
3 Multi-armed bandits and beyond

3 Multi-armed bandits and beyond

Note takers: Achddou J., Barrier, Chapuis, Ganassali, Haddouche, Marthe, Saad, Tarrade, Van
Assel

Instructor: Shipra Agrawal (Columbia University)

3.1 Introduction

When learning from sequential interactions, there is a tradeo� between:

• information and rewards:

• learning and optimization,

• exploration and exploitation.

In a nutshell, your goal is to get a maximal reward at each round and you have to choose
between:

• exploitation: choosing an option that ensures you a good reward using information that
you gathered in the past,

• exploration: choosing an option that has been less pro�table in the past but on which
you did not collect enough information, which might cost you a bad immediate reward
but will allow you to understand better the system and thus obtain better rewards in the
future.

We will start with introducing the basic Multi-armed Bandits problem. Multi-armed Bandits
and Reinforcement Learning problems deal with the tradeo�s hereabove, gathered under the
term exploration/exploitation dilemma.
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3 Multi-armed bandits and beyond

Examples:

• Learn from customer’s feedback to improve what products to show on internet. In this
case, the outcome is whether or not the customer purchased the product,

• Machines at the casino : which one to put money on?

Given an amount of money, you are free to choose in which machine(s) you will put it.
Your goal is to maximize the money you will earn in total.

Are you gonna try only one machine? Or all of them uniformly at the beginning, and
then stop to use the bad ones?

When to stop trying (exploration) and start playing (exploitation)?

Stochastic Multi-armed Bandit problem (MAB). We consider a setting of online decisions:
at every round C ∈ [) ] = {1, . . . ,) }, we pull one arm 8C ∈ {1, . . . , # } out of # arms using past
information.

As a feedback, for each arm 8 ∈ [# ], a reward A8,C is generated i.i.d. from a �xed but unknown
distribution with support in [0, 1] and mean `8 . The learner only observes the reward AC = A8C ,C
of the pulled arm 8C . The mean of the reward at time C (knowing that arm 8C has been selected)
is thus `8C .

The goal is to minimize the regret compared to the best arm 8∗ = arg max8 `8 :

Regret() ) = E
[ ∑
C ∈[) ]

`∗ − `8C
]
= ) `∗ −

∑
C ∈[) ]

E[`8C ]

where `∗ = `8∗ = max8 `8 (note that 8C is a random variable, hence the expectation in the
de�nition of '() )).

If we know the best arm 8∗, we can play 8C = 8∗ at every round and get the optimal reward
) `∗ (and regret 0): the regret is de�ned as the di�erence between what one could ideally have
obtained and what we actually got at the end.

For each arm 8 , denoting by Δ8 = `
∗ − `8 its gap and by :8 () ) its number of pulls up to time ) ,

the expected regret can be rewritten as

Regret() ) =
∑
8≠8∗

Δ8E[:8 () )]

Of course, a strategy that learns something from the data will diminishes the observation
frequency of any sub-optimal arm, hence its regret might be sublinear. At the opposite, if the
proportions of pulls of sub-optimal arms do not evolve with time, the strategy does not learn
anything and the regret is linear.
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3 Multi-armed bandits and beyond

Outline. We will �rst cover basic algorithms involving UCB and Thompson Sampling. Then
we will see useful generalizations: contextual bandits, bandits with constraints, assortment of
bandits. We will �nally study bandit techniques for MDP/RL.

The need for exploration. We will use a toy example to highlight how randomness forces
the use of exploration.

We consider # = 2 arms: blue and red, with respective means `1 = 1.1 and `2 = 1. The optimal
expected reward in this case is 1.1 ×) .

A �rst natural strategy consists to simply pull the arm with the current best estimate (MLE/empirical
mean) of unknown mean. This strategy is called Follow-The-Leader.

But we will see that initial trials can be misleading. Assume for instance that arm red is a Dirac
distribution at 1: the associated sequence of rewards will be 1, 1, 1, . . . . If arm blue has quite a
large variance, there is a positive probability that its empirical mean after a few trials will be
lower than 1.

On this event denoted by �, you will then pull the red arm at every time step (as it empirical
mean 1 will never go down under the empirical mean of the blue arm. Thus your expected
regret after ) steps will satisfy

Regret() ) & P(�) × 0.1)

hence the regret will be linear in ) : the strategy fails to learn anything on event �. To correct
this misbehaviour you have to pay attention to exploration!

As already explained, a good algorithm will have to balance between:

• exploitation: play the empirical mean reward maximizer,

• exploration: play less explored actions to ensure the convergence of empirical estimates.

3.2 Lower bounds

An algorithm has no way to know whether an arm is sub-optimal before it plays it. Thus it
will have to observe sub-optimal arms at least a few times, leading to a non-negative regret.
This has been quanti�ed in the literature by Lai and Robbins (1985): for any given instance
µ = (`1, . . . , `# ) of the MAB problem, any "reasonable" algorithm will play a sub-optimal arm 8

at least Ω( log() )
Δ2
8

) times for large ) , hence a minimal regret of

Regret() ) & log() )
∑
8≠8∗

1
Δ8
.

This bound is instance-dependant: it depends on the distributions of the bandit parameter µ,
more speci�cally through the gaps Δ8 .
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3 Multi-armed bandits and beyond

Remark. Imagine a strategy that always selects 8C = 1: it will have a 0 regret among all bandit
parameters such that 8∗ = 1, but a linear regret among all other bandit parameters. Then this is
not a good strategy, and this is the kind of strategy we remove when considering only "reasonable"
strategies.

On the other hand, there also exists a worst case bound: for every algorithm, there exists a
bandit parameter for which '() ) = Ω(

√
#) ).

3.3 The Upper Confidence Bound algorithm (Auer 2002)

The strategy. We de�ne the empirical mean at time C for am 8 as follows:

ˆ̀8,C =
∑
B∈[C ] AB18B=8
:8 (C)

.

As we already discussed, the empirical mean is not su�cient to capture the need for exploration.
The idea of the UCB algorithm is to combine at each time C and for each arm 8 both an exploitation
term (the empirical mean) and an exploration term (which is a bonus that decreases with the
number of pulls) into an index denoted by UCB8,C :

UCB8,C = ˆ̀8,C︸︷︷︸
exploitation term

+ 2

√
log C
:8 (C)︸    ︷︷    ︸

exploration term

The strategy is optimistic: we know that `8 belongs to the con�dence interval [ ˆ̀8,C ± 2
√

log C
:8 (C ) ]

w.h.p. and we take the highest value of this interval as basis: UCB8,C overestimates `8 . While
increasing the number of observations this con�dence region will shrink to {`8}.

The UCB algorithm plays at time C the arm with the best optimistic estimates, as explained in
Algorithm 1.

Regret analysis of UCB. Recall the expression of regret:

Regret() ) =
∑
8≠8∗

Δ8E[:8 () )]

We assume optimistically that for any 8 ,*��8,C > `8 .

First we bound the number of mistakes E[:8 () )] for all suboptimal arms 8 ≠ 8∗.

A bound of E[:8 () )] ≤ � log)
Δ2
8

.

Arm 8 will be played at time C only if UCB8,C > UCB8∗,C .
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3 Multi-armed bandits and beyond

Input: number of arms # , number of steps )
Observe each arm once
C ← # while C < ) do

for each arm 8 do

Compute UCB8,C = ˆ̀8,C +
√

4 log C
:8 (C )

end
8C+1 ← arg max8 UCB8,C
Observe AC+1 = A8C+1,C
C ← C + 1

end
Algorithm 1: Upper Confidence Bound

If =8,C > 16 log)
Δ2
8

, we get | ˆ̀8,C − `8 | ≤ Δ8
2 with probability 1− 1

) 2 using Azuma-Hoe�ding inequality,
and then

UCB8,C − ˆ̀8,C =

√
4 log C
=8,C

≤ Δ8
2

With high probability, arm 8 will not be pulled more than 16 log() )
Δ2
8

(bound on expected number
of mistakes), thus with high probability

Regret() ) ≤ 16 log() )
∑
8≠8∗

1
Δ8

3.3.1 Thompson Sampling (Thompson 1933)

Thompson Sampling is a Bayesian algorithm. The general idea is to maintain belief about
parameters (e.g. mean reward) of each arm. Then observe the feedback, update the belief of
pulled arm in a Bayesian manner. Belief update is performed using Bayes rule: the posterior is
proportional to the product of likelihood and prior. Importantly, we don’t try to estimate the
parameters in this setting.

We pull the arm by sampling from the posterior probability of being the best arm. Note that
this is di�erent than choosing the arm that is the most likely to be the best.

The main intuition of maintaining Bayesian posteriors is the following:

• When the number of trials increases, the posterior concentrates on the true parame-
ters. This phenomenon enables exploitation, as the mode of the posterior captures the
maximum likelihood estimate.

• Moreover, uncertainty is high when the number of trials is small. This variance captures
the uncertainty about the arms and enables exploration.
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3 Multi-armed bandits and beyond

Example of Bernoulli rewards with Beta priors. In the case of Bernoulli rewards, we pick
the Beta distribution since it is conjugate (it is important because drawing a point according
to updated Bayesian posterior may be costly in the general case and often requires MCMC
methods). If you take Beta(U, V) as a prior, then the posterior is updated as follows:

• Beta(U + 1, V) if you observe 1.

• Beta(U, V + 1) if you observe 0.

Note that every time you observe a sample, the variance decreases1.

We start with a Beta(1, 1) distribution as prior belief for every arm. Then in round C :

• for every arm 8 , sample \8,C independently from current posterior Beta((8,C + 1, �8,C + 1),
where:

(8,C =
∑

B∈[C−1]
1AB=118B=8 and �8,C =

∑
B∈[C−1]

1AB=018B=8 ,

• play arm 8C+1 = arg max8 \8,C ,

• observe reward and update the Beta posteriors

�8,C+1 =

{
�8,C if 8 ≠ 8C+1
�8,C + 1AC+1=0 if 8 = 8C+1

and (8,C+1 =

{
(8,C if 8 ≠ 8C+1
(8,C + 1AC+1=1 if 8 = 8C+1

Example of continuous rewards with Gaussian priors. We take a standardN(0, 1) prior.
The reward likelihood isN( ˆ̀, 1) such that the posterior after = independent observations simply
takes the form N( ˆ̀, 1

=+1 ) where ˆ̀ is the empirical mean.

Start with N(0, a2) prior belief for every arm. Then in round C :

• for every arm 8 , sample \8,C independently from current posterior N( ˆ̀8,C−1,
a2

=8 (C−1)+1 ),

• play arm 8C = arg max8 \8,C ,

• observe reward and update the empirical mean ˆ̀8,C .

Remark: In practice Thompson sampling seems to be more e�cient in general than UCB since
UCB involves the optimistic assumption of the overestimation of the mean which may not be
realistic.

Why does it work? For the sake of simplicity, we come back to the two arms example: we
consider two arms with `1 ≥ `2, Δ = `1 − `2. In this case we directly have that if arm 2 is pulled,
the regret is Δ.

We want to bound the number of pulls of arm 2 by log)
Δ2 to get a log)

Δ regret bound.

1the variance of Beta(U, V) is UV

(U+V)2 (U+V+1)
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3 Multi-armed bandits and beyond

How many pulls of arm 2 are actually needed?

After = ≥ 16 log() )
Δ2 pulls of arm 2 and arm 1.

Using Azuma-Hoe�ding, one has : | ˆ̀8 − `8 | ≤
√

log() )
=
≤ Δ

4 with high probability. So the arms
are well separated.

Beta posteriors are well separates: their mean is U8
U8+V8 = ˆ̀8 and standard deviation about

1√
U + V

=
1
√
=
≤ Δ

4

Thus the 2 arms can be distinguished and arm 2 will not be pulled anymore. Hence the
importance of verifying both arms have been pulled enough to ensure the consistency of our
result.

Extension to multiple arms. One has the following kind of results:

P(0C = 0∗ |�C−1) ≥
?

1 − ? P(0C = 0 |�C−1)

where ? is the probability of anti-concentration of posterior sample for the best arm.

Best arm gets played roughly every 1/? plays of arm 0.

• ? can be lower bounded by Δ0 in general but it actually goes to 1 exponentially fast with
increase in number of trials of best arm,

• cannot accumulate from arm 0 without playing 0∗ su�ciently.

3.4 Useful generalizations of the basic MAB problem

Di�erent generalizations could be useful depending on the application:

• pulling more than one arm at a time

• having unknown distributions

• changing the feedback (having it censored for instance)

• having a goal di�erent than reward maximization

3.4.1 Handling context in MAB

In this part, we will only consider linear contextual bandit. They make sense in a lot of
application, for instance in content based recommendation, where customers and product can
be described by their features. It allows for an easier way of dealing with a large amount of
products and customer types, and the features will allow to make pro�t of similarities across
product or users.
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3 Multi-armed bandits and beyond

Linear contextual bandits :

• N arms (possibly very large),

• a d-dimensional context (feature vector) G8,C for every arm 8 , time C

• Linear parametric model, with parameter \

• algorithm picks GC ∈ {G1,C , . . . , G#,C }, observe AC = GC · \ + [C
• Optimal arm depends on context: G∗C = arg max8 G8,C · \

• Goal : minimize regret
∑
C (G∗C − GC ) · \

UCB for contextual bandits Linear regression is used to approximate the parameter :

• least square solution \̂C of set of equation GB ¤\ = AB

• \̂C ' �−1
C

(∑C−1
B=1 GBAB

)
where �C = � +

∑C−1
B=1 GBG

>
B

With high probability, we have the bound : ‖\ − \̂C ‖�C ≤ �
√
3 log()3)

Remark. The bound doesn’t depend on the number of arm, only on the dimension.

The algorithm proceeds as follows. At time C :

• Observe the context G8,C for di�erent arms 8 = 1, . . . , #

• Compute optimistic parameter estimates and con�dence intervals for every arm

• Choose the best arm according to the most optimistic estimates

arg max
8

max
\
\>G8,C such that

���|\ − \̂ |���
�C
≤ �

√
3 log()3)

for each C = 1, . . . ,) do
Observe set �C ⊆ [# ], and context G8,C for all 8 ∈ �C
Play arm �C = arg max8∈�C maxI∈�C I>G8,C with �C as de�ned
Observe AC . Compute �C+1

end
Algorithm 2: LinUCB algorithm

Proof.

Regret() ) =
)∑
C=1
(G∗C · \ − GC · \ )

with G∗C = G8∗,C , 8∗ = arg max8 G>8,C\ , and GC = G8C ,C
For the �rst part, we always make use optimism :

42



3 Multi-armed bandits and beyond

'() ) ≤
)∑
C=1
(G∗C · \ − GC · \ ) with high P

=

)∑
C=1

GC (\̃C − \ )

≤
)∑
C=1

√
G>C �

>
C G

√
(\̃C − \ )>�C (\̃C − \ )

=

)∑
C=1
‖GC ‖�−1

C

\̃ − \
�C︸     ︷︷     ︸

≤
√
�3 log()3)

=

)∑
C=1
‖GC ‖�−1

C

√
�3 log()3)

Moreover, by the Elliptical Potential Lemma (see e.g. Lattimore and Szepesvári [2020], Chapter
20) :

∑
C

‖GC ‖�−1
C

= G>C �
−1
C GC = $̃ (

√
3)

which �nishes the proof. �

Remark. Thompson Sampling for linear contextual bandits uses the (Gaussian) Bayesian Linear
Regression to sequentially maintain a posterior distribution over the unknown parameter \ . Regret
guarantees currently show a slight suboptimality: '() ) = $ (33/2√) ) but it is still unclear whether
this is due to an artefact in the proof or if that extra

√
3 should be here for more fundamental

reasons.

3.4.2 Assortement selection as multi-armed bandit

The customer response to the recommended assortment may depend on the combination of
items and not just the marginal utility of each item, in the assortment.

Ex: An assortment combining 3 types of cell phones might push the user to go for the cheapest.

Setting:

• selecting a subset (C ∈ [# ] in each of the sequential rounds C = 1, . . . ,) .

• On selecting a subset (C , reward AC is observed with expected value E[AC |(C ] = 5 ((C)
where the function 5 : '# ↦→ [0, 1] is unknown
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3 Multi-armed bandits and beyond

Di�erent possible structural assumptions on 5 (e.g. Lipschitz). But also multinomial logit choice
model(MNL).

The multinomial logit choice model (Luce 1959, MfFadden 1978) is the following:

the probability that a consumer purchases product 8 at time C when o�ered an assortment ( is

?8 (() =
4\8

1 +∑
8 4
\8

if 8 ∈ ( ∩ {0} or 0 otherwise (3.1)

i can be 0 meaning that there is no purchase.

The idea is to take into account the distribution of other arms. Pulling an arm no longer depends
on its marginal distribution only. The above is a simple model to do so.

MNL bandit problem. In this setting we have # products, unknown \8 . At every step C , we
recommend an assortment (C of size ≤  , observe customer response 8C , revenue A8C , and update
parameter estimates. The customer’s behavior is modeled by 3.1.

The goal is to optimize the total revenue E
[∑

C A8C
]
, or minimize the regret compared to the

optimal assortment

R() ) := ) 5 ((∗) − E
[∑
C

AC

]
=

∑
C

(5 ((∗) − 5 ((C ))

where (∗ = max( 5 ((). In many cases, even if the expected value 5 (() is known for all ( ,
computing ( may be intractable. Therefore, for this problem to be tractable some structural
assumptions on 5 will be made.

Main challenges Censored feedback: feedback of product 8 is e�ected by other products
in a given assortment (combinatorial: # choices). In other words, the response observed on
o�ering a product 8 (as part of an assortment () is not independent of other products in the
assortment.

Technique to get unbiaised estimate of individual parameters: o�er a given assortment ( until
no purchase: the number of times =( (8) that 8 is purchased in ( on this process is an unbiased
estimator of 4\8 . Indeed, one has

E[=( (8)] =
?8 (()
?0(()

= 4\8 .

Concretely, if at any round C a purchase of any item in the o�ered set (C is observed, then the
algorithm continues to o�er the same assortment in round C + 1, i.e. (C+1 = (C . If a no-purchase
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is observed in round C , then the algorithm updates the parameter estimates and makes a new
assortment selection for round C + 1.

Then, having established con�dence intervals for the parameters \8 , we can run UCB and
Thompson Sampling techniques.

UCB based algortihm Agrawal et al. [2019] acheives $ (
√
#) ) regret.

3.4.3 Bandits with constraints and non-linear aggregate utility

Generalizing MAB: we observe a non-negative reward AC ans a cost vector 2C . The problem now
becomes:

max
∑
C

AC s.t. ∀9,
∑
C

2C, 9 ≤ �.

-> Bandits with Knapsacks Badanidiyuru et al. [2013]

A generalization of this is Bandits with convex knapsacks and concave rewards (BwCR), with
convex constraints domains and concave rewards.

Bandits with convex knapsacks and concave rewards (BwCR) Agrawal and Devanur
[2014] Pulling an arm 8C generates EC ∈ R3 with unknown mean +8C .

Total number of pull constrained by) + arbitrary convex global contraints of the form 1
=

∑
C EC ∈

(, with ( a convex set.

The goal is to maximize 5
( 1
=

∑
C EC

)
, for 5 an arbitrary concave function, of minimise3

( 1
=

∑
C EC , (

)
as one has to assure 1

=

∑
C EC ∈ ( .

Results for UCB-like optimistic algo for BwCR We need to estimate for every arm 8 and
coordinate 9 .

We are interested in the following problem, where �C = {+ : + 8 9 ∈ [LCBC,8 9 ,UCBC,8 9 ]},

?C = arg? max
+ ∈�C

5

(∑
8

?8+ 8

)
(3.2)

s.t. min
* ∈�C

dist
(∑
8

?8* 8 , (

)
≤ 0 (3.3)

For non-decreasing 5 , the inner maximizer in the objective of 3.3 will be simply the UCB
estimate, therefore for the classic MAB problem this algorithm reduces to the UCB algorithm.
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3.5 Bandit techniques for Markov Decision Processes

General formulation The general problem is as follows: the reward on pulling an arm
(action) depends on the current state of the system. Each round C = 1, . . . ,) consists in observing
the current state, taking an action, observing the reward and a new state. The solution concept
is referred to as a policy. The general goal is to learn the state transition dynamics and the
reward distributions, while optimizing the policy.

(Application: inventory management, autonomous vehicle control, robot navigation, personal-
ized medical treatments...)

3.5.1 MDPs

at round C , the player observes state BC , take action 0C , observe reward AC ∈ [0, 1] and next state
BC+1.

The system dynamics is given by a MDP ((,�, A, %, B0) such that

E[AC |BC , 0C , �C ]E[AC |BC , 0C ] =: ABC ,0C , and P[BC+1 |BC , 0C , �C ]P[BC+1 |BC , 0C ] =: %BC ,0C (BC+1).

Due to Markov property, there is an optimal policy c : ( → �. The goal is to minimize expected
regret compared to the best stationary policy c∗, de�ned as follows

Regret(",) ) :=
)∑
C=1

[
A (B∗C , c∗(B∗C )) − A (BC , 0C )

]
.

We want to learn the MDP model parameters (A, %) from observations (BC , 0C , AC , BC+1)1≤C ≤) , while
optimizing the policy for total expected reward.

In these models, regret bounds will be of the form $ ((
√
)�).

Need for exploration Let us look at a single state MDP: the situation boils down to the
classical MDP problem, for which the exploit only policy may mislead into playing bad action
forever.

[example of a two-states MDP] Let us illustrate the fact that exploiting the seemingly best policy
is not the optimal choice. In the above example, initializing at state 1 and playing red action
forever would avoid the best action (state 2, black action), which needs a bit of ’faith’ in order
to be discovered! In MDPs, the exploitation is thus even more important that in classical MAB.

Communicating MDPs Caveat: MDP can get stuck on bad states for a long time, depending
on the underlying graph structure.

Let us de�ne communicating MDPs, which are MDPs for which there is always a way to get
out of a bad state in �nite time. Namely, for every pair of states B, B ′, there is a policy c (that
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depends on B, B ′) such that using this policy starting from B , the expected time to reach B ′ is �nite
and bounded by � , called the diameter of the MDP.

Some useful properties:

• the optimal asymptotic average reward is independent of the starting state

• the asymptotic average reward (gain) of policy c is de�ned by

_c (B) := E
[

lim
)→∞

1
)

)∑
C=1

A (BC , c (BC ))
��B1 = B

]
There is a single policy c∗ achieving the optimal in�nite average reward

∀B, max
?
8_c (B) = _c∗ (B) =: _∗

• We de�ne the regret as the gain compared to asymptotic normal:

Regret(",) ) := )_∗ −
)∑
C=1

A (BC , 0C ) .

Some bounds Upper con�dence bounds based algorithms Auer et al. [2008], Bartlett and
Tewari [2012] : worst-case regret bound $ (�(

√
�) ), lower bound Ω(

√
�(�) ).

Optimistic Posteriori Sampling Agrawal and Jia [2017]: worst-case regret bound in $ (�(
√
�) ).

3.5.2 UCRL: Upper confidence bound based algorithm for RL

Expected reward '(B, 0) for all B ∈ (, 0 ∈ �, as well as % (B, 0) a distribution on ( . At each step,
we can use AC to update an estimator of '(BC , 0C ) and BC+1 for % (BC , 0C )

UCRL algorithm Model-based approach: maintain estimates %̂, '̂, and occasionally solve the
MDP ((,�, %̂, '̂, B1) to �nd a policy, run this policy for some time to get samples, update the
estimates, and iterate. We proceed in epochs:

At every epoch : , use samples to compute an optimistic MDP ((,�, '̃, %̃, B1), solve it to �nd an
optimal policy c̃ . Then, execute c̃ in epoch : , and observe samples BC , 0C , AC , BC+1. Then, go to
next epoch if =: (B, 0) ≥ 2=:−1(B, 0) for some B, 0.

[missing: more involved description of the algorithm]

Theorem 3.1. For any communicating MDP with unknown diameter � , we have with high
probability

Regret(",) ) ≤ $̃ (�(
√
�) ),

where $̃ hides logarithmic factors in (,�,) .
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Proof sketch. By the communicating property, we have that w.h.p., the extended MDP in UCRL
is communicating. For this extended extended MDP, the optimal average reward _̃(B) is inde-
pendent of B .

The average regret in an epoch : is

_∗ − 1
):

∑
C ∈[): ]

ABC ,0C = (_∗ − _̃) + (_̃ −
1
):

∑
C ∈[): ]

ABC ,0C ) .

The above �rst term is non-postive by construction of UCRL. For the second term, we follow the
same policy but on a di�erent MDP. The bounds are obtained using concentration of transition
probability vector samples from the posterior.

Bellman equation De�ne the value functions

E"W (B) = E"

[∑
:≥1

W:−1A:

]
.

We have
E"W (B) = '(B, " (B)) + WEB′∼%" (B, ·)

[
E"W (B ′)

]
,

which also writes
E"W = '" + W%" · E"W

We can show that
_" (B) = lim

W→1
(1 − W)E"W (B)

De�ne the bias vector ℎ" (B) := E
[
lim)→∞

∑)
C=1(AC − _" (BC )) |B1 = B

]
. We actually have that

ℎ" (B1) − ℎ" (B2) = lim
W→1
(E"W (B1) − E"W (B2)) .

These two equations, together with the �xed point equation satis�ed by E"W (B) give that for
W ∈ (0, 1),

(1 − W)E"W (B) = '" (B) + W
∑
B′
%" (B, B ′) (E"W (B ′) − WE"W (B)).

Then, sending W → 1, one gets the Bellman equation:

_" (B) = '" (B) +
∑
B′
%" (B, B ′)ℎ" (B ′) − ℎ" (B).

Bounding the di�erence In our context Bellman equation writes _̃−AB,c (B) = %̃B,c (B) · ℎ̃− ℎ̃B , where
ℎ̃ is the bias vector of samples and satis�es |ℎ̃8 − ℎ̃ 9 | ≤ � for all 8, 9 ∈ ( . Thus
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_̃ − 1
):

∑
C ∈[): ]

ABC ,0C =
1
):

∑
C ∈):

(
%̃BC ,0C · ℎ̃ − ℎ̃BC

)
=

1
):

∑
C ∈):

(
%̃BC ,0C · ℎ̃ − %BC ,0C · ℎ̃ + %BC ,0C · ℎ̃ − ℎ̃BC

)
.

By martingale property, %BC ,0C · ℎ̃ − ℎ̃BC = 0. Then, w bound the deviation of posterior sample
from the true model (%̃BC ,0C − %BC ,0C ) · ℎ̃ (posteriori variance, sample error...). Since here ℎ̃ is not
�xed, we need a union bound, giving a bound in $̃ (�

√
(/

√
#B,0). �

3.5.3 Posterior sampling algorithm for MDPs

A more intuitive algorithm with di�erent techniques for regret bound proofs.

Finite state, �nite action S states, A actions.

Prior: Dirichlet (U1, U2, ..., U8 + 1, ..., UB) on %B,0
After =B,0 =

∑
U8 observations for a state-action pair B, 0 one computes the posterior ?̂B,0 (8) =

U8∑
9 U 9

=
U8
=B,0

.

The variance is bounded by 1
=B,0

: the more we have trials, the more the posterior concentrated
around true probability.

Learning phase One maintains a Dirichlet posterior for %B,0 for any (B, 0). We start with an
uninformative prior Dirichlet (1, 1, . . . , 1).

Deciding phase We �rst sample %̃B,0 for any (B, 0). Then the optimal policy c̃ is computed
for the MDP ((, i�, %̃, A , B0)

Our algorithm

• For any (B, 0), generate multiplek = $̃ (() independent samples from a Dirichlet posterior
for %B,0 .

• Form extended sample MDP ((,k�, %̃, A, B0).

• Form optimal policy c̃ and use through the epoch.

Further initial exploration: For (B, 0) with very small #B,0 <

√
)(
�

use simple optimistic
sampling that provides extra exploration.
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Regret bound analysis Assumption True MDP is communicating with diameter D

• For UCRL: with high probability, extended MDP is communicating

• For posterior sampling whp extended MDP is a communicating MDP with diameter at
most 2� .

We recall that a useful property of communicating MDP is that optimal asymptotic average
reward does not depend on the initial state.

The averaged regret in an epoch : is

_∗ − 1
):

∑
C ∈[): ]

ABC ,0C = (_∗ − _̃) + (_̃ −
1
):

∑
C ∈[): ]

ABC ,0C ) .

Two main results: First the optimism of transition matrix on a projection is su�cient ≥ _∗ if for
every B, 0, %̃B,0 .ℎ∗ ≥ %B,0 .ℎ if a set of samples satisfy optimism on projection to unknown bias
vector ℎ∗.

Second For any �xed bounded vector ℎ a sample satis�es above with probability 1/( . There is
no need to know ℎ∗! But there is a need of $ (( log( (�

d
)) samples whp.

3.6 Learning to manage inventory

It gives a general recipe for a loose class of problems.

Overview:

You start the inventory at time C , you observe 8=EC , you gather new >C and old >C−! orders. Then
you have to deal with the demand 3C after dealing a new on hand inventory �C = 8=EC + >C−! .
You then observe ~C =<>=(�C , 3C ).

You �nally incur holding and lost sales cost ℎ(�C , 3C )...

Learning an MDP In each round C = 1..) :

• Observe inventory �C , past ! − 1 orders (>C−!+1, ..., >C−1).

• Decide new order >C ∈ [0,* ]

• Observe sales ~C = min(3C , �C ) where 3C ∼ � .

• Incur cost �̄C = ℎ(�C − ~C ) + ? (3C − ~C )

• Start new inventory �C+1 = �C − ~C + >C−!+1.

Holding unobserved lost sales The actual cost is �̄C = ℎ(�C − ~C ) + ? (3C − ~C ) but 3C is
unknown. We then use the surrogate �C = ℎ(�C − ~C ) + ? (−~C ).
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