

• the Tracking sampling rule

• the Chernoff stopping rule with β(t, δ) = log
(

2(K−1)t
δ

)
• and recommends âτ = argmax

a=1...K
µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
= T ∗(µ).
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Numerical experiments

Experiments on two Bernoulli bandit models:

• µ1 = [0.5 0.45 0.43 0.4], such that

w∗(µ1) = [0.417 0.390 0.136 0.057]

• µ2 = [0.3 0.21 0.2 0.19 0.18], such that

w∗(µ2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to β(t, δ) = log
(

log(t)+1
δ

)
.

Track-and-Stop Chernoff-Racing KL-LUCB KL-Racing

µ1 4052 4516 8437 9590

µ2 1406 3078 2716 3334

Table 1: Expected number of draws Eµ[τδ] for δ = 0.1, averaged over

N = 3000 experiments.
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Why should we use sequential methods?

• Two Gaussian arms with variance 1

• Gap ∆ known or unkown

• We know how to find the best arm ”optimally”

• Can we perform exploration at the beginning?

• Are Explore-Then-Commit strategies optimal?

11



Fixed-Budget ETC: Algorithm

input: T and ∆

n :=
⌈

2W
(
T 2∆4/(32π)

)
/∆2

⌉
for k ∈ {1, . . . , n} do

choose A2k−1 = 1 and A2k = 2

end for

â := argmaxi µ̂i,n

for t ∈ {2n + 1, . . . ,T} do

choose At = â

end for

Algorithm 1: FB-ETC algorithm
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Fixed-Budget ETC: Regret Bound

Theorem

Let µ ∈ H∆, and let n =
⌈

2
∆2 W

(
T 2∆4

32π

)⌉
. Then

Rn
µ(T ) ≤ 4

∆
log

(
T∆2

4.46

)
− 2

∆
log log

(
T∆2

4
√

2π

)
+ ∆

whenever T∆2 > 4
√

2πe, and Rn
µ(T ) ≤ T∆/2 + ∆ otherwise. In all

cases, Rn
µ(T ) ≤ 2.04

√
T + ∆. Furthermore, for all ε > 0,T ≥ 1 and

n ≤ 4(1− ε) log(T )/∆2,

Rn
µ(T ) ≥

(
1− 2

n∆2

)(
1− 8 log(T )

∆2T

)
∆T ε

2
√
π log(T )

.

As Rn
µ(T ) ≥ n∆, this entails that inf

1≤n≤T
Rn
µ(T ) ∼ 4 log(T )/∆.
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ETC, Known Gap: Algorithm

input: T and ∆

A1 = 1,A2 = 2, s := 2

while (s/2)∆ |µ̂1(s)− µ̂2(s)| < log
(
T∆2

)
do

choose As+1 = 1 and As+2 = 2

s := s + 2

end while

â := argmaxi µ̂i (s)

for t ∈ {s + 1, . . . ,T} do

choose At = â

end for

Algorithm 2: SPRT ETC algorithm
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ETC, Known Gap: Regret Bound

Theorem

If T∆2 ≥ 1, then the regret of the SPRT-ETC algorithm is upper-

bounded as

RSPRT-ETC
µ (T ) ≤ log(eT∆2)

∆
+

4
√

log(T∆2) + 4

∆
+ ∆ .

Otherwise it is upper bounded by T∆/2 + ∆, and for all T and ∆ the

regret is less than 10
√
T/e + ∆.
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General Strategy, Known Gap: Algorithm

1: input: T and ∆

2: εT = ∆ log−
1
8 (e + T∆2)/4

3: for t ∈ {1, . . . ,T} do

4: let At,min := arg min
i∈1,2

Ni (t − 1) and At,max = 3− At,min

5: if µ̂At,min (t− 1) +

√√√√2 log
(

T
NAt,min

(t−1)

)
NAt,min (t − 1)

≥ µ̂At,max (t− 1) + ∆− 2εT

then

6: choose At = At,min

7: else

8: choose At = At,max

9: end if

10: end for

Algorithm 3: ∆-UCB
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General Strategy, Known Gap: Regret Bound

Theorem

If T (2∆− 3εT )2 ≥ 2 and T ε2
T ≥ e2, the regret of the ∆-UCB algorithm

is upper bounded as

R∆-UCB
µ (T ) ≤

log
(
2T∆2

)
2∆(1− 3εT/(2∆))2

+

√
π log (2T∆2)

2∆(1− 3εT/∆)2

+ ∆

[
30e
√

log(ε2
TT )

ε2
T

+
80

ε2
T

+
2

(2∆− 3εT )2

]
+ 5∆.

Moreover lim supT→∞ R∆-UCB
µ (T )/ log(T ) ≤ (2∆)−1 and

∀µ ∈ H∆, R
∆-UCB
µ (T ) ≤ 328

√
T + 5∆.

17



ETC, Unkown Gap: Algorithm

input: T (≥ 3)

A1 = 1,A2 = 2, s := 2

while |µ̂1(s)− µ̂2(s)| <
√

8 log(T/s)
s do

choose As+1 = 1 and As+2 = 2

s := s + 2

end while

â := argmaxi µ̂i (s)

for t ∈ {s + 1, . . . ,T} do

choose At = â

end for

Algorithm 4: BAI-ETC algorithm
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ETC, Unkown Gap: Algorithm: Regret Bound

Theorem

If T∆2 > 4e2, the regret of the BAI-ETC algorithm is upper bounded

as

RBAI-ETC
µ (T ) ≤

4 log
(

T∆2

4

)
∆

+

334

√
log
(

T∆2

4

)
∆

+
178

∆
+ ∆.

It is upper bounded by T∆ otherwise, and by 32
√
T + ∆ in any case.
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General Strategy, Unkown Gap: Algorithm

1: input: T

2: for t ∈ {1, . . . ,T} do

3: At = argmax
i∈{1,2}

µ̂i (t − 1) +

√
2

Ni (t − 1)
log

(
T

Ni (t − 1)

)
4: end for

Algorithm 5: UCB∗
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General Strategy, Unkown Gap: Regret Bound

Theorem

For all ε ∈ (0,∆), if T (∆ − ε)2 ≥ 2 and T ε2 ≥ e2, the regret of the

UCB∗ strategy is upper bounded as

RUCB
∗

µ (T ) ≤
2 log

(
T∆2

2

)
∆
(
1− ε

∆

)2 +

2

√
π log

(
T∆2

2

)
∆
(
1− ε

∆

)2

+ ∆

(
30e
√

log(ε2T ) + 16e

ε2

)
+

2

∆
(
1− ε

∆

)2 + ∆.

Moreover, lim supT→∞ Rπµ (T )/ log(T ) = 2/∆ and for all µ ∈ H,
Rπµ (T ) ≤ 33

√
T + ∆.
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In a Nutshell

All those results come with a matching asymptotic lower bound

ΠALL ΠETC ΠDETC

H 2 4 NA

H∆ 1/2 1 4

=⇒ fully sequential methods are much better!

( =⇒ Lai&Robbins bound is not a lower bound)
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Regret Minimization: What the
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Not Say



A Simple Experiment

50 100 200 500 1000 2000 5000 10000 20000 50000

0
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10

0

FB−ETC : 3.65
BAI−ETC : 2.98
UCB : 1.59
SPRT−ETC : 1.03
D−UCB : 0.77

Regret of the five strategies for a bandit problem with ∆ = 1/5 and different

values of the horizon (4.105 Monte-Carlo replications). In the legend, the

estimated slopes of ∆Rπ(T ) (in logarithmic scale) are indicated after the

policy names.
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Regret Minimization: What the Lai&Robbins Lower Bound

Does Not Say

• New lower bound: For every FT measurable rv in [0, 1],

K∑
a=1

Eµ
[
Na(T )

]
kl(µa, µ

′
a) ≥ kl

(
Eµ[Z ],Eµ′ [Z ]

)
• → non-asymptotic Lai&Robbins

• → short-horizon lower bounds

• In mind: multiple action bandits, combinatorial bandits: the

log(T )/∆ bound is not relevant!
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Non-asymptotic Lai&Robbins

Theorem

For all super-consistent strategies ψ on well-behaved models D, for all
bandit problems ν in D, for all suboptimal arms a,

Eν
[
Na(T )

]
≥ lnT

Kinf(νa, µ?)
− (aT + bT + cT ) lnT − ln 2

Kinf(νa, µ?)
, (1)

for all T ≥ 2 large enough so that

aT =
ω(νa, µ

?)

Kinf (νa, µ?)
(ln T )−4

, bT = Cψ,DH(ν)
ln T

T
, cT =

ln
(
K Cψ,D(ln T )9

)
ln T

,

are all smaller than 1.
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Short-Horizon Lower Bound 1

Theorem

For all strategies ψ that are smarter than the uniform strategy, for all

bandit problems ν, for all arms a, for all T ≥ 1,

Eν
[
Na(T )

]
≥ T

K

(
1−

√
2TKinf(νa, µ?)

)
.

In particular,

∀T ≤ 1

8Kinf(νa, µ?)
, Eν

[
Na(T )

]
≥ T

2K
.
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Short-Horizon Lower Bound 2

Theorem

For all strategies ψ that are pairwise symmetric for optimal arms, for all

bandit problems ν, for all suboptimal arms a and all optimal arms a?,

for all T ≥ 1,

either Eν
[
Na(T )

]
≥ T

K

or

Eν

[
max

{
Na(T ), 1

}
max

{
Na?(T ), 1

}] ≥ 1− 2

√
2T KL(νa, νa?)

K
.
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Short-Horizon Lower Bound 3

Theorem

For all strategies ψ that are pairwise symmetric for optimal arms and

monotonic, for all bandit problems ν,

∑
a 6∈A?(ν)

Eν
[
Na(T )

]
≥ T

(
1− A?ν

K
−

A?ν
√

2T Kmax
ν

K
− 2A?νTKmax

ν

K

)
,

where Kmax
ν = min

w∈W(ν)
max

a?∈A?(ν)
KL(νw , νa?) .

In particular, the regret is lower bounded according to

Rν,T ≥
(

min
a 6∈A?(ν)

∆a

)
T

(
1− A?ν

K
−

A?ν
√

2T Kmax
ν

K
− 2A?νTKmax

ν

K

)
.
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