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Terreau

Instructor: Frano̧is Yvon (LIMSI/CNRS)

[Video on the IBM project debater] Today, machines are capable of amazing, human-level
performances.

4.1 Language: a hard nut to crack

Natural Language Processing (NLP) was studied for three main reasons:

• language processing as computation,

• computational psycholinguistics,

• automated processing tools and applications.

A classical approach to automatic speech recognition consisted in the following pipeline
model.

• Lexical decoding: from a continuous-time audio signal to a discrete sequence of phonetic
symbols.

• Orthographic decoding: create words and a sentence out of the phonetic symbols.

• Text normalisation: identify categories of words in the sentence.

• Structure identi�cation: �nd the dependencies between the words.

The way back is even harder.
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4 Natural Language Processing

An example of tricky sentence "Le cousin de Paul se piquait de bien connaître la ville". It
is tricky for several reasons. "Connaître" doesn’t have a subject. "Cousin" can mean "cousin"
but also a tipula. "Se piquer" could be confused with an insect biting. This is called word sense
disambiguation.

More than processing one sequence, it is even harder to handle a span of text of several sentences
with coreferences between them. Typically, di�erent mentions of one single entity (e.g. one
person) make an automatic processing very challenging.

Nowadays, there are a number of NLP tasks that go beyond isolated sentences. Classifying
sentences, for instance by tense, mood, polarity etc. Typically, classifying tweets. Finding the
structure of a text.

The pipeline model mentioned above often struggles because of arbitrarily long, multi-layered
dependencies across the pipeline.

Another typical case of reason of failure is the ambiguity of some words. In politics for example,
the chair (organizer) of a conference would sometimes be understood as a chair as the piece of
furniture. In French, just think of the word "et" which can easily be confused with "et" or even
"hait".

Pipeline model does not work. "It’s like building a compiler, but you have only part of the
syntax."

• Errors accumulate down the pipe.

• Early decisions require deep analysis.

• Ambiguity is a feature, not a defect (puns!).

• Segmentation ambiguities

– gardes plural or second person

• Lexical ambiguities

• Syntactic ambiguities

– "N. H. Defends Laconia Law Barring Female Nudity In Supreme Court Ruling"

• Semantic Ambiguities

• Pragmatic Ambiguities

– Understand that "I’m cold" means "Close the window"

Language is always evolving.

• Phonetic changes and recon�gurations

• New spellings and grammatical constructs

• Lexicalization of new derivatives and compounds
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• New senses appearing

•

4.2 The great paradigm shi� : towards statistical NLP

With more resources and a more �ne grained description of languages, we could get to this nice
pipeline scenario. Around 92-93, statistics have progressively been incorporated into NLP. This
transition has o�cially started with a publication in computation linguistic in the context of
special issues on corpora based approaches.

Switch from grammar to corpora patterns : the hypothesis is to �nd ways to process large facets
of languages. 2011, Norvig

The �rst ingredient to moving to statistical language models. Arguments for graduality in
language: grammatical rules and judgement can be gradual : for instance house is a noun but
home is a “better” noun than house, that has a larger combinatorial power. Similarly, “grièvement”
only applies to speci�c contexts, while “gravement“ can have much more applications and
would be preferred as both mean the same. Finally, Human brain appears to be sensible to
frequency : we recognize frequent word quicker. These are arguments to go toward statistical
treatment of natural language.

A second ingredient is the collection of a large corpus of relevant data. Linguistic Data Consor-
tium - LDC () : catalog of corpora, resources for annotation, rare languages, see LREC.

The third ingredient is the development of NLP challenges by funding agencies. They focused
on having strong methodological construction of tasks.

• describe the task exactly

• what is given to participants (computational resources)

• what is the metric

• distribute test data for �nal evaluation

(Repository to track the progress in Natural Language Processing (NLP)). People tend to par-
ticipate to these challenges for : access to data, and access funding. These have been highly
in�uential to move to statistical methods that were, most of the time, the most accurate ap-
proaches.

4.3 Discovery of statistical method : the e�ectiveness of simple
models

The simplicity of those models comes from the fact that they do not need to know any of the
rules of a language and simply works from statistic measure (for example how likely some
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words will be written close together). In the following, we describe three important applications
in NLP of this statistical viewpoint.

Speech recognition : a recurrent problem is how to decide the correct sentence to write for
a given recorded sample, e.g “danser, dansés, dansé, dansée”. How to compare sentences ?

Language models, simple yet e�ective (=-grams), with ! the length of a sentence, + the vocabu-
lary space.

% (F1, .,F!) =
!∏
8

? (F8 |F1...F8−1) =
!∏
8

? (F8 |F8−=+1...F8−1) (4.1)

This technique allows to process omre than words such as letters, speech

Information Retrieval: Bag-of-words
→Main idea: "Turn a document into a vector."
Each document is embedded as a vector 3 ∈ R |V | with 3> = (G1, . . . , G |V). A typical choice for
G8 is

• G8 =
# (F8 ∈3)

;3
where # (F8 ∈ 3) is the number of times the word F8 appears in the

document 3 and ;3 is the number of words in the document 3 .

• G8 = )� − ��� (F8) (Term Frequency(TF) — Inverse Dense Frequency(IDF)).

This embedding method allows to compare two documents 3 and 3 ′ using several measures as
scalar product, cosine sim, standard distances.

Computational lexicography
→Main idea: "You shall know a word by the company it keeps."
We compute semantic relationship from distributional observations: shared contexts imply
semantic relatedness.

Considering a �xed vocabulary,V = {E1, . . . , E |V |}. For any wordF , A (F) ∈ R |V | is the vector
where the 8-th entry counts the number of time the word E8 is a neighbor of the wordF in the
corpus. Then, the distance between two wordsF andF ′ is given by

dist(F,F ′) ∝ A (F)>A (F ′).

4.4 From empirical methods to machine learning techniques

Supervised classification Resolving ambiguities by building trees. This can be turned to a
simpler problem : �nding dependencies, which are binary decision that can be solved using ML
methods. Di�cult step : �nd the good features to describe the data and the problem (context
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Bag of Words, position in the sentence, sentence type). Other examples that can also be solved
using classi�cation tools are:

• word sense disambiguation,

• sentence segmentation

• co-reference resolution

• sentiment analysis

• ...

Results in from 1993-2010 can be summed up as: �nd a problem (word sense ambiguity,..),
formulate it as a classi�cation problem and use ML tools.

More ML related topics also emerged, such as high dimension, metrics, high number of classes
that can even be organized in hierarchies.

ML was also successful in more applications cases than simple classi�cation, e.g. parsing trees.
These can be learnt step by step. Most exactly, what is learned is the sequence of actions needed
(analogous to robotic movements). Action are not observed, some di�erent sets of actions can
lead to the same parsing tree. Dependency parsing build acyclic set of arcs between words.

No crossing arcs = projectivity( = easier to solve. Non-projectivity is rare in French and english.
This allows some fast algorithms: greedy left-right decoding.

Transition-based projective dependency parsing: guaranteed to have an acyclic graph.

Remark: Punctuation is treated as words. But there are markers for the start and the end
of a sentence, so that we know when words are usually used at the end (like punctuation).
The main task of modeling structure, syntax of the language is to de�ne a way do decide if
a word or a sentence is better than an other. If one notes � and � two sentences, one can
introduce the equivalence between � being better than � and a probability % (�) being higher
than a probability % (�). This probability % (B4=C4=24) is a language model. Such probability
can easily be derived from a simple Markov assumption to predict the likelihood of one word
based on the preceding words. This Markov assumption is very naïve but is extremely e�cient
computationally. One call this type of models =-grams and for a sequence of words (F1, ...,F!)
we de�ne :

% (F1, ...,F!) =
!∏
8=1

% (F8 |F1, . . . ,F8−1)

New architectures(transformers) are trained to learn which words matter in the history. In the
past the importance was �xed. Feed-forward: �xed number of words in history. RNN: older
words are gradually forgotten.
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4.5 Transformers and self-a�ention

Compute with heads Compute linear weights:

�̃ = so�max(�/
√
3) ∈ [0, 1]) × [0, 1]) . (4.2)

4.6 Evaluating language models

4.6.1 Large Language Models are *very* powerful

Originally used as scoring model for disambiguation tasks.

Will now cover use as text generators. Can use language models for any natural language tasks
(Radford et al 2019).

Tasks: Give your model a prompt, and generate next word. Probability over possible next words.
Can apply this to lots of di�erent domains, such as translation, or even arithmetic. In the latter
case they even are often correct.

The language models are evaluated with a measure called perplexity.

PPL(") = 2
1
) log2 % (F [1 : ) ] |") (4.3)

Cross entropy between source and model.

Before NNs language models had fairly bad perplexity ( 120 nats), now we reach around 6 times
lower for models trained on English texts.

Evaluation with linguistic probes. How to evaluate if we learn long-range structural dependen-
cies. Ex: Subject verb agreement. Subject must agree in number with the object, but they can
bee far apart in the text. "The keys to the cabinet (are|is) on the table."

Linzen et al, (2016), traine an LM-RNN to predict the verb number. Performance good (1% error
rate). Drops slowly with subject-verb distance. Drops slowly with intervening distractors (eg
singular words between subject and verb). If instead train a NN to predict next word we get a
10-fold loss in performance. In complex cases, more direct form of training signal is needed to
learn the correct structure.

4.6.2 Algorithms for text generation

Greedy Search At each step, the most likely word given the past is chosen.

Ancestral sampling

F0 =< B > (4.4)
FC ∼ % (F |F (C ′ ≤ C)) (4.5)
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Nucleus Sampling

Language model (de)generation In practice, these text generation algorithms end up gen-
erating loops, even though they are syntaxically consistent.

High probability sentences do not resemble human productions.

• Too many repetitions.

• High-frequency tokens are over-represented, and low-frequency ones underrepresented.

• Lack of diversity.

• Lack of global consistency.

• Poorly calibrated posterior distribution.

Action takes place in very high-dimensional space. Predict next step from current vector in this
space. Easy to go to "nonsensical" parts of the space. Easy to get caught in loops.

Beam search [with histogram pruning] More improved search algorithms (Wiher et al,
2022).

Better learning losses. - Use label smoothing.

4.6.3 Evaluating LMs with distributional properties

Evaluating Zero-shot/ few-shot behavior.

• Zero-shot learning, No demonstrations. "translate English to French: cheese -> ?"

• One-shot learning, one demonstration,...

•

Current challenges for language modeling.

• Text generation is still di�cult.

• Improve e�ciency and scalability.

• How to update models as language changes.

• How to avoid models learning hate-speech, and how to remove e.g. private information
without having to retrain model, etc. (Stochastic Parrots)
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4.7 Transfer learning

4.7.1 Multi-task learning and pretraining

Learning representations for NLP in an unsupervised way (Collobert 2011). Instead of having
one benchmark for each task, they say we want to have one system for all tasks, and to learn it
in an unsupervised manner.

In 2018 people started to implement this program at scale. Recipe:

1. take huge corpus to train embeddings (unsupervised).

2. Use this representation as features for supervised training on domain speci�c task.

Popular models include ELMO (Peters et al, 2018) and BERT (Devlin et al 2019).

Elmo is a network made by several stack of bidirectional RNNs. Pass sentence through RNNs
back and forth, then passed to next layer. All layers are combined to yield the �nal representation.

Bert is a transformer, but it is non-causal. It can see the full sentence, and is trained by masking
some of the words. In the last layer the goal is to predict the masked words.

BERT, and similar pre-trained encoders, typically give signi�cantly improved performances. A
lot of encoders these days are in the form of encoder-decoder pairs, using next word prediction,
deshu�ing, denoising, or similar techniques to avoid the need for labelling.

Bene�ts of LM pretraining: - Leverage large corpuses of text in an almost unsupervised way. -
Allows for knowledge transfer between domains.

4.8 Multilingual NLP

4.8.1 Introduction

Diversity of languages around the world (see https://www.ethnologue.com/guides). These
are divided in language families, which are not equality distributed around the world. The top
25 languages only covers half of the world population. Countries with only one language are
the exception, bilingualism (or more) is the norm. Many languages are endangered due to their
lack of use in the population from some economics point of view or else. New languages have
also been created. This diversity of languages is particularly surprising given that languages
have the same origin and humans have the same brain structure. Nevertheless there is a wide
variety of linguistic systems.

NLPers should care for several reasons (https://ruder.io/nlp-beyond-english/) such as
political/societal, economic, linguistic, Machine Learning, cultural/historical, cognitive. Motiva-
tion for using NLP in multilingual setting : usual publications don’t even give the language that
are studied, as English turned to be the standard ML language.

The typical methods of multilingual NLP are machine translation, multilingual models (mGPT,
the multilingual version of GPT, mBERT) and cross-lingual representations and transfer. The

59



4 Natural Language Processing

available resources are parallel and comparable corpora (https://opus.nlpl.eu, wikipedia),
bilingual dictionaries (https://panlex.org), comparative/typological language documenta-
tion (https://wals.info).

Main challenges Multilingual NLP su�ers from a large resource unbalance (Joshi et al.,
2020, https://arxiv.org/abs/2004.09095). Languages can be clustered into classes having
di�erent scales of available (labeled or not) data. While those resources are high for seven
languages (0.27%, spoken by 2.5 billions), 2191 languages (88.38%, spoken by 1.2 billions) have
no existing resources, such as annotated data for supervised settings. Therefore those languages
can’t bene�t from recent technologies using NLP, e.g. voice command (phone, car, ...).

Nowadays some informal language sentences can mix two languages, e.g. bilingual speaker.
New interesting problems arise such as language contact and code-switching. This lead to new
tasks: language identi�cation, language transcription and analysis, language translation, CS
generation. See for example (Sitaram et al., 2019, https://arxiv.org/abs/1904.00784).

For moderation problem, hateful speeches are sometimes not recovered for low resources
languages.

4.8.2 ML models for Machine Translation (ML)

An attempt to handle multilingual data consists in using machine translation.

The �rst approach used vanilla RNN (Recurrent Neural Network). Encoder decoder systems
(seq2seq), go through a �rst phase of sentence encoding, then recursively generate the translated
sentence (the target sentence). The main issue is that all the information of the source sentence
need to be encoded in a (memory less) hidden vector. As this is not enough to store all the
necessary information, this nice and simple approach fails.

To circumvent this problem, attention mechanisms were proposed (Bahdanau https://arxiv.
org/abs/1409.0473, Luong https://arxiv.org/abs/1508.04025). The hidden representa-
tion is now a linear combination of the latent representations of the source sentence words. The
network is modifying the representation of the whole sentence representation for the current
word generation in the target sentence. Additionally, the attention matrix provides, for each
generated word in the target language, the relative importance of each word in the source
sentence.

This further led to the Transformer, that was initially proposed as a seq2seq model for language
translation. The encoder is used for language modeling tasks. In a seq2seq setting, the decoder
is using cross attention, i.e. computing attention between target and source sentences, which is
not done in the Transformer encoder-only architecture (such as BERT). One main advantage
of the multi head attention is the possibility to compute in parallel. See also Popel et al. (2020,
https://www.nature.com/articles/s41467-020-18073-9.pdf).
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Figure 4.1: Bloc Transformer and multihead attention https://arxiv.org/abs/1706.03762

Multilingual models The usual approach took pairs of language. Now multilingual models
translate from various languages to various languages with a single model (Firat et al., 2016,
https://aclanthology.org/N16-1101.pdf. Johnson et al., 2017 https://arxiv.org/abs/
1611.04558). This needs to build some joint representations of word pieces. A lot of studies
are conducted on multilingual representations, i.e. words in several languages represented
in the same low dimension continuous space. This assume that there is a stable notion of
word across languages. This can be done using a Transformer (Conneau and Lample 2018,
https://arxiv.org/abs/1901.07291)

Some crucial properties of Neural MT: segmentation in sentences and words, spelling and
grammatical correction/normalization, grammatical parsing, sentence simpli�cation.

Even bad MT is more useful than you think. MT translates arti�cial training data (text+labels)
into other languages.

Universality of languages: X-lingual transfer learning (Yarowsky et al., 2001, https://aclanthology.
org/N01-1026.pdf). The four main steps are:

• Automatic word alignment of parallel sentences

• PoS tag source data

• Project tags via alignment links

• Use of a PoS tagger with projected data

To obtain multilingual representations one should compute embeddings such that mutual
translations nearest neighbours

• bilingual skip-gram

• X-lingual word space alignment with bilingual dictionary
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• multilingual sentence representation via multilingual translation

• joint encoding/decoding with round-trip-translation

XLM (Lample and Conneau, 2019, https://arxiv.org/abs/1901.07291) learns multilingual
contextual embeddings.

Conclusion Toward deep language understanding ? The language models are currently
scaling to enormous datasets, thanks to more resources in term of materials, money and working
force, that are dedicated to the �eld. A lot of what is done is based on many heuristics : it
requires to go toward better optimizations for these huge Language models. Additionally, these
languages do not incorporate knowledge. Finally, evaluation system are not properly built, and
might prevent from getting the limitations of existing approaches. This is particularly di�cult
with text : how to evaluate if a sentence is “good” ?
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