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1 Optimization

1 Optimization

Note takers: Achddou R., Al Marjani, Brogat-Motte, Foucault, Graziani, Le Corre, Pierrot,
Sentenac, Yang

Instructor: Francis Bach (Inria)

1.1 Convex Optimization

1.1.1 Setup and notation

Given a dataset: (G8 , ~8)1≤8≤= and a predictor function 5\ : X → R, our goal is to minimize

� (\ ) = 1
=

=∑
8=1

ℓ (~8 , 5\ (G8)) + Ω(\ ), where

• The loss function ℓ is convex in its second argument (typically quadratic or logistic).

• 5\ : X → R can be linear \)i (G), where \, i (G) ∈ R3 or non-linear (neural network).

• The regularizer Ω(\ ) is typically the squared !2 or !1 norm.

GOAL:

1. Minimize the training error � (\ ), where (G8 , ~8)1≤8≤= are i.i.d from an unknown distribu-
tion P.

2. Control the testing error E(-,. )∼P
[
; (., 5

\̂
(- ))

]
.

3. Do this e�ciently, i.e. in > (=) time.

Throughout this lecture, we restrict our attention to the case where

ℓ (~, 5\ (G)) =
1
2 |~ − \

>i (G) |2.

This is not a limitation, as the same techniques can be used to analyze the general case of convex
optimization under smoothness assumptions.
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1 Optimization

1.1.2 Gradient Descent

We can rewrite � (\ ) = 1
2= ‖. − Φ\ ‖

2
2 , where . ∈ R=, \ ∈ R3 and Φ ∈ R=×3 . The gradient of � is

given by
� ′(\ ) = 1

=
Φ>(Φ\ − . ) ∈ R3 .

Let’s look for a critical point (which is also a global minimum since the loss is strongly convex):

� ′(\★) = 0⇐⇒ Φ>Φ\★ = Φ>.,

⇐⇒ \★ = (Φ>Φ)−1Φ>., (1.1)

where we assumed that Φ>Φ is invertible.

Gradient descent: De�ne � := 1
=
Φ>Φ. Then GD starts at \0 = 0 and performs the update

\C = \C−1 − W� ′(\C−1)

= \C−1 − W
(
Φ>Φ\C−1

=
− Φ>.

=

)
(1.2)

Combining equations (1.1) and (1.2) we get

\C − \★ = (�3 − W� )>(\C−1 − \★),

Now we study the convergence speed of GD.
Criterion: Using the above, we have

� (\C ) − � (\★) =
1
2 (\C − \

★)>� (\C − \★)

=
1
2 (\0 − \★)>(�3 − W� )2C� (\0 − \★)

Wlog (it su�ces to change the basis in the ambiant space by a rotation), we may assume that �
is diagonal. We let _1, . . . , _3 be the eigenvalues of � , ` := min8 _8 and ! := max8 _8 .

Theorem 1.1

Assume that ` > 0 (and bounded away from zero) and that W! ≤ 1. Then we have a linear
convergence (i.e exponential decay of the error) of Gradient Descent :

� (\C ) − � (\★) ≤ (1 − W`)2C [� (\0) − � (\★)] .

Clearly, the optimal stepsize is W★ = 1
!

, which gives a convergence speed of:

� (\C ) − � (\★) ≤ (1 −
`

!
)2C [� (\0) − � (\★)] .

We denote by ^ = !
`

the condition number, which controls the convergence speed of GD.
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1 Optimization

Question: What if ` is very small ? Then one can write

� (1 − 2W� )2C = Diag
( (
_8 (1 − W_8)2C

)
1≤8≤3

)
.

Lemma 1.1. _(1 − W_)2C ≤ _ exp(−W_2C) ≤ 1
4CW , as soon as W_2C ≤ 1.

Theorem 1.2

Assume that 2W! ≤ 1. Then we have for all C ≥ 1, � (\C ) − � (\★) ≤
‖\C−\★‖2

2
4CW .

Remark. 1. If � is convex, smooth and with bounded Hessians then a similar result holds.

2. For non-constant stepsize W , there are also guarantees, provided that "we do not let W be too
small or too large".

3. GD is adaptive to the curvature of the function.

4. Problem 1: The complexity is not > (=).

5. Problem 2: The convergence speed is not minimax optimal.

1.1.3 Acceleration

Let’s look at what happens when we add (Heavy ball) momentum

\C = \C−1 − W� ′(\C−1) + X (\C−1 − \C−2)

Denote [C = \C − \★. Then we have

[C = [C−1 − W�[C−1 + X ([C−1 − [C−2),

aka a second order recursion. Based on our previous life as undergrad students, we solve the
characteristic equation A 2 = (1 − W_)A + X (A − 1). We need to make sure that the solutions are
complex conjugates d exp(8i) and d exp(−8i). In other words, we need to ensure that

Δ = [(1 − W_) + X]2 − 4X
= X2 − 2(1 + W_)X + W2_2 + 1 ≤ 0.

The roots of Δ are X1,2 = 1 ±
√
W_. Therefore, to guarantee convergence of the sequence ([C )C ≥1,

we need to set X ∈ [1 −
√
W_, 1 +

√
W_]. We obtain convergence in 1

C2 .
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1 Optimization

Convex function Nesterov Acceleration

\C = [C−1 − W� ′([C−1)
[C = \C + X (\C−1 − \C )

Remark. Checking homogeneity in the formulas is a quick way to make sure that the result is
not awfully wrong.

1.1.4 Stochastic Gradient Descent

We want to minimize
E? (G,~) [; (~, 5\ (G))]

At each iteration, we compute

\: = \:−1 − W:
m;

m\
(~: , 5\ (G: )) F8Cℎ G: , ~: ∼ ? (G,~) .

There are two settings:

• single pass with = iid pairs and � (\ ) being the test error

• Multiple passes on �nite data set with ? , the empirical distance and where � (\ ) is the
training error

1.1.5 SGD: Least squares example

We will consider the same example of least squares in which ; (~, 5\ (G)) = 1
2 ‖~ −\

>i (G)‖2, thus

m;

m\
= i (G) (i (G)>\ − ~)

Assumption ~ = i>\★ + Y with E[Yi (G)] = 0 and Y2 ≤ f2 a.s. and W� ≤ �

The iteration becomes with Least Squares:

\= = \=−1 − W=i (G=) (i>\ − ~)

By using [= = (\= − \★) which is the same as GD:

[= = [=−1 − W= i (G=)i (G=))︸          ︷︷          ︸
E[...]=�

[=−1 + W= Y=i (G=)︸   ︷︷   ︸
E[...]=0
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1 Optimization

Study:
[= = [=−1 − W�[=−1 + WY=i (G=)

[= = (1 − W� )[=−1 + W Y=i (G=)︸   ︷︷   ︸
E[Y=i (G=) (Y=i (G=))) ) ] ≤f2�

Lemma 1.2.

[= = (1 − W� )=[0︸         ︷︷         ︸
determinstic

+W
=∑
:=1
(1 − W� )=−:Y:i (G: )︸                           ︷︷                           ︸

zero mean

With this lemma, we can decompose E[[=[)= ] in two parts

E[[=[)= ] = (1 − W� )=[0[
)
0 (1 − W� )=︸                          ︷︷                          ︸

Same as GD

+
=∑
:=1

W2(1 − W� )=−:E[Y2
:
i (G: )i (G: )) ] (1 − W� )=−:︸                                                            ︷︷                                                            ︸

SGD extra term

Our goal is to consider,

E[� (\=) − � (\★)] =
1
2E[[

)
=�[=] =

1
2CA (�E[[=[

)
= ])

By replacing E[[=[)= ], we have an extra term compared to SGD:

CA (�
=−1∑
:=1

W2f2� (1 − W� )2: ) ≤ f2W2CA (� 2(� − (� − W� )2)−1)

≤ f2W2CA (� 2(W� )−1)

≤ f2WCA (� )

Summary:

E[� (\=) − � (\★)] ≤
1
=W=
‖[0‖22 + W=f2CA (� )

�estion: How to get a convergent algo?

• W decreasing: Brute force way or lazy way with a constant step size depending on the
horizon.

• Averaging
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1 Optimization

Sweet spot: W= = 1√
=

is a nice idea, to get E[� (\=) − � (\★)] ≤ 1√
=
(...) But it is not homoge-

neous.

1.2 SGD with averaging (beginning of lecture 2)

Recall: ;8 (\ ) = (~8 − i (G8))\ )2

Algorithm. The algorithm is the same as the classical SGD, but the �nal estimate is the average
of the previous \8 .

• initialize \0

• \= = \=−1 − W m;=m\ (\=−1).

• \̄= = 1
=+1

∑=
8=0 \8

Assumption.
~ = \)∗ i (G) + Y, ‖i (G)‖2 ≤ ', |Y | ≤ f

Let us prove the convergence of this algorithm.

1.2.1 Convergence proof for Least-squares

We note [̄= = \̄= − \ ∗ = 1
=+1

∑=
:=0 [: with [= = \= − \ ∗.

As previously:

[= = (1 − W� )=[0 + W
=∑
:=1
(1 − W� )=−:Y:i (G: )

so

[̄= =
1

= + 1

=∑
:=0
(1 − W� ):[0︸                     ︷︷                     ︸

A: deterministic part

+ W

= + 1

=∑
:=1

:∑
9=1
(1 − W� )=−:Y:i (G: )︸                                      ︷︷                                      ︸

B: noise part

.

The Y: being independent with E[Y] = 0, we have

E[� (\̄=) − � (\∗)] =
1
2E[[̄

)
=�[̄=] =

1
2

(
E[�)��] + E[�)��]

)
Here, we study the deterministic and noisy term separately.

Deterministic part.
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1 Optimization

We have

� =
1

= + 1

=∑
:=0
(� − W� ):[0 =

1
= + 1

� − (� − W� )=+1
� − (� − W� ) [0

=
(W� )−1

= + 1 (� − (� − W� )
=+1)[0. (1.3)

So using 0 � (� − W� )=+1 � � from W� � � , we get

E[�)��] ≤
[)0�

−1[0

W2=2 . (1.4)

Noise part.

We have

� =
W

= + 1

=∑
:=1

:∑
9=1
(1 − W� ):−9Y 9i (G 9 )

=
W

= + 1

=∑
9=1

( =∑
:=9

(1 − W� ):−9
)
Y 9i (G 9 )

≈ W

= + 1

=∑
9=1
(W� )−1Y 9i (G 9 ) (1.5)

So, we get

E[�)��] ≤ 1
=2

=∑
9=1
E[i (G 9 )) Y)9 �−1Y 9i (G 9 )]

≤ f
2

=2

=∑
9=1
)A (�−1E[i (G 9 )i (G 9 )) ])

≤ f
23

=
(1.6)

Summing the two parts.

From equations 1.4 and 1.6 we obtain :

E[� (\̄=) − � (\∗)] ≤
[)0�

−1[0

W2=2 + f
23

=
(1.7)
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1 Optimization

1.2.2 General case SGD: averaging

In this section we prove the convergence in a more global setting than least squares.

We have :

‖\= − \∗‖2 = ‖\=−1 − \∗‖2 − 2W (\=−1 − \∗))
m;=

m\
+ W2‖ m;=

m\
‖2

with

m;=

m\
= i (G=)i (G=)) (\=−1 − \∗) + Y=i (G=)

and

‖ m;=
m\
‖2 ≤ 2

(
‖i (G=)i (G=)) (\=−1 − \∗)‖2 + ‖Y=i (G=)‖2

)
.

So

E(‖\= − \∗‖2 |F=−1) ≤ ‖\=−1 − \∗‖2 − 2W (\=−1 − \∗))� (\=−1 − \∗) + 2W2f2'2 (1.8)
+ 2W2(\=−1 − \∗))'2� (\=−1 − \∗)
≤ ‖\=−1 − \∗‖2 + 2W2f2'2 − 2W (1 − W'2) ((\=−1 − \∗))� (\=−1 − \∗)) (1.9)

Moreover,
−2W (1 − W'2) ≤ −W

(from W'2 ≤ 1/2) and

((\=−1 − \∗))� (\=−1 − \∗)) = 2(� (\=−1) − � (\∗))

so

E(� (\=−1) − � (\∗)) ≤
1
2W (E(‖\=−1 − \∗‖2) − E(‖\= − \∗‖2)) + Wf2'2

then from Jensen inequality :

E(� (\̄=−1) − � (\∗)) ≤ 1/#
#∑
==1
E(� (\=−1) − � (\∗)) ≤

‖\0 − \∗‖2
2W# + Wf2' (1.10)

Shown in Bach and Moulines [2013] : Wf2' can be replaced by f23
=

.
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1 Optimization

1.2.3 Dual coordinate ascent

Ref Shalev-Shwartz and Zhang [2012] Finite sum set up.

� (\ ) = 1
2= ‖~ − Φ\ ‖

2
2 + _/2‖\ ‖22 , ~ ∈ '=,Φ ∈ '=×3 .

Closed-form solution derivation.

The problem is stated as follows :

min
D=Φ\ ∈'=,\ ∈'3

1
2= ‖~ − D‖

2
2 + _/2‖\ ‖22,

and can be re-written as :

min
D,\

max
U ∈'=

1
2= ‖~ − D‖

2
2 + _/2‖\ ‖22 + _U) (D − Φ\ ) .

Assuming that we have \ ∗ = Φ)U , we have :

max
U ∈'=
−_/2U)ΦΦ)U +min

D

1
2= (‖~‖

2 + ‖D‖2 − 2~)D) + _U)D (1.11)

We begin by minimizing the term depending in D :

min
D

1
2= (‖~‖

2 + ‖D‖2 − 2~)D) + _U)D = min
D

1
2= ‖~‖

2 + 1
2= ‖D‖

2 − D) (~/= − _U)

= −=2 ‖~/= − _U ‖
2
2 +

1
2= ‖~‖

2

= −=_2/2‖U ‖22 + _U)~ (1.12)

as D∗ = ~ − =_U . Replacing this term in equation 1.11, we get :

max
U ∈'=
−_2U

)ΦΦ)U − =_
2

2 ‖U ‖
2
2 + _U)~ = min

U
� (U)_ (1.13)

where we de�ne � as � (U) = − 1
2U
)ΦΦ)U − =_

2 ‖U ‖
2
2 + U)~.

From equation 1.13 we get that :

U∗ = (ΦΦ) + =_� )−1~

\ = Φ)U =
∑=
8=1 i (G8)U8

∇2� (U) = ΦΦ)

Diag∇2� (U) ≤ '2

Coordinate ascent algorithm.
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1 Optimization

• Choose coordinate at random in 1, . . . , =

• Optimize with respect to U8

Lemma 1.3:

if ℎ(V) quadractic then infV ℎ = ℎ(V0) − 1
2
ℎ′ (V0)2
ℎ′′ (V0) .

What is the convergence rate?

E(� (UC ) −� (U∗)) = 1
=

∑=
8=1� (U) − 1

2'2∇� (U)28 −� (U∗) = � (U) − 1
2='2 ‖∇� (U)‖2 −� (U∗)

Losajevich condition.

If � is _-strongly convex � (U) −� (U∗) ≤ 1
2_ ‖∇� (U)‖, then

E(� (UC ) −� (U∗)) ≤ (� (U) −� (U∗)) (1 − _
'2+=_ )

to reach Y precision

C ≈ '2+=_
_

log 1/Y.

1.3 Global Optimization

1.3.1 Gradient Descent for a single hidden layer: Intro

The predictor is

ℎ(G) := 1
<
\)2 f (\)1 G) =

1
<

<∑
9=1

\2( 9)f
(
\1(., 9))G

)
.

It is rewritten

ℎ(G) = 1
<

<∑
9=1

Ψ(F 9 ) with Ψ(F 9 ) (G) := \2( 9)f
(
\1(., 9))G

)
.

Goal: Minimize
'(ℎ) := E? (G,~)ℓ (~,ℎ(G)) with ' convex.

Main insight:

ℎ =

∫
W

Ψ(F)3` (F) with 3` (F) = 1
<

<∑
9=1

XF9 .

Overparametrized regime =⇒ mean �elds limit, measure ` with densities.

We want to minimize with respect to measure `:

'

(∫
W

Ψ(F)3` (F)
)
.

14



1 Optimization

` is represented by a �nite set of< particules, gradient descent on (F1, . . . ,F<).

Three main questions:

• Algorithm limit when< gets large

• Global conv. to a global minimum

• Prediction performance.

1.3.2 Derivations

Goal Find
min
`
� (`) = '

(∫
W

Ψ(F)3` (F)
)
.

We study Gradient �ows instead of GD:

¤, = −<∇� (, ) with , = (F1, . . . ,F<) .

It’s an idealisation of this GD with small steps:

,:+1 =,: − W∇� (,: ).

Reindexing:
, :W+W =, W: − W∇� (, W: ) .

Assimilating :W ← C , W ← 3C gives:

, C+3C =, C − W∇� (, C ).

This is an Euler scheme of the gradient �ow di�erential equation.

What’s the bound on the deviation between the gradient �ow and the GD ? (This problem is
not treated, we do computations at the limit in the course).

Note: SGD is not a Langevin di�usion in the limit as the noise is multiplied by W . It would be if
the noise term were multiplied by W1/2.

First derivation on linear Networks (no activation function).

Loss function ' : R3×3 → R.

The particles’ parametersF1, . . . ,F< lie in R3 ,, = (F1, . . . ,F<) ∈ R3×< .

The function to be minimized

� (, ) = '
(

1
<

<∑
9=1

F 9F
)
9

)
= '

(
1
<
,,)

)
is the composition of a convex function with a quadratic function of the parameters.

15



1 Optimization

Proposition 1. The function" := 1
<
,,) is positive semi-de�nite.

The goal is to minimize a convex function over the set of SDP matrices.

Lemma 1.3. M is optimal i�: 
" < 0
∇'(") < 0
tr("∇'(")) = 0.

Proof. 1. The condition is necessary. The �rst condition is true by construction. Also, if "
is optimal then:

∀" + YΔ < 0, '(" + YΔ) ≥ '("),
=⇒ '(") + YtrΔ∇'(") + > (Y) ≥ '(")
=⇒ trΔ∇'(") ≥ 0.

For any D ∈ R3 , pick Δ = DD) , this implies D)∇'(")D ≥ 0, which implies ∇'(") < 0.

Pick Δ = ±", =⇒ CA (")∇'(") = 0. Note that the convexity of R is not used to proof the
necessary condition.
2. The condition is su�cient. For any matrix # < 0:

'(# ) ≥ '(") + tr∇'(") (# −"), (by convexity of R)
≥ '(") + tr∇'(")#︸       ︷︷       ︸

≥0

− tr∇'(")"︸       ︷︷       ︸
=0

≥ '(") .

�

Formulation of the problem We study the gradient �ow of

� (, ) = '
(

1
<
,,)

)
.

It respects equation:
¤, = −<2 ∇� (F) .

The speed of the gradient �ow is tuned for elegance of computations. Let’s compute the gradient
explicitly.

� (, + Δ) = '
(

1
<
,Δ) + 1

<
Δ,) +$ (‖Δ‖2) + 1

<
,,)

)
= '( 1

<
,,) ) + tr(∇'(") ( 1

<
(,Δ) + Δ,) )))) + +$ (‖Δ‖2)

= '( 1
<
,,) ) + tr(Δ) 2

<
∇'("), ) +$ (‖Δ‖2) .

16



1 Optimization

Identifying the gradient we get:

¤, = −<2 ∇� (F) = −∇'
(

1
<
,,)

)
, .

Goal: Running gradient �ow ends on a point satisfying the conditions of optimality.

Fact 1: If W has rank 3 at time 0 then, (C) remains full rank.

Proof. We study A := log det(").

Let’s write the ODE for " = 1
<
,,) .

¤" =
1
<
¤,,) + 1

<
, ¤,)

=
1
<

[
−∇'("),,) −,,)∇'(")

]
= −∇'(")" −"∇'(").

Note that it depends only on M. Now for the ODE of A :

¤A = tr("−1 ¤")
= −tr("−1∇'(")" +"∇'("))
= −2tr (∇'("))

This implies that if A (0) is de�ned, then A is always de�ned, thus " remains full rank if it is at
C = 0. �

Assume that " (C) converges:
" (C) → "∞.

For general 2 layer networks, this has not been shown, in the simpler case we are considering
(Linear Networks), it has been done, we skip it for this course.

Proposition 2. "∞ is optimal.

Proof. The stationarity condition gives:

¤" = −∇'(")" −"∇'(")
=⇒ − ∇'("∞)"∞ −"∞∇'("∞) = 0
=⇒ tr("∞∇'("∞)) = 0.

The tricky part is to show ∇'("∞) < 0.

Assume it’s not the case, i.e. _min (∇'("∞)) < 0.

De�ne set
 := {I s.t. I)∇'("∞)I < 0}.

17



1 Optimization

If there is at least one negative eigenvalue,  has a non empty interior.

We assumed that " (C) converges to "∞, there thus exists some C0 s.t.:

‖" (C0) −"∞‖ ≤ Y.

Consider any ~0 ∈  . Since, (C0) has full rank, there exists some U0 ∈ R< s.t. ~0 =, (C0)U0.
De�ne

I (C) :=, (C)U0.

Note that I (C0) = ~0, therefore it belongs to K by construction. This de�nition implies the
following ODE on I:

¤I (C) = ¤, (C)U0 = −∇'("), (C)U0 = −∇'(")I (C) .

This ODE implies that I (C) is always well de�ned if I (0) is. De�ne the shorthand � := ∇'("∞).

3

3C

[
I)�I

I)I

]
=
¤I)�I
I)I

− I
)� ¤I
I)I

− 2I
)�I ¤I)I
(I)I)2

= −2I
)∇'(")�I

I)I
+ 2I

)�II)∇'(")I
(I)I)2

=C→∞ − 2I
)�2I

I)I
+ 2 (I

)�I)2
(I)I)2

≤ 0.

The last expression is non positive due to the Cauchy-Schwarz inequality. This implies that if I
enters  , it never leaves. We also have:

3

3C
‖I (C)‖2 = 2 ¤I)I = −2I)∇'(")I=C→∞ − 2I)�I.

” =⇒ ”‖I (C)‖2 diverges. (The last computations are not rigorous because made in the limit, they
can be made "true" involving technicalities and Y.) Divergence is impossible, as I (C) :=, (C)U0
and, (C) converges, so the hypothesis _min < 0 is false. �

18



2 Machine Learning on Graphs

2 Machine Learning on Graphs

Note takers: Bardou, Brandao, Even, Gonon, Mitarchuk, Natura, Le Q-T, Pic, Shilov, Weber

Instructor: Pierre Vandergheynst (EPFL)

2.1 Hour 1 (Monday 10-11 am)

2.1.1 Introduction

Graphs are natural structures to represent data in many applications, such as biology (e.g.
proteins) or networks (e.g. transportation, social, energy). On such a structure, building,
learning and processing meaningful features can be done at di�erent scales:

• at node scale: to classify a node, to predict an edge,

• at a (sub)graph scale: to detect and classify structures (e.g. communities)

More generally, we want to be able to process a (sample of) a graph signal, to be able to classify
information over a �xed network. These types of tasks require adapted tools and methods. The
following sections describe some of them.
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2 Machine Learning on Graphs

2.1.2 Some elements of Spectral Graph Theory

First of all, let us formally de�ne what a graph is and some basic related notions.

De�nition 1. A graph � = (+ , �) is a pair, composed of + = {E1, · · · , E# } a set of vertices and
� = {41, · · · , 4" } a set of edges.

A graph has some basic descriptors, gathering information about its structure. The degree of a
vertex E , denoted 3 (E) or 3E is the number of nodes connected to it.

3 (E) = |{D ∈ + s.t. (D, E) ∈ � or (E,D) ∈ �}|

The degrees of each node are gathered in the degree matrix D(�) = D806(31, · · · , 3# ).

De�nition 2. (Diameter, volume of a graph) The diameter 3 (�) of a graph � is the longest
shortest path between a pair of vertices. The volume E>; (�) of a graph � is the sum of the degree
of its vertices, that is E>; (�) = ∑

E∈+ 3E = tA (D).

The incidence matrix S is a # ×" matrix de�ned as:

S8, 9 =


+1 if 4 9 = (E8 , E: ) for some :
−1 if 4 9 = (E: , E8) for some :
0 otherwise

We can represent � with the adjacency matrix A, a # × # matrix:

A8, 9 =

{
+1 if (E8 , E 9 ) ∈ � or (E 9 , E8) ∈ �
0 otherwise

We can extend the de�nition of the degree of a node to weighted graphs, for which the adjacency
matrix becomes a weight matrix W, with W8, 9 ≥ 0: 3 (E8) =

∑#
9=1 W8, 9 .

With these de�nitions, we can eventually de�ne a slightly more complex matrix:

SS) = D − A

De�nition 3. The (unnormalized) Laplacian of � , denoted L is de�ned as:

L = D − A

L does not depend on the orientation of the edges, therefore it can be de�ned for undirected
graph too. For weighted graphs, we have the extension L = D−W. By de�nition, L is symmetric,
but also positive semi-de�nite.
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2 Machine Learning on Graphs

Proof. For any weight matrix W, we can show through simple calculations that ∀G ∈ R# :

G)LG =
1
2
∑
9∼8

W8, 9 (G [8] − G [ 9])2 ≥ 0

�

Considering a graph signal 5 ∈ R# (node attribute), we can observe the di�erential nature of
the incidence matrix S by noting that

(S) 5 ) [ 9] = 5 [8] − 5 [:]

which can be considered as the derivative of 5 along edge 9 . Here, edge 9 connects vertex E8
to vertex E: . Extending this observation to the whole signal 5 , we can think of � = S) 5 ∈ R"
as the gradient of 5 . Note that � is an edge-based signal. Similarly, for an edge-based signal � ,
6 = S� ∈ R# is the divergence of � . Note that 6 is a vertex-based signal.

This insight can help us understand the nature of the Laplacian L = SS) . Considering a graph
(vertex-based) signal, we have:

5 )L5 = 5 ) SS) 5

= | |S) 5 | |22
=

∑
8∼:
(5 [8] − 5 [:])2

Therefore, for a weighted graph, we can consider the quadratic form of a signal involving the
Laplacian L:

5 )L5 =
∑
8∼:

W8,: (5 [8] − 5 [:])2

as a measure of how smooth the signal is.

Since L is a real, symmetric and positive semi-de�nite matrix, it has an eigendecomposition into
real eigenvalues and eigenvectors _8 , D8 , with non-negative eigenvalues (0 = _1 ≤ _2 ≤ · · · ≤ _# ).
Given the properties of the Laplacian L, its eigendecomposition may give us information about
the structure of the graph.

Proposition. The number of connected components 2 of� is the dimension of the nullspace of
L. Furthermore, the null space of L has a basis of indicator vectors of the connected components
of � . An indicator of a subset � of + is

G ∈ R# s.t.
{
G [8] = 1 if ∈ �
G [8] = 0 otherwise
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2 Machine Learning on Graphs

De�nition 4. (Algebraic connectivity, Fielder Vector) The algebraic connectivity of a graph is
the second smallest eigenvalue of L, _2, which is positive if and only if the graph is connected. Its
associated eigenvector, D2 is called the Fielder vector.

The value of _2 gradually increases with the connectedness of the graph. In particular, we can
show that _2 ≥ 1

v>; (�)d(�) .

De�nition 5. The Cheeger Constant of a graph is denoted ℎ(�) and is de�ned as:

ℎ(�) = min
�⊂+

{
|m�|

min
(
v>; (�), v>; (�̄)

) s.t. 0 < |�| < 1
2 |+ |

}
with �̄ the complementary of �, v>; (�) = ∑

E∈� 3 (E) and m� = {(D, E) ∈ � s.t. D ∈ �, E ∈ �̄}
gathering the edges between � and �̄.

The Cheeger Constant is able to measure the presence of "bottlenecks" which are formed by
strongly connected components loosely connected with each others.

We can relate the Cheeger Constant with algebraic connectivity by the Cheeger inequalities. A
simple example is given below:

Theorem 2.1. For a general graph � ,

2ℎ(�) ≥ _2 ≥
ℎ2(�)

2

2.2 Hour 2 (Monday 11 am -12 pm)

2.2.1 Cut and Cluster

WIP

We can associate a cost to cutting a graph in subsets�1, . . . , �= inspired by the Cheeger constant,
which is the minimal surface to volume ratio among graph cuts. To do so, begin by de�ning the
total weight of the edges between �, � ⊂ + :

� (�, �) :=
∑

8∈�,9 ∈�
W [8, 9] , (2.1)

which can be regarded as a proxy for surface between � and � and

cut(�1, . . . , �: ) := 1
2

:∑
8=1

� (�8 , �̄8) (2.2)

For two di�erent de�nitions of subset volume we obtain

RatioCut(�, �̄) = cut(�, �̄)
|�| + cut(�̄, �)

|�̄|
(2.3)
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2 Machine Learning on Graphs

NormalizedCut(�, �̄) = cut(�, �̄)
vol(�) +

cut(�̄, �)
vol(�̄)

(2.4)

We shall see that there is a relationship between

min
�⊂+

RatioCut(�, �̄) (2.5)

and the second eigenvalue of the Laplacian, which will allow us to approximate RatioCut. To
do so, �rst de�ne the indicator function

5 [8] =
{√
|�̄|/|�| if8 ∈ �
−
√
|�|/|�̄| if8 ∈ �̄

(2.6)

Since we have

5 >L5 = 5 >(�) 5 − 5 >, 5 (2.7)

=
∑
8

58

∑
9

F 98 58 −
∑
8

58

∑
9

F8 9 59 (2.8)

=
∑
8, 9

F8 9 (5 2
8 − 58 59 ) (2.9)

=
1
2
∑
8, 9

F8 9 (5 2
8 − 258 59 + 5 2

9 ) (2.10)

=
1
2
∑
8, 9

F8 9 (58 − 59 )2 (2.11)

=
∑
8∼9

W(8, 9) (5 [8] − 5 [ 9])2 (2.12)
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2 Machine Learning on Graphs

replacing this above we can show that (assuming �, �̄ ≠ ∅)

5 >L5 =
1
2
∑
8, 9

F8 9 (58 − 59 )2 (2.13)

=
1
2
©­«
∑
8, 9 ∈�

F8 9 (58 − 59 )2 +
∑
8, 9 ∈�̄

F8 9 (58 − 59 )2 +
∑

8∈�,9 ∈�̄
F8 9 (58 − 59 )2 +

∑
8∈�̄, 9 ∈�

F8 9 (58 − 59 )2
ª®¬

(2.14)

=
1
2
©­«

∑
8∈�,9 ∈�̄

F8 9 (58 − 59 )2 +
∑

8∈�̄, 9 ∈�
F8 9 (58 − 59 )2

ª®¬ (2.15)

=
1
2
©­«

∑
8∈�,9 ∈�̄

F8 9
©­«
√
|�̄|
|�| +

√
|�|
|�̄|

ª®¬
2

+
∑

8∈�̄, 9 ∈�
F8 9

©­«−
√
|�|
|�̄|
−

√
|�̄|
|�|

ª®¬
2ª®¬ (2.16)

=
1
2
©­«� (�, �̄) ©­«

√
|�̄|
|�| +

√
|�|
|�̄|

ª®¬
2

+� (�̄, �) ©­«
√
|�̄|
|�| +

√
|�|
|�̄|

ª®¬
2ª®¬ (2.17)

= � (�, �̄)
(
|�̄|
|�| +

|�|
|�̄|
+ 2

)
(2.18)

= � (�, �̄)
(
|�̄|
|�| +

|�|
|�̄|
+ |�|
|�̄|
+ |�̄||�|

)
(2.19)

= � (�, �̄)
(
|+ |
|�| +

|+ |
|�̄|

)
(2.20)

= |+ |
(
cut(�̄, �)
|�| + cut(�, �̄)

|�̄|

)
(2.21)

= |+ | RatioCut(�, �̄) (2.22)

which implies

5 >L5
|+ | = RatioCut(�, �̄)

Note that

5 > 5 =
∑
8

5 2
8

=
∑
8∈�

5 2
8 +

∑
8∈�̄

5 2
8

=
∑
8∈�

|�̄|
|�| +

∑
8∈�̄

|�|
|�̄|

= |�̄| + |�| = |+ |
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2 Machine Learning on Graphs

so we can replace the left-hand side of the expression above by the Rayleigh quotient of 5 and L

5 >L5
5 > 5

= RatioCut(�, �̄)

Solving

min
�≠∅⊂+ ,5 indicator of �

5 >L5
5 > 5

is thus equivalent to solving Problem (2.5). Note that the indicator function is a constant i�
�, �̄ ≠ ∅ and so

min
�⊂+ , 5 indicator of �, 5 >1=0

5 >L5
5 > 5

If we relax the requirement that 5 is the indicator above, by the Courant–Fischer–Weyl min-max
principle, minimizing the Rayleigh quotient over the space orthogonal to the �rst eigenvalue
yields the second eigenvalue. The 5 for which this happens is called the Fiedler vector D5 . From
(2.1), we see that minimizing this quotient with these constraints corresponds to �nding the
smoothest vector (in the sense that the di�erences over adjacent nodes are small — and more so
for strongly connected nodes), that is not constant. To recover the partition we choose clusters
according to the sign of the eigenvector components, nodes 8, 9 being in the same cluster if
sign(D5 [8]) = sign(D5 [ 9]). Components with di�erent signs are guaranteed to exist because
the second eigenvalue is orthogonal to constants.

2.2.2 Generalizing to : > 2
We begin by generalizing the de�nition of RatioCut given above:

RatioCut(�1, . . . , �: ) =
:∑
8=1

cut(�: , �̄: )
|�: |

(2.23)

We de�ne � ∈ R#×: as

� [8, 9] = 598 =
{

1/
√
|� 9 | if E8 ∈ � 9

0 otherwise
(2.24)
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2 Machine Learning on Graphs

We observe that (
�>�

)
8 9
=

∑
:

5 >
8:
5: 9

=
∑
:

5:8 5: 9

=
∑

:∈�8∧:∈�9

5:8 5: 9 +
∑

:∉�8∨:∉� 9

5:8 5: 9

=
∑

:∈�8∧:∈�9

1
|� 9 |

= X8 9

where the last step follows from noting that the same vertex cannot be in more than one element
of the partition and that we are summing over all elements of that partition.

Observe that using Eq. (2.6) and (2.7)

5 )
:
L5: =

1
2
∑
8, 9

F8 9 (5:8 − 5: 9 )2

=
1
2

( ∑
8, 9 ∈�:

F8 9 (5:8 − 5: 9 )2 +
∑

8∉�:∨9∉�:
F8 9 (5:8 − 5: 9 )2

)
=

1
2

( ∑
8, 9 ∈�:

F8 9 (5:8 − 5: 9 )2 +
∑

9 ∈�: ,8∉�:
F8 9 (5:8 − 5: 9 )2 +

∑
8∈�: , 9∉�:

F8 9 (5:8 − 5: 9 )2 + 0
)

=
1
2

( ∑
8∉�: , 9 ∈�:

F8 9
1
|�: |
+

∑
8∈�: , 9∉�:

F8 9
1
|�: |

)
=

1
2

(
� (�̄: , �: )
|�: |

+ � (�: , �̄: )|�: |

)
=

cut(�: , �̄: )
|�: |

Which implies that

Tr(�>L� ) =
∑
:

5 )
:
L5:

=
∑
:

cut(�: , �̄: )
|�: |

which, as in the case : = 2 suggests solving a relaxed problem.
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2 Machine Learning on Graphs

2.3 Hour 3 (Wednesday 11-12 am)

2.3.1 Signal Processing on Graphs

Goal 1: create models of smooth graph signals and operators to manipulate them (GSP)

For ! a symmetric matrix (! = D>D806(_1, . . . , _# )D for D = (D1, . . . , D# ) an orthonormal
matrix), a Laplacian matrix in the sequel, and 5 a real-valued function, let 5 (!) be de�ned as
! = D>D806(5 (_1), . . . , 5 (_# ))D: 5 is applied on the eigenvalues. Typical example: di�usion on
graphs, de�ned as

mC 5 = −!5 ,

where ! is a graph Laplacian, yielding 5C = 4−C! 50 and making appear the graph Fourier, de�ned
as 5̂ (ℓ) = ∑

9 5 ( 9)Dℓ ( 9), and the graph Fourier inverse.

Graph Fourier transform of 5 a signal: 5̂ (ℓ) = ∑
9 5 ( 9)Dℓ ( 9), and its Fourier inverse 5 (8) =∑

: 5̂ (:)D: (8).

5 is a "-smooth signal on a graph if (‖(>" ‖22 ≤ "), or equivalently if | 5̂ (ℓ) | ≤ "_ℓ .

De�nition 6. A graph �lter is an operator acting on graph signals 5i= , represented as a function
of the Laplacian: 6(!), leading to 5oDC = 6(!) 5i= .

We have �6(!) 5 (ℓ) = 6(_ℓ ) 5̂ (ℓ).
Spectral kernels:

Localization: de�ne ()86) (=) = 6(!)8,= (is that it?)

Polynomial localization: 6 polynomial of degree less than  =⇒ if the distance between 8 and
= in the graph is more than  , then ()86) (=) = 0.

E�cient implementation of a graph �lter Hammond et al. [2011] The image 6(!) 5 of a
graph signal 5 ∈ R# by a graph �lter 6(!) may be approximately computed without having to
compute spectral decomposition of the Laplacian matrix (O(# 3) operations with SVD). Indeed,
if 6 has some kind of smoothness, it can be approximated by a polynomial 6(!) ' ∑ −1

:=1 0:!
: .

Computing !5 , then !2 5 = !(!5 ) and so on until ! −1 5 can be done in O( # 2) operations. If
! is sparse, using a sparse matrix representation allows to actually use only O( ") operations
(recall that " is the number of edges while # is the number of vertices)?

Summary of this section. We have a controlled way to de�ne a graph �lter 6 as localized as
we want: the smoother it is, the better it can be approximated with polynomials and hence well
localized. Moreover, we have an e�cient way to evaluate the �lter on a signal.

2.3.2 Designing and Processing Graph Features with Graph Signal
Processing

Graph wavelets. Let us now �rst show how to design an analog of wavelets on graphs
Hammond et al. [2011], wavelets being a classical powerful signal processing tool on Euclidean
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domains. The main motivation for wavelets is that it allows to de�ne a �lter localized both
in time/space and frequency. Recall that the Fourier transform of a graph signal 5 ∈ R# is
de�ned by 5̂ (ℓ) = 〈Dℓ , 5 〉 and a graph �lter 6(!) operates as 6(!) 5 (=) :=

∑#
ℓ=1 6(_ℓ ) 5̂ (ℓ)Dℓ (=).

As for classical wavelets, one can translate and dilate a "mother wavelet" 6 in order to de�ne
wavelets with di�erent localizations in time/spatial and frequency domains. In order to control
the localization in the frequency domain, we scale 6 with a scale parameter B ∈ R:

�B6 := 6(B!) .

For instance, when B < 1, it dilates 6 in the frequency domain (_ ↦→ 6(_) is replaced by
_ ↦→ 6(B_)) likely resulting in a smoother function than 6 in the sense that it has smaller
variations than 6 within "communities" of the graphs hence it is less spread on the nodes of the
graph. Decreasing the scale reduces the spread of the wavelet, see Figure 2.1.

Figure 2.1: Illustration of the phenomenon of decreasing scale on a toy spiral dataset.

In order to control the localization in the time/spatial domain, we apply 6(!) on the impulse X=
localized on a single vertex = ∈ + . This de�nes an analog of the translation operator but for
graph:

)=6(8) :=
#∑
ℓ=1

6̂(_ℓ )Dℓ (=)Dℓ (8).

De�nition 7. (Spectral GraphWavelets) Let6(!) be a graph �lter. The associated wavelet operator
scaled by B and centered at vertex = is de�ned as:

kB,= (8) := ()=�B6) (8) =
#∑
ℓ=1

6̂(B_ℓ )D∗ℓ (=)Dℓ (8) .
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Neighbourhoods-dependent features based on wavelets. Let 6(!) be a graph �lter. For
every vertex =, the feature ‖k1,= ‖22 = ‖)=6‖22 =

∑#
ℓ=1(6(_ℓ ))2 |Dℓ (=) |2 depends on the structure

of the neighbourhood. For instance, if 6 is  -localized, then by de�nition )=6 only depends on
the :-nearest neighbours of vertex =. In order to change the spread of the �lter 6, one can more
generally consider a scale B ∈ R and associate to every vertex = the feature ‖kB,= ‖22 . Note that if
the scale is too small, these features will not discriminate the vertices sincekB,= is then localized
at the vertex = for every =. Similarly, when B is too large,kB,= is localized on the whole graph
and the features are non-discriminant.

A linear interpolation of features Shuman et al. [2016]. Let us now describe a simple
interpolation example where we recover missing features corresponding to vertices in + 21 :=
+ \+1 based on the known features 5+1 associated with the vertices in +1. What follows is a
simpli�ed version of Pesenson’s variational spline interpolation. We consider Y > 0, a regularized
version of the Laplacian !̄ := ! + Y� and we de�ne i 9 := )96 with 6 that acts on the spectrum of
!̄ as 6(_) = 1

_
. Note that the functions i 9 are regularized Green’s functions since they satisfy

!̄i 9 = X 9 . De�ne U∗ as:

U∗ := [!̄+1,+1 − !̄+1,+ 21
(!̄+ 21 ,+ 21 )

−1!̄+ 21 ,+1] 5+1 .

Upsample U∗ to de�ne a signal on the whole graph:

5upsample =
∑
=∈+1

U∗(=)X= .

We now interpolate the original signal 5 as follows:

5interp := 6(!̄) 5upsample.

One can check that this coincides with 5 on +1 where the signal was known. Moreover, this
choice of interpolation minimizes, over all 5̂ that coincides with 5 on +1, some kind of energy
(typically 5̂ ) !̄ 5̂ ).

2.4 Hour 4 (Thursday 2-3 pm)

In the previous lectures on Graph Representation Learning we:

• learned that the eigendecomposition of the Laplacian of graph reveals a lot about its
structure

• leveraged the smoothness of Eigenvectors for partition vectors / signals

• did dimensionality reduction unsupervised

• came up with the idea of operators that can be applied to graph �lters

• set up an algorithm that allowed us to apply these operators in a computational e�cient
way to signals, which can be used to craft speci�c features for speci�c applications.

This can be summarized as LOVE - “Laplacian Orthogonal eigenVEctors” (see Figure 2.2).

Another topic we discussed and that we will now explore further is Spectral Clustering.
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Figure 2.2: Beatles (1967) and Vandergheynst (2022) - “All You Need Is LOVE”

2.4.1 More Spectral Clustering

Let � be a large graph, which is guaranteed to have many communities. The purpose of this
section is to show tools that allow to �nd the communities of � with a low computational
budget (in this regime even performing spectral clustering would be too expensive). The idea is
to sample (in a good way)< nodes on the graph with the hope that this sub-graph will be a
good representation of G, in the sense that it reveals the : clusters of the graph.

The immediate challenge is to estimate: . This quantity is usually not given as input, in particular
in unsupervised learning.

To address this problem, the main idea is to heuristically perceive a gap in the eigenvalues of
the Laplacian ! of � . The integer : is the number of the greatest eigenvalues of ! before the
gap. These : will help us to determine<. The search for : can be done in a stochastic approach.
More details on these techniques can be found in Napoli et al. [2016].

From now on assume that a reasonable estimate of : has been computed and let us get back to
the sampling of< vertices. A trivial lower bound on< to recover all : clusters of � would be
< ≥ : . We will not be able to get away with only< = $ (:) samples. But we will show that up
to some parameters, with high probability< = $ (: log(:)) many samples su�ce.

Let ! = *Λ* > be the eigendecomposition of ! such that diagonal entries of Λ are ordered in
increasing order: _1 ≤ _2 ≤ . . . ≤ _= .

Then, we sample< nodes independently, where node 8 is sampled with probability

?∗8 :=
‖* >

:
X8 ‖22
:

, (2.25)

where *: is the submatrix consisting of the �rst : columns of * and X8 is the 8-th vector of the
standard basis in R= .
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If we represent the action of sampling< ≤ = nodes by a matrix " ∈ {0, 1}<×= , and grouping
the the probability of a node to be selected in a diagonal matrix % we can derive guaranties on
the compression-decompression of the graph if " is chosen wisely. More formally:

Lemma 2.2. There exists a distribution ?∗ over the nodes of G, such that if " ∼ ?∗ then for all
0 < Y, X < 1, ∀G ∈ span(*: )

P

[
(1 − X)‖G ‖22 ≤

1
<
‖"%−

1
2G ‖22 ≤ (1 + X)‖G ‖22

]
≥ 1 − Y

for< = Θ
(

1
X2: log

(
:
Y

) )
.

However, recall that we mentioned at the beginning of this section that computing such a
decomposition would computationally be too expensive. Fortunately, approximating the ?8 is
su�cient for our purposes and such an approximation can be obtained e�ciently with high
probability:

What is interesting is that we can estimate the optimal distribution of the above assertion by
applying random �lters and taking the mean.

The recovering procedure of the graph is given by:

<8=
I∈R=
‖%−

1
2

l ("I − ~)‖22 + W I)6(!)I︸   ︷︷   ︸
�

Where ~ = "G and � is soft constraint of frequencies.

The experiments conducted show the di�erence in reconstruction performance depending on
the distribution chosen on the graph. In particular, the uniform distribution is generally a bad
idea this task. Another experiment carried out on the graph of proximity of pixels of an image
(for a given image we associate a graph weighted by the proximity between two pixels) shows
that we can reconstruct the image quite faithfully by sampling 7% of the nodes.

2.5 Hour 5 (Thursday 3-4 pm)

2.5.1 Graph Neural Networks

Good recipe for Neural Networks : Convolutional NN shared weights: parallelization, shift
invariance.

Adapting it to graphs
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Idea 1 : work at the node level to compute local aggregator Idea 2 : make computation scalable
by weight sharing ("convolutional net")

Look at neighbors to aggregate and compute the features.

Generalization of CNN to Graph : see article ChebNet

• ChebNet : At each layer use a graph �lter and learn parameters of the �lter : polynomial
�lter for computations

• GCN - Simpli�ed architecture : Only use linear �lters because using multiple layers
has "similar" e�ect Use same weights for nodes and their neighbors Rescale for stability
and have a more uniform e�ect across the graph

Some examples of the matrix weights of GNNs:

1. , = *�\ (Λ)* >.

2. , = *�\ (Λ)* >.

3. (Chebnet?), = %\ (!).

4. Simpli�cation:, = \1I − \2� (can be simpli�ed even more by setting \ = \1 = −\2).

where the next features (neurons) are computed as: �8 (G) = f ( [, ]>8 G + 1).

Message Passing GNNs in GNN : Compute local features, transfer message to the neighbors,
re-scale the neighbors, receive message from the neighbors to agglomerate/update your state.
Repeating the operation is similar to receiving signals from further and further neighbors. This
is what ChebNet does: it tries to learn how to transmit the message through the polynomial
�lters.

This approach can be generalized to non-polynomial �lters. Three main steps :

• Compose message: <C+1(8 → 9) =M(5C (G8), 5C (G 9 ), 08 9 ).

• Aggregate messages: A(<C+1( 9 → 8), 9 ∈ N).

• Update states: 5C+1(G8) = U(5C (G8),A(<C+1( 9 → 8), 9 ∈ N)).

To �nalize this approach, depending on the task at hand : node or graph.

Attention-based GNNs : Graph Attention Networks (GATs), Non-Local Neural Networks
(NLNNs) Use a self-attention mechanism t weight node features The attention can be gen-
eralized : there are weights to decide if at a certain level of the network we use the information
at any graph even if they are not connected directly.

Unifying view of GNNs : Message Passing General properties arise from this general idea :
symmetries see slides

Possibility to add constraints justi�ed by the problem setting (eg: node equivariant message
passing functions)

Applications :
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• E-commerce

• Anonymize Networks

• Biology : Classify sites on proteins with their respective nodes (Pocket classi�cation,
interface prediction, Ultra-fast PPI search : learn proteins interactions and compatibility)

2.5.2 Analyzing GNNs

Check how expressive GNNs are : how good they can distinguish non-isomorphic graphs.
Weisfeiler-Leman test : assign a color to nodes of each graph (same color for every one at
beginning), update the color via an injective hash based on the previous color and the color of
the neighbors of each node. Finally, compare color histograms.

2.6 Hour 6 (Friday 2-3 pm)

2.6.1 Understanding GNNs

WL Failure There are non-isomorphic graphs that cannot be distinguished by 1-WL (e.g.
Decalin & Bencyclopentyl).

How does GNN compare to WL? Both are equivalent. If a GNN can distinguish two graphs,
1-WL can distinguish them as well. Conversely, if 1-WL can distinguish two graphs, with
su�cient depth a GNN can distinguish them as well.

Takeaway The paper How Powerful are Graphs Neural Networks characterizes the kind of
injective multisite functions.

2.6.2 Beyond GNNs: exploiting higher order structures

To distinguish two graphs, we can look for motives like triangles. This is what the k-WL test
does. Question: what is the neighbourhood of a set of nodes? (k+1)-WL is more expressive than
k-WL.

Simplicial Neural Nets We want to exploit higher-order structure in a more simpli�ed way.
The idea is to create a simplex and then keep increasing the structure. But the subsets of the
higher structure must be contained by the lower level.

De�nitions:

1. boundary (e.g. the boundary of a triangle are its edges)

2. boundary incidence

3. signed boundary matrices

4. k-th Hodge Laplacian ... We can prove that !: is positive semi-de�nite.
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Simplicial Weisfeiler-Leman We exploit richer structures of adjacencies in simplicial
complexes:

• boundary adjacency

• co-boundary adjacency

• lower adjacency

• upper adjacency

We use aggregation over adjacent structures in WL fashion. It is not less powerful than 3-WL

2.6.3 Conclusion

There are limitations of GNNs that we do not understand yet. First problem: we can make it
more expressive by adding more layers. Since we average the layers, the last layers, that are the
most important to take meaningful decisions, get inexpressive.

Second problem: over-squashing.
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3 Multi-armed bandits and beyond

3 Multi-armed bandits and beyond

Note takers: Achddou J., Barrier, Chapuis, Ganassali, Haddouche, Marthe, Saad, Tarrade, Van
Assel

Instructor: Shipra Agrawal (Columbia University)

3.1 Introduction

When learning from sequential interactions, there is a tradeo� between:

• information and rewards:

• learning and optimization,

• exploration and exploitation.

In a nutshell, your goal is to get a maximal reward at each round and you have to choose
between:

• exploitation: choosing an option that ensures you a good reward using information that
you gathered in the past,

• exploration: choosing an option that has been less pro�table in the past but on which
you did not collect enough information, which might cost you a bad immediate reward
but will allow you to understand better the system and thus obtain better rewards in the
future.

We will start with introducing the basic Multi-armed Bandits problem. Multi-armed Bandits
and Reinforcement Learning problems deal with the tradeo�s hereabove, gathered under the
term exploration/exploitation dilemma.
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Examples:

• Learn from customer’s feedback to improve what products to show on internet. In this
case, the outcome is whether or not the customer purchased the product,

• Machines at the casino : which one to put money on?

Given an amount of money, you are free to choose in which machine(s) you will put it.
Your goal is to maximize the money you will earn in total.

Are you gonna try only one machine? Or all of them uniformly at the beginning, and
then stop to use the bad ones?

When to stop trying (exploration) and start playing (exploitation)?

Stochastic Multi-armed Bandit problem (MAB). We consider a setting of online decisions:
at every round C ∈ [) ] = {1, . . . ,) }, we pull one arm 8C ∈ {1, . . . , # } out of # arms using past
information.

As a feedback, for each arm 8 ∈ [# ], a reward A8,C is generated i.i.d. from a �xed but unknown
distribution with support in [0, 1] and mean `8 . The learner only observes the reward AC = A8C ,C
of the pulled arm 8C . The mean of the reward at time C (knowing that arm 8C has been selected)
is thus `8C .

The goal is to minimize the regret compared to the best arm 8∗ = arg max8 `8 :

Regret() ) = E
[ ∑
C ∈[) ]

`∗ − `8C
]
= ) `∗ −

∑
C ∈[) ]

E[`8C ]

where `∗ = `8∗ = max8 `8 (note that 8C is a random variable, hence the expectation in the
de�nition of '() )).

If we know the best arm 8∗, we can play 8C = 8∗ at every round and get the optimal reward
) `∗ (and regret 0): the regret is de�ned as the di�erence between what one could ideally have
obtained and what we actually got at the end.

For each arm 8 , denoting by Δ8 = `
∗ − `8 its gap and by :8 () ) its number of pulls up to time ) ,

the expected regret can be rewritten as

Regret() ) =
∑
8≠8∗

Δ8E[:8 () )]

Of course, a strategy that learns something from the data will diminishes the observation
frequency of any sub-optimal arm, hence its regret might be sublinear. At the opposite, if the
proportions of pulls of sub-optimal arms do not evolve with time, the strategy does not learn
anything and the regret is linear.
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Outline. We will �rst cover basic algorithms involving UCB and Thompson Sampling. Then
we will see useful generalizations: contextual bandits, bandits with constraints, assortment of
bandits. We will �nally study bandit techniques for MDP/RL.

The need for exploration. We will use a toy example to highlight how randomness forces
the use of exploration.

We consider # = 2 arms: blue and red, with respective means `1 = 1.1 and `2 = 1. The optimal
expected reward in this case is 1.1 ×) .

A �rst natural strategy consists to simply pull the arm with the current best estimate (MLE/empirical
mean) of unknown mean. This strategy is called Follow-The-Leader.

But we will see that initial trials can be misleading. Assume for instance that arm red is a Dirac
distribution at 1: the associated sequence of rewards will be 1, 1, 1, . . . . If arm blue has quite a
large variance, there is a positive probability that its empirical mean after a few trials will be
lower than 1.

On this event denoted by �, you will then pull the red arm at every time step (as it empirical
mean 1 will never go down under the empirical mean of the blue arm. Thus your expected
regret after ) steps will satisfy

Regret() ) & P(�) × 0.1)

hence the regret will be linear in ) : the strategy fails to learn anything on event �. To correct
this misbehaviour you have to pay attention to exploration!

As already explained, a good algorithm will have to balance between:

• exploitation: play the empirical mean reward maximizer,

• exploration: play less explored actions to ensure the convergence of empirical estimates.

3.2 Lower bounds

An algorithm has no way to know whether an arm is sub-optimal before it plays it. Thus it
will have to observe sub-optimal arms at least a few times, leading to a non-negative regret.
This has been quanti�ed in the literature by Lai and Robbins (1985): for any given instance
µ = (`1, . . . , `# ) of the MAB problem, any "reasonable" algorithm will play a sub-optimal arm 8

at least Ω( log() )
Δ2
8

) times for large ) , hence a minimal regret of

Regret() ) & log() )
∑
8≠8∗

1
Δ8
.

This bound is instance-dependant: it depends on the distributions of the bandit parameter µ,
more speci�cally through the gaps Δ8 .
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Remark. Imagine a strategy that always selects 8C = 1: it will have a 0 regret among all bandit
parameters such that 8∗ = 1, but a linear regret among all other bandit parameters. Then this is
not a good strategy, and this is the kind of strategy we remove when considering only "reasonable"
strategies.

On the other hand, there also exists a worst case bound: for every algorithm, there exists a
bandit parameter for which '() ) = Ω(

√
#) ).

3.3 The Upper Confidence Bound algorithm (Auer 2002)

The strategy. We de�ne the empirical mean at time C for am 8 as follows:

ˆ̀8,C =
∑
B∈[C ] AB18B=8
:8 (C)

.

As we already discussed, the empirical mean is not su�cient to capture the need for exploration.
The idea of the UCB algorithm is to combine at each time C and for each arm 8 both an exploitation
term (the empirical mean) and an exploration term (which is a bonus that decreases with the
number of pulls) into an index denoted by UCB8,C :

UCB8,C = ˆ̀8,C︸︷︷︸
exploitation term

+ 2

√
log C
:8 (C)︸    ︷︷    ︸

exploration term

The strategy is optimistic: we know that `8 belongs to the con�dence interval [ ˆ̀8,C ± 2
√

log C
:8 (C ) ]

w.h.p. and we take the highest value of this interval as basis: UCB8,C overestimates `8 . While
increasing the number of observations this con�dence region will shrink to {`8}.

The UCB algorithm plays at time C the arm with the best optimistic estimates, as explained in
Algorithm 1.

Regret analysis of UCB. Recall the expression of regret:

Regret() ) =
∑
8≠8∗

Δ8E[:8 () )]

We assume optimistically that for any 8 ,*��8,C > `8 .

First we bound the number of mistakes E[:8 () )] for all suboptimal arms 8 ≠ 8∗.

A bound of E[:8 () )] ≤ � log)
Δ2
8

.

Arm 8 will be played at time C only if UCB8,C > UCB8∗,C .
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Input: number of arms # , number of steps )
Observe each arm once
C ← # while C < ) do

for each arm 8 do

Compute UCB8,C = ˆ̀8,C +
√

4 log C
:8 (C )

end
8C+1 ← arg max8 UCB8,C
Observe AC+1 = A8C+1,C
C ← C + 1

end
Algorithm 1: Upper Confidence Bound

If =8,C > 16 log)
Δ2
8

, we get | ˆ̀8,C − `8 | ≤ Δ8
2 with probability 1− 1

) 2 using Azuma-Hoe�ding inequality,
and then

UCB8,C − ˆ̀8,C =

√
4 log C
=8,C

≤ Δ8
2

With high probability, arm 8 will not be pulled more than 16 log() )
Δ2
8

(bound on expected number
of mistakes), thus with high probability

Regret() ) ≤ 16 log() )
∑
8≠8∗

1
Δ8

3.3.1 Thompson Sampling (Thompson 1933)

Thompson Sampling is a Bayesian algorithm. The general idea is to maintain belief about
parameters (e.g. mean reward) of each arm. Then observe the feedback, update the belief of
pulled arm in a Bayesian manner. Belief update is performed using Bayes rule: the posterior is
proportional to the product of likelihood and prior. Importantly, we don’t try to estimate the
parameters in this setting.

We pull the arm by sampling from the posterior probability of being the best arm. Note that
this is di�erent than choosing the arm that is the most likely to be the best.

The main intuition of maintaining Bayesian posteriors is the following:

• When the number of trials increases, the posterior concentrates on the true parame-
ters. This phenomenon enables exploitation, as the mode of the posterior captures the
maximum likelihood estimate.

• Moreover, uncertainty is high when the number of trials is small. This variance captures
the uncertainty about the arms and enables exploration.
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Example of Bernoulli rewards with Beta priors. In the case of Bernoulli rewards, we pick
the Beta distribution since it is conjugate (it is important because drawing a point according
to updated Bayesian posterior may be costly in the general case and often requires MCMC
methods). If you take Beta(U, V) as a prior, then the posterior is updated as follows:

• Beta(U + 1, V) if you observe 1.

• Beta(U, V + 1) if you observe 0.

Note that every time you observe a sample, the variance decreases1.

We start with a Beta(1, 1) distribution as prior belief for every arm. Then in round C :

• for every arm 8 , sample \8,C independently from current posterior Beta((8,C + 1, �8,C + 1),
where:

(8,C =
∑

B∈[C−1]
1AB=118B=8 and �8,C =

∑
B∈[C−1]

1AB=018B=8 ,

• play arm 8C+1 = arg max8 \8,C ,

• observe reward and update the Beta posteriors

�8,C+1 =

{
�8,C if 8 ≠ 8C+1
�8,C + 1AC+1=0 if 8 = 8C+1

and (8,C+1 =

{
(8,C if 8 ≠ 8C+1
(8,C + 1AC+1=1 if 8 = 8C+1

Example of continuous rewards with Gaussian priors. We take a standardN(0, 1) prior.
The reward likelihood isN( ˆ̀, 1) such that the posterior after = independent observations simply
takes the form N( ˆ̀, 1

=+1 ) where ˆ̀ is the empirical mean.

Start with N(0, a2) prior belief for every arm. Then in round C :

• for every arm 8 , sample \8,C independently from current posterior N( ˆ̀8,C−1,
a2

=8 (C−1)+1 ),

• play arm 8C = arg max8 \8,C ,

• observe reward and update the empirical mean ˆ̀8,C .

Remark: In practice Thompson sampling seems to be more e�cient in general than UCB since
UCB involves the optimistic assumption of the overestimation of the mean which may not be
realistic.

Why does it work? For the sake of simplicity, we come back to the two arms example: we
consider two arms with `1 ≥ `2, Δ = `1 − `2. In this case we directly have that if arm 2 is pulled,
the regret is Δ.

We want to bound the number of pulls of arm 2 by log)
Δ2 to get a log)

Δ regret bound.

1the variance of Beta(U, V) is UV

(U+V)2 (U+V+1)
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How many pulls of arm 2 are actually needed?

After = ≥ 16 log() )
Δ2 pulls of arm 2 and arm 1.

Using Azuma-Hoe�ding, one has : | ˆ̀8 − `8 | ≤
√

log() )
=
≤ Δ

4 with high probability. So the arms
are well separated.

Beta posteriors are well separates: their mean is U8
U8+V8 = ˆ̀8 and standard deviation about

1√
U + V

=
1
√
=
≤ Δ

4

Thus the 2 arms can be distinguished and arm 2 will not be pulled anymore. Hence the
importance of verifying both arms have been pulled enough to ensure the consistency of our
result.

Extension to multiple arms. One has the following kind of results:

P(0C = 0∗ |�C−1) ≥
?

1 − ? P(0C = 0 |�C−1)

where ? is the probability of anti-concentration of posterior sample for the best arm.

Best arm gets played roughly every 1/? plays of arm 0.

• ? can be lower bounded by Δ0 in general but it actually goes to 1 exponentially fast with
increase in number of trials of best arm,

• cannot accumulate from arm 0 without playing 0∗ su�ciently.

3.4 Useful generalizations of the basic MAB problem

Di�erent generalizations could be useful depending on the application:

• pulling more than one arm at a time

• having unknown distributions

• changing the feedback (having it censored for instance)

• having a goal di�erent than reward maximization

3.4.1 Handling context in MAB

In this part, we will only consider linear contextual bandit. They make sense in a lot of
application, for instance in content based recommendation, where customers and product can
be described by their features. It allows for an easier way of dealing with a large amount of
products and customer types, and the features will allow to make pro�t of similarities across
product or users.
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Linear contextual bandits :

• N arms (possibly very large),

• a d-dimensional context (feature vector) G8,C for every arm 8 , time C

• Linear parametric model, with parameter \

• algorithm picks GC ∈ {G1,C , . . . , G#,C }, observe AC = GC · \ + [C
• Optimal arm depends on context: G∗C = arg max8 G8,C · \

• Goal : minimize regret
∑
C (G∗C − GC ) · \

UCB for contextual bandits Linear regression is used to approximate the parameter :

• least square solution \̂C of set of equation GB ¤\ = AB

• \̂C ' �−1
C

(∑C−1
B=1 GBAB

)
where �C = � +

∑C−1
B=1 GBG

>
B

With high probability, we have the bound : ‖\ − \̂C ‖�C ≤ �
√
3 log()3)

Remark. The bound doesn’t depend on the number of arm, only on the dimension.

The algorithm proceeds as follows. At time C :

• Observe the context G8,C for di�erent arms 8 = 1, . . . , #

• Compute optimistic parameter estimates and con�dence intervals for every arm

• Choose the best arm according to the most optimistic estimates

arg max
8

max
\
\>G8,C such that

���|\ − \̂ |���
�C
≤ �

√
3 log()3)

for each C = 1, . . . ,) do
Observe set �C ⊆ [# ], and context G8,C for all 8 ∈ �C
Play arm �C = arg max8∈�C maxI∈�C I>G8,C with �C as de�ned
Observe AC . Compute �C+1

end
Algorithm 2: LinUCB algorithm

Proof.

Regret() ) =
)∑
C=1
(G∗C · \ − GC · \ )

with G∗C = G8∗,C , 8∗ = arg max8 G>8,C\ , and GC = G8C ,C
For the �rst part, we always make use optimism :

42



3 Multi-armed bandits and beyond

'() ) ≤
)∑
C=1
(G∗C · \ − GC · \ ) with high P

=

)∑
C=1

GC (\̃C − \ )

≤
)∑
C=1

√
G>C �

>
C G

√
(\̃C − \ )>�C (\̃C − \ )

=

)∑
C=1
‖GC ‖�−1

C




\̃ − \



�C︸     ︷︷     ︸

≤
√
�3 log()3)

=

)∑
C=1
‖GC ‖�−1

C

√
�3 log()3)

Moreover, by the Elliptical Potential Lemma (see e.g. Lattimore and Szepesvári [2020], Chapter
20) :

∑
C

‖GC ‖�−1
C

= G>C �
−1
C GC = $̃ (

√
3)

which �nishes the proof. �

Remark. Thompson Sampling for linear contextual bandits uses the (Gaussian) Bayesian Linear
Regression to sequentially maintain a posterior distribution over the unknown parameter \ . Regret
guarantees currently show a slight suboptimality: '() ) = $ (33/2√) ) but it is still unclear whether
this is due to an artefact in the proof or if that extra

√
3 should be here for more fundamental

reasons.

3.4.2 Assortement selection as multi-armed bandit

The customer response to the recommended assortment may depend on the combination of
items and not just the marginal utility of each item, in the assortment.

Ex: An assortment combining 3 types of cell phones might push the user to go for the cheapest.

Setting:

• selecting a subset (C ∈ [# ] in each of the sequential rounds C = 1, . . . ,) .

• On selecting a subset (C , reward AC is observed with expected value E[AC |(C ] = 5 ((C)
where the function 5 : '# ↦→ [0, 1] is unknown
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Di�erent possible structural assumptions on 5 (e.g. Lipschitz). But also multinomial logit choice
model(MNL).

The multinomial logit choice model (Luce 1959, MfFadden 1978) is the following:

the probability that a consumer purchases product 8 at time C when o�ered an assortment ( is

?8 (() =
4\8

1 +∑
8 4
\8

if 8 ∈ ( ∩ {0} or 0 otherwise (3.1)

i can be 0 meaning that there is no purchase.

The idea is to take into account the distribution of other arms. Pulling an arm no longer depends
on its marginal distribution only. The above is a simple model to do so.

MNL bandit problem. In this setting we have # products, unknown \8 . At every step C , we
recommend an assortment (C of size ≤  , observe customer response 8C , revenue A8C , and update
parameter estimates. The customer’s behavior is modeled by 3.1.

The goal is to optimize the total revenue E
[∑

C A8C
]
, or minimize the regret compared to the

optimal assortment

R() ) := ) 5 ((∗) − E
[∑
C

AC

]
=

∑
C

(5 ((∗) − 5 ((C ))

where (∗ = max( 5 ((). In many cases, even if the expected value 5 (() is known for all ( ,
computing ( may be intractable. Therefore, for this problem to be tractable some structural
assumptions on 5 will be made.

Main challenges Censored feedback: feedback of product 8 is e�ected by other products
in a given assortment (combinatorial: # choices). In other words, the response observed on
o�ering a product 8 (as part of an assortment () is not independent of other products in the
assortment.

Technique to get unbiaised estimate of individual parameters: o�er a given assortment ( until
no purchase: the number of times =( (8) that 8 is purchased in ( on this process is an unbiased
estimator of 4\8 . Indeed, one has

E[=( (8)] =
?8 (()
?0(()

= 4\8 .

Concretely, if at any round C a purchase of any item in the o�ered set (C is observed, then the
algorithm continues to o�er the same assortment in round C + 1, i.e. (C+1 = (C . If a no-purchase
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3 Multi-armed bandits and beyond

is observed in round C , then the algorithm updates the parameter estimates and makes a new
assortment selection for round C + 1.

Then, having established con�dence intervals for the parameters \8 , we can run UCB and
Thompson Sampling techniques.

UCB based algortihm Agrawal et al. [2019] acheives $ (
√
#) ) regret.

3.4.3 Bandits with constraints and non-linear aggregate utility

Generalizing MAB: we observe a non-negative reward AC ans a cost vector 2C . The problem now
becomes:

max
∑
C

AC s.t. ∀9,
∑
C

2C, 9 ≤ �.

-> Bandits with Knapsacks Badanidiyuru et al. [2013]

A generalization of this is Bandits with convex knapsacks and concave rewards (BwCR), with
convex constraints domains and concave rewards.

Bandits with convex knapsacks and concave rewards (BwCR) Agrawal and Devanur
[2014] Pulling an arm 8C generates EC ∈ R3 with unknown mean +8C .

Total number of pull constrained by) + arbitrary convex global contraints of the form 1
=

∑
C EC ∈

(, with ( a convex set.

The goal is to maximize 5
( 1
=

∑
C EC

)
, for 5 an arbitrary concave function, of minimise3

( 1
=

∑
C EC , (

)
as one has to assure 1

=

∑
C EC ∈ ( .

Results for UCB-like optimistic algo for BwCR We need to estimate for every arm 8 and
coordinate 9 .

We are interested in the following problem, where �C = {+ : + 8 9 ∈ [LCBC,8 9 ,UCBC,8 9 ]},

?C = arg? max
+ ∈�C

5

(∑
8

?8+ 8

)
(3.2)

s.t. min
* ∈�C

dist
(∑
8

?8* 8 , (

)
≤ 0 (3.3)

For non-decreasing 5 , the inner maximizer in the objective of 3.3 will be simply the UCB
estimate, therefore for the classic MAB problem this algorithm reduces to the UCB algorithm.
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3.5 Bandit techniques for Markov Decision Processes

General formulation The general problem is as follows: the reward on pulling an arm
(action) depends on the current state of the system. Each round C = 1, . . . ,) consists in observing
the current state, taking an action, observing the reward and a new state. The solution concept
is referred to as a policy. The general goal is to learn the state transition dynamics and the
reward distributions, while optimizing the policy.

(Application: inventory management, autonomous vehicle control, robot navigation, personal-
ized medical treatments...)

3.5.1 MDPs

at round C , the player observes state BC , take action 0C , observe reward AC ∈ [0, 1] and next state
BC+1.

The system dynamics is given by a MDP ((,�, A, %, B0) such that

E[AC |BC , 0C , �C ]E[AC |BC , 0C ] =: ABC ,0C , and P[BC+1 |BC , 0C , �C ]P[BC+1 |BC , 0C ] =: %BC ,0C (BC+1).

Due to Markov property, there is an optimal policy c : ( → �. The goal is to minimize expected
regret compared to the best stationary policy c∗, de�ned as follows

Regret(",) ) :=
)∑
C=1

[
A (B∗C , c∗(B∗C )) − A (BC , 0C )

]
.

We want to learn the MDP model parameters (A, %) from observations (BC , 0C , AC , BC+1)1≤C ≤) , while
optimizing the policy for total expected reward.

In these models, regret bounds will be of the form $ ((
√
)�).

Need for exploration Let us look at a single state MDP: the situation boils down to the
classical MDP problem, for which the exploit only policy may mislead into playing bad action
forever.

[example of a two-states MDP] Let us illustrate the fact that exploiting the seemingly best policy
is not the optimal choice. In the above example, initializing at state 1 and playing red action
forever would avoid the best action (state 2, black action), which needs a bit of ’faith’ in order
to be discovered! In MDPs, the exploitation is thus even more important that in classical MAB.

Communicating MDPs Caveat: MDP can get stuck on bad states for a long time, depending
on the underlying graph structure.

Let us de�ne communicating MDPs, which are MDPs for which there is always a way to get
out of a bad state in �nite time. Namely, for every pair of states B, B ′, there is a policy c (that

46



3 Multi-armed bandits and beyond

depends on B, B ′) such that using this policy starting from B , the expected time to reach B ′ is �nite
and bounded by � , called the diameter of the MDP.

Some useful properties:

• the optimal asymptotic average reward is independent of the starting state

• the asymptotic average reward (gain) of policy c is de�ned by

_c (B) := E
[

lim
)→∞

1
)

)∑
C=1

A (BC , c (BC ))
��B1 = B

]
There is a single policy c∗ achieving the optimal in�nite average reward

∀B, max
?
8_c (B) = _c∗ (B) =: _∗

• We de�ne the regret as the gain compared to asymptotic normal:

Regret(",) ) := )_∗ −
)∑
C=1

A (BC , 0C ) .

Some bounds Upper con�dence bounds based algorithms Auer et al. [2008], Bartlett and
Tewari [2012] : worst-case regret bound $ (�(

√
�) ), lower bound Ω(

√
�(�) ).

Optimistic Posteriori Sampling Agrawal and Jia [2017]: worst-case regret bound in $ (�(
√
�) ).

3.5.2 UCRL: Upper confidence bound based algorithm for RL

Expected reward '(B, 0) for all B ∈ (, 0 ∈ �, as well as % (B, 0) a distribution on ( . At each step,
we can use AC to update an estimator of '(BC , 0C ) and BC+1 for % (BC , 0C )

UCRL algorithm Model-based approach: maintain estimates %̂, '̂, and occasionally solve the
MDP ((,�, %̂, '̂, B1) to �nd a policy, run this policy for some time to get samples, update the
estimates, and iterate. We proceed in epochs:

At every epoch : , use samples to compute an optimistic MDP ((,�, '̃, %̃, B1), solve it to �nd an
optimal policy c̃ . Then, execute c̃ in epoch : , and observe samples BC , 0C , AC , BC+1. Then, go to
next epoch if =: (B, 0) ≥ 2=:−1(B, 0) for some B, 0.

[missing: more involved description of the algorithm]

Theorem 3.1. For any communicating MDP with unknown diameter � , we have with high
probability

Regret(",) ) ≤ $̃ (�(
√
�) ),

where $̃ hides logarithmic factors in (,�,) .
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Proof sketch. By the communicating property, we have that w.h.p., the extended MDP in UCRL
is communicating. For this extended extended MDP, the optimal average reward _̃(B) is inde-
pendent of B .

The average regret in an epoch : is

_∗ − 1
):

∑
C ∈[): ]

ABC ,0C = (_∗ − _̃) + (_̃ −
1
):

∑
C ∈[): ]

ABC ,0C ) .

The above �rst term is non-postive by construction of UCRL. For the second term, we follow the
same policy but on a di�erent MDP. The bounds are obtained using concentration of transition
probability vector samples from the posterior.

Bellman equation De�ne the value functions

E"W (B) = E"

[∑
:≥1

W:−1A:

]
.

We have
E"W (B) = '(B, " (B)) + WEB′∼%" (B, ·)

[
E"W (B ′)

]
,

which also writes
E"W = '" + W%" · E"W

We can show that
_" (B) = lim

W→1
(1 − W)E"W (B)

De�ne the bias vector ℎ" (B) := E
[
lim)→∞

∑)
C=1(AC − _" (BC )) |B1 = B

]
. We actually have that

ℎ" (B1) − ℎ" (B2) = lim
W→1
(E"W (B1) − E"W (B2)) .

These two equations, together with the �xed point equation satis�ed by E"W (B) give that for
W ∈ (0, 1),

(1 − W)E"W (B) = '" (B) + W
∑
B′
%" (B, B ′) (E"W (B ′) − WE"W (B)).

Then, sending W → 1, one gets the Bellman equation:

_" (B) = '" (B) +
∑
B′
%" (B, B ′)ℎ" (B ′) − ℎ" (B).

Bounding the di�erence In our context Bellman equation writes _̃−AB,c (B) = %̃B,c (B) · ℎ̃− ℎ̃B , where
ℎ̃ is the bias vector of samples and satis�es |ℎ̃8 − ℎ̃ 9 | ≤ � for all 8, 9 ∈ ( . Thus
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_̃ − 1
):

∑
C ∈[): ]

ABC ,0C =
1
):

∑
C ∈):

(
%̃BC ,0C · ℎ̃ − ℎ̃BC

)
=

1
):

∑
C ∈):

(
%̃BC ,0C · ℎ̃ − %BC ,0C · ℎ̃ + %BC ,0C · ℎ̃ − ℎ̃BC

)
.

By martingale property, %BC ,0C · ℎ̃ − ℎ̃BC = 0. Then, w bound the deviation of posterior sample
from the true model (%̃BC ,0C − %BC ,0C ) · ℎ̃ (posteriori variance, sample error...). Since here ℎ̃ is not
�xed, we need a union bound, giving a bound in $̃ (�

√
(/

√
#B,0). �

3.5.3 Posterior sampling algorithm for MDPs

A more intuitive algorithm with di�erent techniques for regret bound proofs.

Finite state, �nite action S states, A actions.

Prior: Dirichlet (U1, U2, ..., U8 + 1, ..., UB) on %B,0
After =B,0 =

∑
U8 observations for a state-action pair B, 0 one computes the posterior ?̂B,0 (8) =

U8∑
9 U 9

=
U8
=B,0

.

The variance is bounded by 1
=B,0

: the more we have trials, the more the posterior concentrated
around true probability.

Learning phase One maintains a Dirichlet posterior for %B,0 for any (B, 0). We start with an
uninformative prior Dirichlet (1, 1, . . . , 1).

Deciding phase We �rst sample %̃B,0 for any (B, 0). Then the optimal policy c̃ is computed
for the MDP ((, i�, %̃, A , B0)

Our algorithm

• For any (B, 0), generate multiplek = $̃ (() independent samples from a Dirichlet posterior
for %B,0 .

• Form extended sample MDP ((,k�, %̃, A, B0).

• Form optimal policy c̃ and use through the epoch.

Further initial exploration: For (B, 0) with very small #B,0 <

√
)(
�

use simple optimistic
sampling that provides extra exploration.
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Regret bound analysis Assumption True MDP is communicating with diameter D

• For UCRL: with high probability, extended MDP is communicating

• For posterior sampling whp extended MDP is a communicating MDP with diameter at
most 2� .

We recall that a useful property of communicating MDP is that optimal asymptotic average
reward does not depend on the initial state.

The averaged regret in an epoch : is

_∗ − 1
):

∑
C ∈[): ]

ABC ,0C = (_∗ − _̃) + (_̃ −
1
):

∑
C ∈[): ]

ABC ,0C ) .

Two main results: First the optimism of transition matrix on a projection is su�cient ≥ _∗ if for
every B, 0, %̃B,0 .ℎ∗ ≥ %B,0 .ℎ if a set of samples satisfy optimism on projection to unknown bias
vector ℎ∗.

Second For any �xed bounded vector ℎ a sample satis�es above with probability 1/( . There is
no need to know ℎ∗! But there is a need of $ (( log( (�

d
)) samples whp.

3.6 Learning to manage inventory

It gives a general recipe for a loose class of problems.

Overview:

You start the inventory at time C , you observe 8=EC , you gather new >C and old >C−! orders. Then
you have to deal with the demand 3C after dealing a new on hand inventory �C = 8=EC + >C−! .
You then observe ~C =<>=(�C , 3C ).

You �nally incur holding and lost sales cost ℎ(�C , 3C )...

Learning an MDP In each round C = 1..) :

• Observe inventory �C , past ! − 1 orders (>C−!+1, ..., >C−1).

• Decide new order >C ∈ [0,* ]

• Observe sales ~C = min(3C , �C ) where 3C ∼ � .

• Incur cost �̄C = ℎ(�C − ~C ) + ? (3C − ~C )

• Start new inventory �C+1 = �C − ~C + >C−!+1.

Holding unobserved lost sales The actual cost is �̄C = ℎ(�C − ~C ) + ? (3C − ~C ) but 3C is
unknown. We then use the surrogate �C = ℎ(�C − ~C ) + ? (−~C ).
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Challenges and relaxation The past ! orders are dependent, this implies combinatorial
states dependance

Base stock policies We generate cG : order the minimum amount required to bring new
inventory position to base-stock level G .

Some properties: Let 6G be an asymptotic long-run average of a base stock policy cG starting
in state B . (the expectation of the limit of the averaged sum of the costs when time ) goes to
in�nity.)

6G (B) = E
[

lim
)→∞

1
)

)∑
C=1

�C
��B]

As the ratio of lost sales penalty to holding cost increase to in�nity, the ratio of the cost of the
best base stock policy to the optimal cost converges to 1.

Furthermore, if one assumes that demand distribution � is such that � (0) > 0 then 6G (B) is
independent of B and convex in G .

Analogy with convex bandit There are similarities between the inventory problem and
convex bandits. In stochastic convex bandit, you want to minimise the regret between our
observed costs and the optimal expected strategy while in inventory control, you minimised
the expected cost wrt the optimal averaged asymptotic strategy.

Both cost function are convex.

To complete
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4 Natural Language Processing

Note takers: Blanke, Daoud, Duchemin, Gourru, Jhuboo, Jourdan, Lauga, Mercklé, Sandberg,
Terreau

Instructor: Frano̧is Yvon (LIMSI/CNRS)

[Video on the IBM project debater] Today, machines are capable of amazing, human-level
performances.

4.1 Language: a hard nut to crack

Natural Language Processing (NLP) was studied for three main reasons:

• language processing as computation,

• computational psycholinguistics,

• automated processing tools and applications.

A classical approach to automatic speech recognition consisted in the following pipeline
model.

• Lexical decoding: from a continuous-time audio signal to a discrete sequence of phonetic
symbols.

• Orthographic decoding: create words and a sentence out of the phonetic symbols.

• Text normalisation: identify categories of words in the sentence.

• Structure identi�cation: �nd the dependencies between the words.

The way back is even harder.
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4 Natural Language Processing

An example of tricky sentence "Le cousin de Paul se piquait de bien connaître la ville". It
is tricky for several reasons. "Connaître" doesn’t have a subject. "Cousin" can mean "cousin"
but also a tipula. "Se piquer" could be confused with an insect biting. This is called word sense
disambiguation.

More than processing one sequence, it is even harder to handle a span of text of several sentences
with coreferences between them. Typically, di�erent mentions of one single entity (e.g. one
person) make an automatic processing very challenging.

Nowadays, there are a number of NLP tasks that go beyond isolated sentences. Classifying
sentences, for instance by tense, mood, polarity etc. Typically, classifying tweets. Finding the
structure of a text.

The pipeline model mentioned above often struggles because of arbitrarily long, multi-layered
dependencies across the pipeline.

Another typical case of reason of failure is the ambiguity of some words. In politics for example,
the chair (organizer) of a conference would sometimes be understood as a chair as the piece of
furniture. In French, just think of the word "et" which can easily be confused with "et" or even
"hait".

Pipeline model does not work. "It’s like building a compiler, but you have only part of the
syntax."

• Errors accumulate down the pipe.

• Early decisions require deep analysis.

• Ambiguity is a feature, not a defect (puns!).

• Segmentation ambiguities

– gardes plural or second person

• Lexical ambiguities

• Syntactic ambiguities

– "N. H. Defends Laconia Law Barring Female Nudity In Supreme Court Ruling"

• Semantic Ambiguities

• Pragmatic Ambiguities

– Understand that "I’m cold" means "Close the window"

Language is always evolving.

• Phonetic changes and recon�gurations

• New spellings and grammatical constructs

• Lexicalization of new derivatives and compounds
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• New senses appearing

•

4.2 The great paradigm shi� : towards statistical NLP

With more resources and a more �ne grained description of languages, we could get to this nice
pipeline scenario. Around 92-93, statistics have progressively been incorporated into NLP. This
transition has o�cially started with a publication in computation linguistic in the context of
special issues on corpora based approaches.

Switch from grammar to corpora patterns : the hypothesis is to �nd ways to process large facets
of languages. 2011, Norvig

The �rst ingredient to moving to statistical language models. Arguments for graduality in
language: grammatical rules and judgement can be gradual : for instance house is a noun but
home is a “better” noun than house, that has a larger combinatorial power. Similarly, “grièvement”
only applies to speci�c contexts, while “gravement“ can have much more applications and
would be preferred as both mean the same. Finally, Human brain appears to be sensible to
frequency : we recognize frequent word quicker. These are arguments to go toward statistical
treatment of natural language.

A second ingredient is the collection of a large corpus of relevant data. Linguistic Data Consor-
tium - LDC () : catalog of corpora, resources for annotation, rare languages, see LREC.

The third ingredient is the development of NLP challenges by funding agencies. They focused
on having strong methodological construction of tasks.

• describe the task exactly

• what is given to participants (computational resources)

• what is the metric

• distribute test data for �nal evaluation

(Repository to track the progress in Natural Language Processing (NLP)). People tend to par-
ticipate to these challenges for : access to data, and access funding. These have been highly
in�uential to move to statistical methods that were, most of the time, the most accurate ap-
proaches.

4.3 Discovery of statistical method : the e�ectiveness of simple
models

The simplicity of those models comes from the fact that they do not need to know any of the
rules of a language and simply works from statistic measure (for example how likely some
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4 Natural Language Processing

words will be written close together). In the following, we describe three important applications
in NLP of this statistical viewpoint.

Speech recognition : a recurrent problem is how to decide the correct sentence to write for
a given recorded sample, e.g “danser, dansés, dansé, dansée”. How to compare sentences ?

Language models, simple yet e�ective (=-grams), with ! the length of a sentence, + the vocabu-
lary space.

% (F1, .,F!) =
!∏
8

? (F8 |F1...F8−1) =
!∏
8

? (F8 |F8−=+1...F8−1) (4.1)

This technique allows to process omre than words such as letters, speech

Information Retrieval: Bag-of-words
→Main idea: "Turn a document into a vector."
Each document is embedded as a vector 3 ∈ R |V | with 3> = (G1, . . . , G |V). A typical choice for
G8 is

• G8 =
# (F8 ∈3)

;3
where # (F8 ∈ 3) is the number of times the word F8 appears in the

document 3 and ;3 is the number of words in the document 3 .

• G8 = )� − ��� (F8) (Term Frequency(TF) — Inverse Dense Frequency(IDF)).

This embedding method allows to compare two documents 3 and 3 ′ using several measures as
scalar product, cosine sim, standard distances.

Computational lexicography
→Main idea: "You shall know a word by the company it keeps."
We compute semantic relationship from distributional observations: shared contexts imply
semantic relatedness.

Considering a �xed vocabulary,V = {E1, . . . , E |V |}. For any wordF , A (F) ∈ R |V | is the vector
where the 8-th entry counts the number of time the word E8 is a neighbor of the wordF in the
corpus. Then, the distance between two wordsF andF ′ is given by

dist(F,F ′) ∝ A (F)>A (F ′).

4.4 From empirical methods to machine learning techniques

Supervised classification Resolving ambiguities by building trees. This can be turned to a
simpler problem : �nding dependencies, which are binary decision that can be solved using ML
methods. Di�cult step : �nd the good features to describe the data and the problem (context
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Bag of Words, position in the sentence, sentence type). Other examples that can also be solved
using classi�cation tools are:

• word sense disambiguation,

• sentence segmentation

• co-reference resolution

• sentiment analysis

• ...

Results in from 1993-2010 can be summed up as: �nd a problem (word sense ambiguity,..),
formulate it as a classi�cation problem and use ML tools.

More ML related topics also emerged, such as high dimension, metrics, high number of classes
that can even be organized in hierarchies.

ML was also successful in more applications cases than simple classi�cation, e.g. parsing trees.
These can be learnt step by step. Most exactly, what is learned is the sequence of actions needed
(analogous to robotic movements). Action are not observed, some di�erent sets of actions can
lead to the same parsing tree. Dependency parsing build acyclic set of arcs between words.

No crossing arcs = projectivity( = easier to solve. Non-projectivity is rare in French and english.
This allows some fast algorithms: greedy left-right decoding.

Transition-based projective dependency parsing: guaranteed to have an acyclic graph.

Remark: Punctuation is treated as words. But there are markers for the start and the end
of a sentence, so that we know when words are usually used at the end (like punctuation).
The main task of modeling structure, syntax of the language is to de�ne a way do decide if
a word or a sentence is better than an other. If one notes � and � two sentences, one can
introduce the equivalence between � being better than � and a probability % (�) being higher
than a probability % (�). This probability % (B4=C4=24) is a language model. Such probability
can easily be derived from a simple Markov assumption to predict the likelihood of one word
based on the preceding words. This Markov assumption is very naïve but is extremely e�cient
computationally. One call this type of models =-grams and for a sequence of words (F1, ...,F!)
we de�ne :

% (F1, ...,F!) =
!∏
8=1

% (F8 |F1, . . . ,F8−1)

New architectures(transformers) are trained to learn which words matter in the history. In the
past the importance was �xed. Feed-forward: �xed number of words in history. RNN: older
words are gradually forgotten.
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4.5 Transformers and self-a�ention

Compute with heads Compute linear weights:

�̃ = so�max(�/
√
3) ∈ [0, 1]) × [0, 1]) . (4.2)

4.6 Evaluating language models

4.6.1 Large Language Models are *very* powerful

Originally used as scoring model for disambiguation tasks.

Will now cover use as text generators. Can use language models for any natural language tasks
(Radford et al 2019).

Tasks: Give your model a prompt, and generate next word. Probability over possible next words.
Can apply this to lots of di�erent domains, such as translation, or even arithmetic. In the latter
case they even are often correct.

The language models are evaluated with a measure called perplexity.

PPL(") = 2
1
) log2 % (F [1 : ) ] |") (4.3)

Cross entropy between source and model.

Before NNs language models had fairly bad perplexity ( 120 nats), now we reach around 6 times
lower for models trained on English texts.

Evaluation with linguistic probes. How to evaluate if we learn long-range structural dependen-
cies. Ex: Subject verb agreement. Subject must agree in number with the object, but they can
bee far apart in the text. "The keys to the cabinet (are|is) on the table."

Linzen et al, (2016), traine an LM-RNN to predict the verb number. Performance good (1% error
rate). Drops slowly with subject-verb distance. Drops slowly with intervening distractors (eg
singular words between subject and verb). If instead train a NN to predict next word we get a
10-fold loss in performance. In complex cases, more direct form of training signal is needed to
learn the correct structure.

4.6.2 Algorithms for text generation

Greedy Search At each step, the most likely word given the past is chosen.

Ancestral sampling

F0 =< B > (4.4)
FC ∼ % (F |F (C ′ ≤ C)) (4.5)
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Nucleus Sampling

Language model (de)generation In practice, these text generation algorithms end up gen-
erating loops, even though they are syntaxically consistent.

High probability sentences do not resemble human productions.

• Too many repetitions.

• High-frequency tokens are over-represented, and low-frequency ones underrepresented.

• Lack of diversity.

• Lack of global consistency.

• Poorly calibrated posterior distribution.

Action takes place in very high-dimensional space. Predict next step from current vector in this
space. Easy to go to "nonsensical" parts of the space. Easy to get caught in loops.

Beam search [with histogram pruning] More improved search algorithms (Wiher et al,
2022).

Better learning losses. - Use label smoothing.

4.6.3 Evaluating LMs with distributional properties

Evaluating Zero-shot/ few-shot behavior.

• Zero-shot learning, No demonstrations. "translate English to French: cheese -> ?"

• One-shot learning, one demonstration,...

•

Current challenges for language modeling.

• Text generation is still di�cult.

• Improve e�ciency and scalability.

• How to update models as language changes.

• How to avoid models learning hate-speech, and how to remove e.g. private information
without having to retrain model, etc. (Stochastic Parrots)
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4.7 Transfer learning

4.7.1 Multi-task learning and pretraining

Learning representations for NLP in an unsupervised way (Collobert 2011). Instead of having
one benchmark for each task, they say we want to have one system for all tasks, and to learn it
in an unsupervised manner.

In 2018 people started to implement this program at scale. Recipe:

1. take huge corpus to train embeddings (unsupervised).

2. Use this representation as features for supervised training on domain speci�c task.

Popular models include ELMO (Peters et al, 2018) and BERT (Devlin et al 2019).

Elmo is a network made by several stack of bidirectional RNNs. Pass sentence through RNNs
back and forth, then passed to next layer. All layers are combined to yield the �nal representation.

Bert is a transformer, but it is non-causal. It can see the full sentence, and is trained by masking
some of the words. In the last layer the goal is to predict the masked words.

BERT, and similar pre-trained encoders, typically give signi�cantly improved performances. A
lot of encoders these days are in the form of encoder-decoder pairs, using next word prediction,
deshu�ing, denoising, or similar techniques to avoid the need for labelling.

Bene�ts of LM pretraining: - Leverage large corpuses of text in an almost unsupervised way. -
Allows for knowledge transfer between domains.

4.8 Multilingual NLP

4.8.1 Introduction

Diversity of languages around the world (see https://www.ethnologue.com/guides). These
are divided in language families, which are not equality distributed around the world. The top
25 languages only covers half of the world population. Countries with only one language are
the exception, bilingualism (or more) is the norm. Many languages are endangered due to their
lack of use in the population from some economics point of view or else. New languages have
also been created. This diversity of languages is particularly surprising given that languages
have the same origin and humans have the same brain structure. Nevertheless there is a wide
variety of linguistic systems.

NLPers should care for several reasons (https://ruder.io/nlp-beyond-english/) such as
political/societal, economic, linguistic, Machine Learning, cultural/historical, cognitive. Motiva-
tion for using NLP in multilingual setting : usual publications don’t even give the language that
are studied, as English turned to be the standard ML language.

The typical methods of multilingual NLP are machine translation, multilingual models (mGPT,
the multilingual version of GPT, mBERT) and cross-lingual representations and transfer. The
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available resources are parallel and comparable corpora (https://opus.nlpl.eu, wikipedia),
bilingual dictionaries (https://panlex.org), comparative/typological language documenta-
tion (https://wals.info).

Main challenges Multilingual NLP su�ers from a large resource unbalance (Joshi et al.,
2020, https://arxiv.org/abs/2004.09095). Languages can be clustered into classes having
di�erent scales of available (labeled or not) data. While those resources are high for seven
languages (0.27%, spoken by 2.5 billions), 2191 languages (88.38%, spoken by 1.2 billions) have
no existing resources, such as annotated data for supervised settings. Therefore those languages
can’t bene�t from recent technologies using NLP, e.g. voice command (phone, car, ...).

Nowadays some informal language sentences can mix two languages, e.g. bilingual speaker.
New interesting problems arise such as language contact and code-switching. This lead to new
tasks: language identi�cation, language transcription and analysis, language translation, CS
generation. See for example (Sitaram et al., 2019, https://arxiv.org/abs/1904.00784).

For moderation problem, hateful speeches are sometimes not recovered for low resources
languages.

4.8.2 ML models for Machine Translation (ML)

An attempt to handle multilingual data consists in using machine translation.

The �rst approach used vanilla RNN (Recurrent Neural Network). Encoder decoder systems
(seq2seq), go through a �rst phase of sentence encoding, then recursively generate the translated
sentence (the target sentence). The main issue is that all the information of the source sentence
need to be encoded in a (memory less) hidden vector. As this is not enough to store all the
necessary information, this nice and simple approach fails.

To circumvent this problem, attention mechanisms were proposed (Bahdanau https://arxiv.
org/abs/1409.0473, Luong https://arxiv.org/abs/1508.04025). The hidden representa-
tion is now a linear combination of the latent representations of the source sentence words. The
network is modifying the representation of the whole sentence representation for the current
word generation in the target sentence. Additionally, the attention matrix provides, for each
generated word in the target language, the relative importance of each word in the source
sentence.

This further led to the Transformer, that was initially proposed as a seq2seq model for language
translation. The encoder is used for language modeling tasks. In a seq2seq setting, the decoder
is using cross attention, i.e. computing attention between target and source sentences, which is
not done in the Transformer encoder-only architecture (such as BERT). One main advantage
of the multi head attention is the possibility to compute in parallel. See also Popel et al. (2020,
https://www.nature.com/articles/s41467-020-18073-9.pdf).
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Figure 4.1: Bloc Transformer and multihead attention https://arxiv.org/abs/1706.03762

Multilingual models The usual approach took pairs of language. Now multilingual models
translate from various languages to various languages with a single model (Firat et al., 2016,
https://aclanthology.org/N16-1101.pdf. Johnson et al., 2017 https://arxiv.org/abs/
1611.04558). This needs to build some joint representations of word pieces. A lot of studies
are conducted on multilingual representations, i.e. words in several languages represented
in the same low dimension continuous space. This assume that there is a stable notion of
word across languages. This can be done using a Transformer (Conneau and Lample 2018,
https://arxiv.org/abs/1901.07291)

Some crucial properties of Neural MT: segmentation in sentences and words, spelling and
grammatical correction/normalization, grammatical parsing, sentence simpli�cation.

Even bad MT is more useful than you think. MT translates arti�cial training data (text+labels)
into other languages.

Universality of languages: X-lingual transfer learning (Yarowsky et al., 2001, https://aclanthology.
org/N01-1026.pdf). The four main steps are:

• Automatic word alignment of parallel sentences

• PoS tag source data

• Project tags via alignment links

• Use of a PoS tagger with projected data

To obtain multilingual representations one should compute embeddings such that mutual
translations nearest neighbours

• bilingual skip-gram

• X-lingual word space alignment with bilingual dictionary
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• multilingual sentence representation via multilingual translation

• joint encoding/decoding with round-trip-translation

XLM (Lample and Conneau, 2019, https://arxiv.org/abs/1901.07291) learns multilingual
contextual embeddings.

Conclusion Toward deep language understanding ? The language models are currently
scaling to enormous datasets, thanks to more resources in term of materials, money and working
force, that are dedicated to the �eld. A lot of what is done is based on many heuristics : it
requires to go toward better optimizations for these huge Language models. Additionally, these
languages do not incorporate knowledge. Finally, evaluation system are not properly built, and
might prevent from getting the limitations of existing approaches. This is particularly di�cult
with text : how to evaluate if a sentence is “good” ?
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5 Privacy in Machine Learning

Note takers: Ahmadipour, El Ahmad, Jose, Lachi, Lalanne, Ouk�r, Nesterenko, Ogier, Siviero,
Valla

Instructor: Rachel Cummings (Columbia University)

5.1 Introduction

Privacy considerations arise as soon data is collected on individuals, on group on individuals, on
moral personas, . . . . More speci�cally, we look at the setup where one processes data � through
a mechanismM which can be anything from data publication, basic statistics computation,
decision rule learning, complex machine learning tasks, . . . , and wants the resultM(�) to
be made public. The natural question on a privacy standpoint is whether the mechanismM
can be "reverted" in order to learn sensitive information from � . For instance, ifM is the
identity function, the publication ofM(�) leaks full information about � and even though the
notion of privacy is not rigorously de�ned yet, we can intuitively qualify such mechanism as
"non-private".

This manuscript is a transcription of Prof. Rachel Cummings’ lecture titled Privacy in Machine
Learning that was given at the 2022 Spring School of Theoretical Computer Science at the CIRM,
Marseille, France. Any error in this document may be due to its transcription and cannot be
imputed to Prof. Cummings.

The lecture organizes as follows:

5.2 Defining privacy - Lecture 1

Even though the notion of privacy might seem natural at �rst, it is important to give it a good
de�nition. We will start by trying to answer the question What is privacy ?
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A�empt 1. Privacy is about protecting identities. This de�nition is natural. Something is
private if it doesn’t allow identifying you. As a result, it might be natural to consider that
an algorithm is private if and only if it doesn’t leak personally identi�able information (PPI).
In practice, it is the main de�nition of privacy on a legal point of view. For instance, the
French RGPD regulation instances (CNIL) consider that a mechanism is private when it makes
a su�cient e�ort in hiding the identities. However, the more we look into it, the less convincing
this de�nition becomes. First because it is extremely subjective, but mainly because it only shifts
the problem. Indeed, what could be considered PPI or not? For instance, the last names and �rst
names of people from a database seem to be natural PPI’s. But what about their sum? Their
encoding on a di�erent alphabet? The application of any function on them? What about the
correlation with other information such as the zip code, the income or the number of children?
As a result, this de�nition has shown many failures in the past. For instance, research has shown
that the search history of people can fully identify them, even with anything considered PPI’s at
the time removed (https://www.nytimes.com/2006/08/09/technology/09aol.html). On
the other hand, it has also been shown that removing the PPI’s can block inference and learning
(Dwork et al.) and can only result in noise. As a result, this de�nition is better than nothing,
but it is far from being future-proof, it both isn’t really private while still partially blocking
learning, and it requires a lot of legal e�ort in order to classify what is identi�able.

A�empt 2. Privacy is about protecting people’s freedoms from harm. This de�nition is much
stronger than the previous one. However, by the absolute aspect of this promise, it forcesM(�)
being independent of � . For instance, if researchers were to �nd correlations between smoking
and lung cancer while not being able to learn if their patient smoked or not (in order to protect
them from loosing their insurance), it would be a hard task. This de�nition of privacy thus has
the drawback of completely blocking inference and learning.

A�empt 3. Privacy is when almost no more information can be obtained with an analysis
on the same dataset without a person’s data. This de�nition of privacy is interesting. Indeed,
one can deduce the private information on an individual of � fromM(�) if this individual
has a huge impact on the result, i.e. when the result would have been signi�cantly di�erent
without its information. As a result, privacy is obtained whenM(�) is relatively invariant up
to the addition or removal of any element of � . This de�nition of privacy will be adopted and
rigorously de�ned through the concept of di�erential privacy in the rest of this lecture because
it is the most future-proof and usable (even if it is still not clear for now) de�nition of privacy
that research has come up with up to this day.

5.3 Di�erential Privacy - Lecture 1

The privacy of the mechanismM is achieved through randomization of its output. Formally,
for Y, X ≥ 0,
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Definition. [DMNS ’06] An algorithmM : )= → ' is (Y, X)-di�erentially private if ∀ neigh-
boring �, � ′ ∈ )= and ∀( ⊆ ',

% [M(�) ∈ (] ≤ 4Y% [M (� ′) ∈ (] + X

where the randomness is taken on the coin tosses ofM.

Note that this de�nition bounds the "max amount" that one person’s data can change the output
of a computation. Furthermore, it is a worst case over all pairs of neighboring datasets. In
particular,

• it doesn’t matter what everyone else’s data are,

• it doesn’t matter what data you have,

• it doesn’t depend on the future usage ofM(�),

• if your data has huge in�uence, it will be hard to distinguish from your neighbors.

Furthermore, di�erential privacy does not block learning “DP addresses the paradox of learning
nothing about an individual while learning useful information about a population. It is a
de�nition, not an algorithm.”- The Algorithmic Foundations of Di�erential Privacy, Dwork and
Roth.

5.3.1 The role of the privacy parameters

This de�nition of privacy relies on two privacy parameters, Y and X . They both impact how
private the resulting mechanism is, but they do not play a symmetric role.

The role of Y. If a mechanism is (Y, X)-DP, it is also (Y ′, X)-DP if Y ′ > Y. As a result, the smaller
Y, the stronger the constraint on privacy. The two following limit behaviors arise:

• Y = 0: Perfect privacy, where the result cannot depend at all on the data. As a result, no
learning is possible.

• Y = +∞: No privacy since the constraint vanishes. Privacy is no longer implied by the
de�nition.

We want to be somewhere in the middle and the “correct ”choice of Y is an open question
depending on the sensitivity of the data.

The role of X . Similarly, we can observe that the smaller X , the stronger the privacy guarantees.
X di�ers from Y because:

• It gives a small additive slack in the privacy guarantee.
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• It allows for a family of output distributions that are not all absolutely continuous with
respect to each other. Imagine �, � ′ are neighboring databases and say % [" (�) ∈ (] > 0
and % [" (� ′) ∈ (] = 0. Without X :

0 < % [" (�) ∈ (] ≤ 4Y% [" (� ′) ∈ (] ≤ 4Y · 0 = 0

• Even with uniform support, it allows for an easier mechanism design.

In order to tune X , we can fall back on the following observations and interpretations of this
parameter:

• X may be viewed as the probability under which the output mechanism does not respect
the Y-DP guarantee.

• Hence, X may be viewed as a relaxation term.

• If X = 1 then we’re back to no privacy, even for Y = 0 :

% [" (�) ∈ (] ≤ 40% [" (� ′) ∈ (] + 1

• We have to take X � 1
=

. Indeed, when Y = 0 (which should give full privacy when X = 0),
one can easily check that the mechanism that picks a random person from the database
and output their data is (0, 1/=)-DP.

Remark: One might think that the de�nition of di�erential privacy is arbitrary, and it is. However,
it is becoming increasingly adopted because this is the best that has been proposed to this
date. Indeed, it ensures strong privacy guarantees while allowing for a nice algebra of private
mechanisms (as we will see later). As a consequence, it is both conceptually powerful and handy,
in a way that wasn’t matched by previous de�nitions (such as k-anonymity).

Remark: The randomization of the output of the mechanism is at the core of this de�nition.
Besides, one can easily check that trying to obtain privacy with a mechanism that is pointwise
almost surely constant under (Y, 0)-DP results in a mechanism that is constant on all databases.
Hence, one must be willing to pay a pointwise variance in order to obtain privacy.

5.3.2 Algebra of private mechanisms:

Private mechanisms come with three handy properties of post-processing, composition and
group privacy that make them usable in practice.

Post-processing DP is immune to post-processing: If " (�) is (Y, X)-di�erentially private
and 5 is any function (possibly stochastic), then 5 (" (�)) is (Y, X)-di�erentially private. To put
it simply, it is impossible to compute a function of the output of the private algorithm and make
it "less" private. “No adversary (function f) can break the privacy guarantee ”
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Composition DP is robust under composition: If "1, . . . , ": are (Y, X)-di�erentially private,
then: " (�) ≡ ("1(�), . . . , ": (�)) is (:Y, :X)-di�erentially private.

If multiple analyses are performed on the same data, as long as each one satis�es DP, all
the information released taken together will still satisfy DP (albeit with a degradation in the
parameters) This result quanti�es the common heuristic: Privacy degrades gracefully as more
computations are performed on the same dataset. The linear scaling in both Y and X can be
further improved via advanced composition: If "1, . . . , ": are (Y, X)-di�erentially private and
adaptively chosen, then: " (�) ≡ ("1(�), . . . , ": (�)) is (Y ′, :X + X ′)-di�erentially private for

Y ′ = Y

√
2: log 1

X ′
+ :Y (4Y − 1) = \ (

√
:Y)

Composition allows composing simple private procedures in order to obtain complex private
algorithms.

Group Privacy Privacy guarantee depends on the group size: If two datasets �, � ′ di�er in
: entries and " is (Y, X)-di�erentially private, then for all outputs ( :

P[" (�) ∈ (] ≤ 4:YP [" (� ′) ∈ (] + :4Y (:−1)X .

In other words, DP guarantees for individuals generalizes to DP guarantees for communities.

5.3.3 Neighboring databases

Note that for now, we did not properly de�ne the notion of neighboring databases. Usually, we
say that two databases are neighbors i� their content di�ers on at most one person’s data. This
informal de�nition can take multiple forms depending on the structure of the database.

• If the databases x and y are order-sensitive and of �xed size =, we usually say that G and
~ are neighbors when ‖x − y‖0 ≤ 1. Databases are then compared according to their
order sensitive Hamming distance.

• If the databases x and y are order-insensitive and of �xed size =, we usually say that G and
~ are neighbors when inff ‖x − f (y)‖0 ≤ 1 where f is any permutation that permutes
the entries of y. Not that if those databases are built on a countable set, this de�nition
is equivalent to ‖ℎ(x) − ℎ(y)‖1 ≤ 2 where the function ℎ transforms a database into its
histogram (i.e. the vector counting the occurrences of the elements). Databases are then
compared according to their order insensitive Hamming distance.

• If the databases x and y are order-insensitive and of possibly arbitrary sizes =x and =y , we
usually say that G and ~ are neighbors when ‖ℎx,y (x) − ℎx,y (y)‖1 ≤ 1 where ℎx,y refers
to the histogram function that builds on the supports of x and y (which is countable).
Databases are then compared according to their size insensitive Hamming distance.

Independently of the de�nition, we write x ∼ y when x and y are neighbors. All those
de�nitions are not equivalent, but it is often clear which one to use depending on the setup.
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Most of the results do not depend on the de�nition of neighboring databases, but when they do,
it will be speci�ed.

5.4 Private Mechanism Design - Lecture 1

This section presents simple building blocks for designing private mechanisms.

5.4.1 Laplace Mechanism

Given a unction 5 de�ned on a set of databases and valued in a real vector space, how can one
mimic the behavior of 5 with a private mechanism? The Laplace mechanism gives a simple
answer to this question by adding Laplace noise to the expected result scaled to the sensitivity
of 5 .

Definition. The sensitivity of a function 5 is de�ned as

Δ5 = max
x∼y
‖ 5 (x) − 5 (y)‖1 .

Examples.

• If 5 counts the number of people with blue eyes, Δ5 = 1.

• If 5 is a histogram function built on a �nite quantization of the data space, Δ5 = 1 with
size-insensitive neighboring de�nition and Δ5 = 2 otherwise.

• If 5 is an averaging function, Δ5 = ∞ generally. however, if the data points live in set
of ;1 diameter � , Δ5 = �/= with the size-sensitive neighboring de�nitions and Δ5 = �

with the size-insensitive neighboring de�nition.

Laplace Mechanism - Definition The Laplace mechanism for 5 with privacy parameter Y
is de�ned as

M! (x, 5 , Y) = 5 (x) + [Lap(0,Δ5 /Y)]

where [Lap(0,Δ5 /Y)] refers to a vector (of size the output dimension) of i.i.d. random variables
with centered Laplace distributions of standard derivation Δ5 /Y.

The structure of the noise allows for pure di�erential privacy (i.e. X = 0).

Theorem 5.1: Laplace Mechanism - Privacy

M! (·, 5 , Y) is (Y, 0)-di�erentially private.
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Proof. Let x and y be two neighboring databases.M! (x, 5 , Y) andM! (y, 5 , Y) have distribu-
tions that are absolutely continuous with respect to Lebesgue measure that are strictly positive
almost everywhere. We may compare the ratio of these densities.

P[M! (x, 5 , Y) = I]
P[M! (y, 5 , Y) = I]

=
P[[Lap(0,Δ5 /Y)] = I − 5 (x)]
P[[Lap(0,Δ5 /Y)] = I − 5 (y)]

=
Π8P[Lap(0,Δ5 /Y) = I8 − 5 (x)8]
Π8P[Lap(0,Δ5 /Y) = I8 − 5 (y)8]

=
Π8

Y
2Δ5 4

− Y |5 (x)8−I8 |Δ5

Π8
Y

2Δ5 4
− Y |5 (y)8−I8 |Δ5

= Π84
− Y ( |5 (x)8−I8 |−|5 (y)8−I8 |)Δ5

≤ Π84
− Y |5 (x)8−5 (y)8 |Δ5 = 4

− Y
∑
8 |5 (x)8−5 (y)8 |

Δ5

= 4
− Y ‖5 (x)−5 (y) ‖1Δ5 ≤ 4Y .

So for any Borel set ( ,

P[M! (x, 5 , Y) ∈ (] =
∫
P[M! (x, 5 , Y) = I]3I

≤ 4Y
∫
P[M! (y, 5 , Y) = I]3I = 4YP[M! (y, 5 , Y) ∈ (] ,

which concludes the proof. �

Furthermore, the tail bounds of the Laplace distribution give the following utility guarantee:

Theorem 5.2: Laplace Mechanism - Accuracy

P

[
‖ 5 (G) − ~‖1 ≤ log

(
3

V

)
·
(
Δ5

Y

)]
≥ 1 − V

where 3 is the output dimension.

This is our �rst example of a privacy-utility tradeo�. With the Laplace mechanism, the higher
the privacy guarantees are, the more degraded the utility is. Also, we can notice that the higher
the sensitivity, the lower the utility.

5.4.2 Exponential Mechanism

The Laplace mechanism works great when the output space is a real vector space and when
the utility of the output can be measured with the ;1 norm. But what if the output space has a
di�erent structure (ex texts) or what if the utility does not depend directly on the ;1 norm? The
exponential mechanism solves this problem by allowing mechanism design with an arbitrary
utility function.
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The exponential mechanism has to assign a numeric score to each possible output

Assign a speci�c numeric score to each possible output.

Quality of outcome measured by score function: @ : N |- |GR → R where q(x,r) is a measure of
how good outcome r would be on database x

Choice of q should depend on application

Reasonable quality score?

Smooth degradation of outputs.

Score function sensitivity

De�nition:

The sensitivity of a score function @ : N |- |GR → R
Δ@ = max A ∈ RmaxG,~ neighbors

Exponential Mechanism [MT07]

De�nition: Given a quality score q:

Essentially we do a “biased sampling” with an exponential bias.

Example:

Most common eye color? - = brown, blue, green G ∈ N |- | database of eye colors R = - @(G, A )
= # people in database x with eye color A Δ@ = 1 as each person can have at most one eye color

Theorem 5.3: MT’07

The exponential Mechanism M is Y di�erentially private

P[M� (G, @, Y) = A ]
P[M� (~, @, Y) = A ]

≤ 4Y

Proof.

P[M� (G, @, Y) = A ]
P[M� (~, @, Y) = A ]

= (34 5 8=8C8>=> 5 4G?>=4=C80;<42ℎ) = (;0F> 5 4G?>=4=CB, B0<40B?A>> 5 8=!0?;024<42ℎ) = ...5 8ABCC4A<8B ≤ 4G? ( Y2) ≤ 4
Y

The �rst term is similar to what we saw in the Laplace Mechanism, so suing the same techniques
we can show that:

This means we can swap x and y at the above cost. So, for the second term,

�
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Accuracy:
P[@(G, A ) −max A ′ ∈ R@(G, A ′ ≤ 2Δ@ · ;=( |R|/V)

Y
] ≤ V

High probability to pick an outcome that is close to the best possible outcome.

Best possible means highest quality score

Close depedns on high probabiity guarantee.

Exponential Privacy Accuracy trade-o�

5.5 DP and online/adaptive statistics

A Y-DP algorithm is more noisy, but does this hurt generalization? Training score is worse, but
this can also prevent over�tting.

5.5.1 DP and generalization

Theorem 5.1. An Y-DP algorithm cannot over�t by more than Y

We want the learning with DP samples to be (almost) as good as with the underlying distribution
(not compared to the ground truth).

Reminder (Group Privacy) If ( , ( ′ di�er in : elements, then :Y-privacy

DP private learners generalize well Notions of generalization:

• DP generalization: “similar samples should have similar output.” DP-guarantee are strong
worst case guarantee

• Weaker notion: Robust Generalization “no adversary can use the output to �nd a hypoth-
esis that over�ts”

• Stronger notion: Perfect Generalization “output reveals nothing about the sample”. (Does
not compare against a sample changed by one, but against the true underlying distribution.
Means you are perfectly generalizing from the sample)

Why don’t we change DP def to include distribution? eg for some rare databases, provide
weaker privacy. However rare events are precisely the ones we are trying to protect. This is not
an issue here
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5.5.2 DP and adaptive analysis

How to do data analysis in a robust way?

What can go wrong? To learn global truth, the agent sends multiple queries sequentially,
adapting new queries depending on the previous answer. [DFHPRR15] This can cause over�tting.

Particularly a risk in �elds where scientists share one dataset (eg astronomy, historical datasets
in economy)

AboveNoisyThreshold for multiple threshold queries [DNPR ’10]

This is a DP algorithm for detecting which queries in a stream have answer above a given
threshold.

input: database X, query stream {51, . . . } with sensitivity Δ, privacy parameter Y and
threshold ) .

)̂ B ) + Lap(2Δ/Y);
for each query 58 do

/8 ∼ Lap(4Δ/Y) (we add noise twice!);
if 58 (G) + /8 > )̂ then

output Above and halt
else

output Below
end

end

Remarks This Algorithm compares noisy answer against a noisy threshold (�xed in advance).
It can be proven (Y, 0) DP and satis�es a composition privacy for : queries with only Y = log: ,
can answer exponentially many queries (by composition theorem)! (vs composition of queries
gives : or

√
:). Finally, ANT halts once it �nds a single above threshold query, we need another

algorithm if we would like to �nd multiple above threshold queries.

SparseVector to do threshold queries and do something with the results above
threshold

Combine ANT and Laplace mechanism to release the answers.

Applicable to many problems

Reusable Holdout

Randomly partition � in training �C and holdout �ℎ
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When training a model, we only test generalization when testing on holdout, but this is true
if holdout is used only once! (it needs to be considered as a fresh sample). The idea here is to
access holdout only through DP algorithm, then no over�tting on holdout.

Input: training set (C , holdout set (ℎ , threshold ) , tolerance g , budget �.
)̂ B ) + Lap(4g)
For each query i : - → [0, 1]:
if � < 1 then

output Below and halt
else

if |�(ℎ (i) − �(C (i) | > )̂ + Lap(8g) then
output �(ℎ (i) + Lap(2g)
� = � − 1
) = ) + Lap(4g)

else
output �(C (i)

end
end

Same algo as SV with

• check if answer on holdout is close to answer on training set (i.e. above noisy threshold)

if no release noisy answer on holdout

otherwise just release answer on training

• As in SV, we have a privacy budget, counting if we can still access holdout

DP and accuracy are quanti�ed (see slides).

Theorem 5.2. Thresholdout is �/(g=)-DP. For all adaptively chosen queries {i1, . . . , i<}, for all
8 such that 08 isn’t "bellow" the threshold, for all C > 0:

Pr[|08 − Pr(i8) | > ) + (C + 1)g] ≤ 6 exp(−g2/2) + exp(−C/8) .

5.5.3 DP and sequential hypothesis testing

Try to address the replication crisis, how to get meaningful ?-values?

As usual, observe G1, ·, G= and have null hypothesis �0 and interesting alternative hypothesis
�1. ?-value is likelihood of seeing the sample assuming the null (reject �0 if ? is small)

Usual threshold is ? < 0.05, small but still means that there is 5% chance of this sample
occurring under the null. In particular, when testing 20 hypotheses, we can expect around one
false discovery.
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Controlled by False Discovery Rate (FDR). FDR is a measure capturing rate of false rejection
of �0. We want a post processing to control in an o�ine (sequence of ?-values is known in
advance), or online manner.

O�line FDR control Just select the : smallest ?-values.

Online FDR control framed as an investment problem (because lots of tools and framework
for budget, reward) “online alpha-investing rule” then “generalized alpha-investing rule”

Level based on recent discovery (LORD) and SAFFRON add statefulness to estimate current
proportion of true nulls.

SAFFRON

Keep a candidate set, estimate fraction of true null from the size of this set. When new value
arrives, estimate value of investing in the hypothesis, and current wealth. Gives alpha-investing
value UC .

PAPRIKA

input :p-values {?1, . . . }, multiplicative sensitivity parameter [, target FDR level, initial
wealth, privacy parameters (Y, X), expected number of rejection 2

/̂ ∼ Lap(2[2/Y);
count← 0;
for each p-value ?C do

/̂C ∼ Lap(4[2/Y);
or candidacy �C ← 1(log(?C ) < ThresholdC );
Compute alpha investing rule UC ;
if �C = 1, count < 2 , log(?C ) + /C < log(0C ) + /̂ then

output 'C = 1;
count + +;
resample /̂ ∼ Lap(2[2/Y)

else
output 'C = 0 (fail to reject)

end
end

Remarks. combine SAFFRON investment estimation with SV

instead of comparing ? and U , compare noisy versions of them

looks a lot like ANT but
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Multiplicative sensitivity: [ (5 ) B min
{
max 5 (G)

5 (~) ,max{5 (G), 5 (~)}
}

(either small ratio, or both
are very small anyway)

• keep a candidacy set. In ANT noisy in a symmetric way (fails both way as often), here
we want false rejection to be rarer.

• here sensitivity is multiplicative and looking at log? , because sensitivity of ?-value can
be very high.

Theorem 5.4: PAPRIKA is DP and accurate

PAPRIKA is (Y, X)-DP and controls FDR to below an explicit threshold

Note that for this algorithm X > 0 (but tiny).

No theoretical guarantee with respect to the power of the method. In experiments, good power
requires rather large Y values.

5.5.4 DP and Changepoint Detection

Goal: detect distribution of timeseries changes at C★

Assume we have o�ine DP method (reasonable)

How to do it online? DP detect that test statistic is above threshold in the sliding window, and
run o�ine algo on this window

5.6 Online Optimization

summary:

• Private algo for maintaining partial sum

• Private Follow The Approximate Leader

Incoming stream, and we want to adapt the decision based on what was seen before

5.6.1 First idea

Given stream of bits 11, . . . , 1g . At each time C output
∑C
g=1 1g

Bad idea 1 At each time C , output
∑C
g=1 1g + Lap(1/Y)

Then by composition, Y =
√
)Y ′ log 1/X

Accuracy loss $ (1/Y ′)
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Good accuracy or good privacy. Fix Y and choose Y ′ = Y/
√
) , then we have accuracy loss

$ (
√
) /Y). However this can easily become large

Bad idea 2 Add noise to each 18 : 1̂8 = 18 + Lap(1/Y)

output
∑g
8=1 1̂8 =

∑g
8=1 18 + gLap(1/Y)

1. Big noise infrequently 2. Small noise too often

We need a data structure to �x this

Be�er idea (but really a lie)

Break down into blocks (like a balanced binary tree). Then per sample, add Laplace noise for
each block.

g+ !0? (1/Y ′)

g/2+ !0? (1/Y ′) | g/2+
!0? (1/Y ′)

g/4 + !0? (1/Y ′) | g4 + !0? (1/Y ′) | g/4 + !0? (1/Y ′) |
g/4 + !0? (1/Y ′)

. . .

1|2| 3| . . . |
g

Goals

• Any sum uses only $ (log() )) noise terms

• Any noise term is used only $ (log() )) times

NB: instead of bits 18 , we can think of vectors I8 with ‖I8 ‖ ≤ Δ . Then use noise Lap(Δ/Y ′). And
replace with

∑C I8 .

Tree Based Aggregation Protocol (TBAP) [Chanet et al. 2010, Dwork et al. 2010]
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input :I1, . . . , Ig ∈ R3 , Δ ;2-bound on all IC , Y
output :Sequence of noisy partial sums E1, . . . , Eg ∈ R3
Initialize binary tree � of size 2 blog2) c − 1 with leaves I1, . . . , Ig ;
for C = 1, . . . ,) do

Accept IC from data stream;
Let % = {IC → · · · → root} be a path from IC to the root. ;
Tree update.;
Let Λ be the �rst node in P that is a left-child in A. We only add noise up to a point (the
�rst left-child) then stop ;

Let %Λ = {IC → · · · → Λ} ;
for all nodes U in path ? do

U ← U + IC ;
if U ∈ %Λ then U ← U + W where W ∈ R sampled ∝ exp −‖W ‖2Y

Δ blog2) c
;

end
end
Output partial sums;
Initialize EC ∈ R3 to be 0 ;
Let 1 be a ( blog2) c + 1)-bit binary representation of C . ;
for 8 = 1, . . . , blog2) c + 1 do

if b8 = 1 then
always add something;
if 8-th node in % (denoted % (8)) is a left child then

EC ← EC + % (8)
else

EC ← EC + left-sibling(% (8))
end

end
end
return EC

NB: Laplace Mechanism PG ∝ exp −‖G ‖YΔ , here PW ∝ exp −‖W ‖Y
Δ5 ;>>A log2)

Private follow the Approximate Leader

input : sequence of cost functions 51, . . . , 5g , � , !, � , Y
Initialize F̂8 ∈ � arbitrarily, output F̂8 for C = 1, . . . ,) do

Pass ∇5C (F̂8), !, Y into TBAP and recieve current partial sum ÊC
F̂C+1 = 0A6minF∈� < ÊC ,F > +�2

∑C
g=1 ‖F − F̂g ‖22

Output F̂C+1
end
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5.7 Private Deep Learning

The only thing to to is to adapt a DP gradient descent.

DP-SGD [Abadi et al 2016] (Deep learning with di�erential privacy, In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security).

input :Dataset - = (G1, . . . , G=), loss function L\ , learning rate [C , batch size !, noise
multiplier f , gradient norm bound 2

Initialize \0 randomly;
(Sample a batch) e.g. Poisson random subsample !C with pre-example prob !/= ;
for each G8 ∈ !C do

compute 6C (G8) = ∇\ CL\ C (G8) ;
6̄C (G8) = 6C (G8 )

max{1, ‖6C (G8 ) ‖2/2 } ;
6C =

1
|!C |

∑
G8 ∈!C 6C (G8) +# (0, f2�2� ) ;

\C+1 = \C + [C6C
end
output :\) and compute overall (Y, X)-DP bound via privacy accounting.

The question is the correct size of the noise to add. Di�cult a priori because we don’t know the
variations of the gradient (possibly unbounded). We can clip the gradient to always lie in some
range.

Note that there are no Y or X in the algorithm. Could use composition, but here training for
thousands of rounds so even a square-root bound is too large. We have special composition
rules for learning with gaussian noise.

De�nition 8 (Renyi DP [Mir 17]). A mechanism" is (U, Y)-RDP if for all neighbours G, G ′

'�% (U) B �U (" (G)‖" (G ′)) ≤ Y

where �U (% ‖&) = 1
U−1 log

(
EG∼G

[(
% (G)
& (G)

)U ] )
Privacy accounting of DP-SGD via RDP

1. compute subsample RDP parameters for one step '�%C=1(U)

2. RDP composition:

Proposition 3. If"1, "2 respectively are (U, Y1), (U, Y2)-RDP for U ≥ 1, then the composi-
tion is (U, Y1 + Y2)-RDP.

3. convert to (Y, X)-DP

Proposition 4. If" is (U, Y)-RDP ∀U ≥ 1, then" is
(
Y (U) + log(1/X)

U−1 , X

)
-DP ∀X > 0.

(Y depends on 0;?ℎ0).
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5.8 Misc.

Who adds noise? Two models:

• Trusted Curator model: requires trusted party collects and sees data, add less noise (more
accurate)

• Local Model: add noise locally (doesn’t require trust), more error because can’t coordinate
noise

Example of local model To give people deniability on a yes/no question, the agent �ips two coins
and answers truthfully, but if they get two tails they �ip their answer. Then still possible to
have population level statistics.

DP Synthetic data generation Given a database � , �nd another database � ′ that has the
same statistical properties as � .

• Challenges: datasets are often high dimensional and are required to be correct on many
queries:

– how to measure “accuracy” of a synthetic dataset? (there exist good measures of
distance but superpolynomial in the size of the dataset)

– Computational e�ciency of data generation.

• (Partial) solutions:

Explaining DP How to communicate to public/policymakers/engineers?

(Partial) solutions: measuring users’ privacy expectations from di�erent DP description; �nding
methods for explaining privacy parameters −→ Ongoing work.
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