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Best-Arm Identification: the true complexity, and how to reach it
joint work with Emilie Kaufmann, accepted at COLT'16

. Why should we use sequential methods?

joint work with Emilie Kaufmann and Tor Lattimore, submitted to NIPS'16
Regret minimization: what the Lai&Robbins lower bound does not
say

joint work with Pierre Mnard and Gilles Stoltz, submitted

(Bandit and Games: optimizing short tree exploration)
joint work with Emilie Kaufmann and Wouter Koolen, accepted at COLT'16

(Fading bandits: already presented by J. Loudec)
joint work with J. Loudec, L. Rossi, M. Chevallier and J. Mothe, accepted at CAP'16
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Best-Arm ldentification: the True Complexity, and How to

Reach it

Goal : , as fast/accurately as possible.

= optimal exploration

The agent's strategy is made of:

e a sequential sampling strategy (A;)
e a stopping rule 7 (stopping time)
e a recommendation rule 4,

Possible goals:

Fixed-budget setting | Fixed-confidence setting

T=T minimize E[7]
minimize P(4, # a*) P(a; #a*) <

Motivation: Market research, A/B Testing, clinical trials...



A New Lower Bound

For any 6-PAC algorithm,

Ep[r] > |Og<2::6>

where

WEZK AEALL(p)

K
T*(N)_l = sup inf (Z Wad Ma, a > .
=il
Moreover, the vector

* - f a as a
w* () = argmax )\EIAI’}t (ZW ( >

WEX K

contains the



Sampling Rule: Tracking the Optimal Proportions

o(t) = (f1(t),. .., fik(t)): vector of empirical means
e Introducing

Ue = {a: Ny(t) < Vt},

the arm sampled at round t + 1 is

argmin N,(t) if U # 0 ( )
At+1 c aeU; o
argmax [t wy (A(t)) — Na(t)]  ( )
1<a<K
Lemma

Under the Tracking sampling rule,

P fim 2 = wi)) =1

t—o0



Chernoff’s Stopping Rule: SGLRT

High values of the Generalized Likelihood Ratio

. O( X1, .., Xep A
Z,.5(t) = log MaXex: >N} (X1, i A)

reject the hypothesis that (. < fp).

We stop when
, according to a SGLR Test:

inf{te N:3Jae {1,...,K},Vb+# a,Z,p(t) > 5(t,9)}

inf {t e N: max rg;ién Z,p(t) > B(t.,é)}

ae{l,...,.K}
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An asymptotically optimal algorithm

The Track-and-Stop strategy, that uses

the

. (K1)t
the with G(t, ) = Iog( ( 5 ) )
and recommends &, = argmax [i,(7)

a=1...K

is 9-PAC for every ¢ €]0, 1] and satisfies

. Eulrs] _ .
i SsP iog(1/s) — | W)




Numerical experiments

Experiments on two Bernoulli bandit models:
e py1 =[0.50.45 0.43 0.4], such that
w*(p1) = [0.417 0.390 0.136 0.057]
e 1y =[0.30.21 0.2 0.19 0.18], such that
w*(p2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to

Track-and-Stop | Chernoff-Racing | KL-LUCB | KL-Racing
1 4052 4516 8437 9590
o 1406 3078 2716 3334

Table 1: Expected number of draws E,[75] for § = 0.1, averaged over
N = 3000 experiments.



Why should we use sequential
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Why should we use sequential methods?

e Two Gaussian arms with variance 1

Gap A known or unkown

We know how to find the best arm "optimally”

Can we perform exploration at the beginning?

e Are Explore-Then-Commit strategies optimal?
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Fixed-Budget ETC: Algorithm

input: 7 and A
ni= [2w(T24%/(32m)) /7]
for k € {1,...,n} do
choose Asi_1 =1 and Ay =2

end for

a = argmax; flj n

fort € {2n+1,...,T} do
choose A; = 3

end for

Algorithm 1: FB-ETC algorithm
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Fixed-Budget ETC: Regret Bound

Theorem

Let p€ Ha, and let 7= | ZW (T2 )]. Then

- 4 T A2
R“(T)<|og< ) +A

A 4.46

whenever TA? > 4\/2me, and R](T) < TA/2+ A otherwise. In all
cases, RZ( T) < 2.04V'T + A. Furthermore, for all ¢ > 0, T > 1 and
n<4(1—¢)log(T)/ A2,

B> (1-7) (037 s

As R)(T) > nA, this entails that iniT Ri(T) ~ 4log(T)/A.

1<n
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ETC, Known Gap: Algorithm

input: 7 and A

Al=1A=2s5:=2

while (s/2)A |f1(s) — fiz(s)| < log (TA?) do
choose As11 =1 and Agyp =2
si=s+4+2

end while

4 := argmax; 1;(s)
fortc{s+1,...,T} do
choose A; = 4

end for

Algorithm 2: SPRT ETC algorithm
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ETC, Known Gap: Regret Bound

Theorem

If TA? > 1, then the regret of the SPRT-ETC algorithm is upper-
bounded as

RSPRIETC(T) < log(eTA?) 4\/ log( TA2 )+ 4
" S A

Otherwise it is upper bounded by TA/2 + A, and for all T and A the
regret is less than 10,/ T /e + A.
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General Strategy, Known Gap: Algorithm

input: 7 and A
1
er = Alog~#(e+ TA?)/4
fort€{1,...,T} do
let At min := argmin N;(t — 1) and At max = 3 — At.min

i€1,2
=
2log (NAr,mmufl))
NAr,min (t - 1)

= ® R

5. if g, (E— 1)+
then

> [1A, g (t = 1) + A =2e7

6: choose A = At min
i else

8: choose A = At max
9: end if

10: end for

Algorithm 3: A-UCB
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General Strategy, Known Gap: Regret Bound

Theorem

If T(2A — 3e7)? > 2 and Te2T > €2, the regret of the A-UCB algorithm
is upper bounded as

RAUCB(TY < log (2TA2) /log (2T A?)
o (1) < 2A(1 —3e1/(2A))? © 2A(1 — 3e7/A)?

30e+/I 27 0 2
_|_A %_’_i_’_

€ e (2A — 3et)?

-+ 5A.

Moreover lim sup_, ., R3V*(T)/log(T) < (24)~* and
Vi € Ha, RAIVE(T) < 328VT +5A.
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ETC, Unkown Gap: Algorithm

input: T(> 3)

Al=1,A=2,s5:=2

while |11 (s) — fi2(s)| <
choose As11 =1 and Agyp =2
s:=s+4+2

end while

8log(T/s)
gf do

4 := argmax; [i;(s)
fortc{s+1,...,T} do
choose A; = 3

end for

Algorithm 4: BAI-ETC algorithm
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ETC, Unkown Gap: Algorithm: Regret Bound

Theorem

If TA? > 4€?, the regret of the BAI-ETC algorithm is upper bounded
as

alog (127) 334 log (7)1

BAI-ETC < -re )
RE(T) < i + B +5 A

It is upper bounded by TA otherwise, and by 32v/T + A in any case.
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General Strategy, Unkown Gap: Algorithm

1: input: T
:forte{l,..., T} do

2 T
3: Ay = argmax [ij(t — 1) + /| ————= log ()
" e (t=1) \/N,-(t -1) Ni(t —1)
4: end for

N

Algorithm 5: UCB*
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General Strategy, Unkown Gap: Regret Bound

Theorem

For all € € (0,A), if T(A —¢€)?> > 2 and Te*> > e, the regret of the
UCB* strategy is upper bounded as

Ry(T) < 2is (- 2 2“ﬂlog<TTA2)

. Al-3%) Al-£)°
A <3Oe\/|og(e227') + 16e> . 2 N
¢ Al-%)

Moreover, limsupr_, . R7(T)/log(T) =2/A and for all n € H,
RT(T) < 33VT +A.
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All those results come with a

Mace Mete MpeTc

H 2 4 NA

Ha 1/2 1 4

= fully sequential methods are much better!

(= Lai&Robbins bound is not a lower bound)
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Regret Minimization: What the
Lai&Robbins Lower Bound Does
Not Say




A Simple Experiment
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Regret of the five strategies for a bandit problem with A = 1/5 and different
values of the horizon (4.10°> Monte-Carlo replications). In the legend, the
estimated slopes of AR™(T) (in logarithmic scale) are indicated after the
policy names.
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Regret Minimization: What the Lai&Robbins Lower Bound

Does Not Say

e New lower bound: For every Fr measurable rv in [0, 1],
K
> By [Na(T)]KI(pta, 1) > KI(E,[Z], By [2])
a=1

e — non-asymptotic Lai&Robbins

e — short-horizon lower bounds

In mind: multiple action bandits, combinatorial bandits: the
log(T)/A bound is not relevant!
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Non-asymptotic Lai&Robbins

Theorem

For all super-consistent strategies 1) on well-behaved models D, for all
bandit problems v in D, for all suboptimal arms a,

In T In2
E,[Ny(T)] > = — (ar + b nT—— . (1
[Na(T)] Cing(Va, 1) (a7 + b7 +cr)ln KCint (Va, 11*) (1)

for all T > 2 large enough so that

w(Vay p*) —a InT In(K Cy,p(In T)%)
= 2" " (InT)™*, br = Cy,pH(v)—, =—— 7
a7 K:inf(l/wu*)(n ) : g P (U) T T InT

are all smaller than 1.
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Short-Horizon Lower Bound 1

Theorem

For all strategies 1) that are smarter than the uniform strategy, for all
bandit problems v, for all arms a, for all T > 1,

T
> —

E, [No(T)] > K(1— 2T Koni (v, u*)).

In particular,
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Short-Horizon Lower Bound 2

Theorem

For all strategies 1) that are pairwise symmetric for optimal arms, for all
bandit problems v, for all suboptimal arms a and all optimal arms a*,
forall T > 1,

) T

either E,[N,(T)] > =

or

5 1_9 2T KL(va, var)

max{Na(T), 1}
! e o)

max{Na*(T), 1}
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Short-Horizon Lower Bound 3

Theorem

For all strategies v that are pairwise symmetric for optimal arms and
monotonic, for all bandit problems v,

AL AL2TKD™ A TET™
Z Eu[Na(T)]ZT<1K K - K >,
agA*(v)

where K™ = min  max KL(vy,va).
wEW(v) a* € A*(v)

In particular, the regret is lower bounded according to
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